key: cord-278325-ykcd7d59 authors: Cheung, Carmen Ka Man; Law, Man Fai; Lui, Grace Chung Yan; Wong, Sunny Hei; Wong, Raymond Siu Ming title: Coronavirus Disease 2019 (COVID-19): A Haematologist's Perspective date: 2020-07-28 journal: Acta Haematol DOI: 10.1159/000510178 sha: doc_id: 278325 cord_uid: ykcd7d59 Coronavirus disease 2019 (COVID-19) is affecting millions of patients worldwide. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the family Coronaviridae, with 80% genomic similarities to SARS-CoV. Lymphopenia was commonly seen in infected patients and has a correlation to disease severity. Thrombocytopenia, coagulation abnormalities, and disseminated intravascular coagulation were observed in COVID-19 patients, especially those with critical illness and non-survivors. This pandemic has caused disruption in communities and hospital services, as well as straining blood product supply, affecting chemotherapy treatment and haematopoietic stem cell transplantation schedule. In this article, we review the haematological manifestations of the disease and its implication on the management of patients with haematological disorders. Coronavirus disease 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-strand RNA virus belonging to the family Coronaviridae with about 80% genomic similarities with SARS-CoV [1] [2] [3] . The virus is highly contagious, with over 3 million confirmed cases causing more than 190,000 deaths worldwide, reported to the WHO by the end of April 2020 [4] [5] [6] [7] [8] . Viral infection is well known to be associated with abnormal haematological parameters. Autopsy of patients who died of COVID-19 showed markedly shrunken spleen with reduced lymphocyte, macrophage proliferation, and phagocytosis [9] . Lymphocytes were also depleted in lymph nodes, and all haematopoietic cell lineages were reduced in the bone marrow. The battle against COVID-19 is likely to be a marathon and the pandemic has a major impact on health care systems in many countries [10] . The virus will continue to pose a risk to people without immunity to it. In this article, we review the haematological manifestations of COVID-19 and its implications on the management of patients with haematological disorders. Lymphopenia is a common finding in viral infection. In a multicentre study including 1,099 patients from 552 sites in China, lymphopenia was present in 83.2% of patients on admission [11] . Many other studies in China reported rates of lymphopenia ranging from 26% to 80% (Table 1) [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] . In a large US series that included 5,700 patients, lymphopenia was present in around 60% (3, 387) of patients on initial laboratory tests [31] . Lymphopenia was observed on admission in 36.9 and 25% of COV-ID-19 patients reported in Singapore and Korea, respectively [32, 33] . Lymphopenia has been consistently found to correlate with the severity of COVID-19 infection and might have a predictive value in the clinical setting. Zhou et al. [34] evaluated risk factors for mortality in a retrospective cohort study involving 191 patients and showed that baseline lymphocyte count was significantly higher in survivors than non-survivors (1.1 × 10 9 /L versus 0.6 × 10 9 /L, p < 0.0001). In survivors, lymphocyte count was lowest on day 7 after onset of illness and improved during hospitalization, whereas severe lymphopenia was observed until death in non-survivors. In another retrospective analysis of 95 cases, Zhang et al. [35] demonstrated that the level of lowest lymphocyte count correlated with disease severity and a composite endpoint including intensive care unit (ICU) admission, mechanical ventilation, or death. Among patients with lymphocyte counts < 0.4 × 10 9 /L, 81.8% were classified as severe cases and all of them reached the composite endpoint, while in patients with lymphocyte counts > 0.8 × 10 9 /L, only 11.9% were severe cases and 9.5% reached the composite end point. In a retrospective cohort including 201 patients, lymphopenia during the disease course was also reported to be associated with the development of acute respiratory distress syndrome (ARDS) [36] . A significantly higher number of patients requiring treatment in ICU had low lymphocyte counts on presentation [13, 30, 32] . Fan et al. [32] also found that on serial monitoring, the median nadir absolute lymphocyte count in the ICU group was 0.4 × 10 9 /L compared to 1.2 × 10 9 /L in the non-ICU group. Wang et al. [13] analysed dynamic changes in the haematological parameters of 33 patients from day 1 to day 19 after onset of disease and showed that non-survivors developed more severe lymphopenia over time. Lymphopenia was frequently encountered in patients requiring ICU care, ranging from 67% to 85% in various case series [37] [38] [39] . However, there was no significant difference in median lymphocyte counts between survivors and non-survivors in a retrospective observational study involving 52 critically ill patients in Wuhan [39] . Depletion of T cells and NK cells was seen in patients suffering from COVID-19 [32, [40] [41] [42] . Lymphopenia on presentation correlated with a high viral load, as reflected by the low cycle threshold value in respiratory samples [43] . Liu et al. [44] analysed the correlation between dynamic changes in the nasopharyngeal viral load and the lymphocyte count. It was found that the higher the RNA load in the nasopharynx, the lower the CD4+ and CD8+ T lymphocyte count and these changes were closely related to the severity of COVID-19. Jiang et al. [45] evaluated lymphocyte subsets in 103 patients, which revealed that CD3+, CD4+, and CD8+ T cells and NK cells were significantly decreased in COVID-19 patients with a more severe decrease in CD8+ T cells compared with CD4+ T cells. In addition, severe COVID-19 patients showed significant decreases in lymphocyte subset counts compared to mild to moderate patients, especially in CD3+, CD4+, and CD8+ T cells [45] . Another study analysed lymphocyte subsets of 44 patients at presentation and found that both CD4+ and CD8+ T cells were below normal levels in patients with COVID-19 infection, but the decline in CD4+ cells was more pronounced in severe cases [40] . The percentage of naïve helper T cells (CD3+, CD4+, CD45RA+) increased and memory helper T cells (CD3+, CD4+, CD45RO+) decreased in severe cases when compared with non-severe cases [40] . Wan et al. [46] analysed lymphocyte subsets in 123 patients on the first day of hospital admission and 1-3 days before discharge. Although there was a greater reduction of CD4+ and CD8+ T cells in the severe group, both CD4+ and CD8+ T cells improved before discharge, suggesting that the cellular immunity had been restored. Liu et al. [47] reported that the decrease of T cells, especially CD8+ T cells, in the severe patient group reached its lowest within the first week during the course of the disease, and then T cell numbers gradually increased during the second week with recovery to a level comparable to that of the mild patient group in the third week. All the severe patients survived the disease in the study [47] . Another study which compared lymphocyte subsets before and after treatment showed that post-treatment decrease of CD8+ T cells and B cells and increase of CD4+/CD8+ ratio were independent predictors of poor treatment efficacy [48] . Lower CD4 T lymphocyte counts may predict a longer persistence of SARS-CoV-2 RNA in stool, where viral clearance may be further delayed by corticosteroid [49] . Hence, lymphocyte subset may serve as a biomarker for disease evolution, and its monitoring may help to predict disease outcome. SARS-CoV-2 could trigger necrosis or apoptosis of lymphocytes resulting in lymphopenia. The virus induced NKG2A expression and possibly correlated with functional exhaustion of NK and CD8+ T cells at an early stage, resulting in disease progression [50] . A dysregulated/exuberant innate response also contributed to SARS-CoV-mediated pathology [51] . Cytokine storm with elevation of interleukin (IL)-2R, IL-6, IL-1β, IL-8, IL-17, granulocyte colony-stimulating factor (G-CSF), tumour necrosis factor-α (TNF-α), IP10, MCP1, and MIP1α was seen in COVID-19 patients and may also lead to lymphopenia [52] . Compared to lymphopenia, thrombocytopenia is less commonly seen in patients suffering from COVID-19. The reported rates of thrombocytopenia varied from less than 5% to about 53.6% (Table 1) [11, 12, 16, 17, 22, 27, 28, 30, 32, 33] . Platelet count has been evaluated as a biomarker to predict the severity of COVID-19 in multiple studies, but the results were confounded by heterogeneity regarding definitions of thrombocytopenia and endpoints used. Two meta-analyses showed that a lower platelet count is associated with an increased risk of severe disease and mortality in patients with COVID-19 and may serve as a marker for progression of illness [53, 54] . In the multicentre study by Guan et al. [11] , thrombocytopenia (platelet count < 150 × 10 9 /L) on admission was more commonly seen in severe (57.7%) than nonsevere (31.6%) patients [11, 55] . Zhou et al. [34] reported that 20% of non-survivors had platelet counts less than 100 × 10 9 /L on admission compared to only 1% in survivors (p < 0.0001). In contrast, no difference in platelet count on admission was observed between patients requiring ICU care compared with those that did not in other studies [13, 30] . A study that monitored the sequential changes in platelet count in the first 3 weeks after admission found that there was a gradual drop in platelet counts with a lower nadir among non-survivors compared to survivors (79 vs. 203 [155-257], p < 0.001) [56] . Dynamic changes of platelets were also reported to be closely related to mortality [57] . An increment in platelets was associated with decrease in mortality, suggesting the role of monitoring platelets in predicting prognosis during hospitalization [58] . A case series including 30 hospitalized COVID-19 patients evaluated the prognostic value of dynamic changes in platelet count and found that a higher platelet-to-lym-phocyte ratio (PLR) at peak platelet count was associated with longer hospital stay and the change in PLR was more prominent in severe patients, which may be caused by cytokine storm provoking inflammation resulting in the stimulation and release of platelet [59] . Yang et al. [60] analysed the predictive role of PLR and showed that a higher PLR was seen in severe patients (436.5 ± 329.2) compared to non-severe patients (176.7 ± 84.2; p < 0.001). Elevated PLR showed a trend of association with disease progression (hazard ratio [HR] 1.023, 95% CI 0.921-1.756 by multivariate Cox regression), but the statistical significance was lost after adjustment of gender and age, limiting its clinical utility [60] . Experience from previous SARS patients, caused by SARS-CoV-1, suggested that coronavirus could cause thrombocytopenia by direct viral infection of bone marrow haematopoietic stem cells via CD13 or CD66a, formation of auto-antibodies and immune complexes, disseminated intravascular coagulopathy (DIC), and consumption of platelet in lung epithelium [61, 62] . Higher soluble vascular cell adhesion molecule-1 (sVCAM-1) level was found in SARS patients, which enhanced vascular sequestration resulting in thrombocytopenia [63] . Several mechanisms by which COVID-19 causes thrombocytopenia have been proposed, including (a) reduction in platelet production due to direct infection of bone marrow cells by the virus, destruction of bone marrow progenitor cells by cytokine storm, and indirect effect of lung injury; (b) increased platelet destruction by autoantibodies and immune complex; and (c) platelet aggregation in the lungs, resulting in microthrombi and platelet consumption [64] . Cytokine storm of severe disease may lead to secondary haemophagocytic lymphohistiocytosis, which can also result in thrombocytopenia [65] . Thrombocytopenia-associated bleeding is uncommon in COVID-19. Platelet transfusion is recommended in patients with active bleeding and a platelet count less than 50 × 10 9 /L. For patients at high risk but without active bleeding, platelet transfusion may be considered if the platelet count is less than 20-25 × 10 9 /L [66] . Anaemia is not a major problem in patients suffering from COVID-19 [11, 12, 17, 27, 28, 30, 32, 33] . In a cohort of 572 patients with COVID-19, only 1.6% of them required blood transfusion, while the transfusion requirement was higher in those admitted to ICU [67] . been reported, including blood loss during continuous renal replacement therapy and gastrointestinal bleeding with or without anticoagulant use [67] . Autoimmune haemolytic anaemia was also reported in patients with COVID-19 within a timeframe compatible with the development of cytokine storm [68] . SARS-CoV-2 can enter epithelial cells of the gastrointestinal tract via the angiotensin-converting enzyme 2 (ACE2) receptor [69] . Endoscopy revealed oesophageal bleeding caused by erosions and ulcers with detection of SARS-CoV-2 in a patient with severe infection [70] . SARS-CoV-2 was demonstrated in gastric, duodenal, and rectal epithelial cells by RNA detection and intracellular staining of viral nucleocapsid protein [69] . The direct viral invasion into the gastrointestinal tract may result in mucosal damage resulting in bleeding and subsequent need of blood transfusion. Ribavirin has been used as treatment for COVID-19 [71, 72] . Haemolytic anaemia is one of the major side effects of ribavirin, but most patients did not require transfusion according to previous SARS experience [73] . A randomized controlled trial on the safety and efficacy of its use in COVID-19 patients is ongoing [74] . Adequate haemoglobin level is important to ensure sufficient tissue oxygenation. Phlebotomy by small-volume blood tubes may help to reduce iatrogenic blood loss [75] . Iron replacement should be given to patients with pre-existing iron deficiency anaemia. Use of erythropoiesis-stimulating agents in critically ill patients should be cautious if thromboembolic event is a concern [76] . Decision on allogeneic red cell transfusion should be individualized. A single-unit policy should be followed whenever possible [77] . Diverse coagulation abnormalities in COVID-19 infection have been described [12, 13, 16, 17, 30, 36, 78, 79] . A study in Chongqing showed that the majority of the patients had normal coagulation indexes, probably explained by the fact that 70% of the included patients had mild disease [17] . DIC is characterized by activation of coagulation and generation and deposition of fibrin, leading to microvascular thrombi deposition in various organs and subsequently multiple organ dysfunction, which predicts mortality in septic patients [80] . Tang et al. [79] studied coagulation parameters in 183 patients suffering from COVID-19 and found that 71.4% of non-survivors devel-oped overt DIC compared to only 0.6% among survivors. Patients who died had significantly higher D-dimer, fibrin degradation product levels, and longer PT on admission [79] . The study by Guan et al. [11] showed that 69.4% patients who reached the primary composite endpoint (ICU admission, mechanical ventilation, or death) had elevated D-dimer level (≥0.5 mg/L) on admission compared to 44.2% not reaching the primary endpoint. Wu et al. [36] showed that significant prolongation of PT (median 11.70 s) and higher D-dimer level (1.16 μg/mL) at presentation were observed in patients with ARDS compared to those without (median PT 11.70 vs. 10.60 s, median D-dimer level 1.16 vs. 0.52 μg/mL, p < 0.001 for both comparisons). Elevated D-dimer level has been shown to be associated with higher mortality rates in various studies [34, 36, 57, 81] . In a retrospective study including 343 patients in Wuhan, patients with D-dimer levels ≥2 μg/ mL on admission had higher mortality compared to those with D-dimer level < 2 μg/mL (HR 51.5, 95% CI 12.9-206.7) [81] . A D-dimer cut-off value of ≥2 μg/mL on admission could predict in-patient mortality with a sensitivity of 92.3% and a specificity of 83.3% [81] . Prolongation of PT and markedly elevated D-dimer on admission were associated with poor prognosis and were more commonly seen in patients requiring ICU care [13, 30] . In addition to coagulation parameters on presentation, dynamic change in coagulation profile could predict disease severity and progression. Tang et al. [79] reported dynamic changes in coagulation parameters from day 1 to day 14 after admission. Non-survivors demonstrated significant increase in D-dimer and fibrin degradation product as well as prolongation of PT by day 10-14, while fibrinogen and antithrombin activity were significantly lower when compared with survivors [79] . Other studies also showed similar findings of a gradual increase in D-dimer levels among non-survivors [13, 34] . Pooled results in a metaanalysis including 9 studies revealed that PT and D-dimer levels were significantly higher in patients with severe COVID-19 [82] . Dynamic change in fibrinogen concentration has also been shown to correlate with an increased risk of death [57] . COVID-19 patients with acute respiratory failure presented with severe hypercoagulability due to hyperfibrinogenaemia resulting in increased fibrin formation and polymerization that may predispose to thrombosis [83] . The systemic inflammatory response triggered by viral infection results in an imbalance in homeostatic procoagulant and anticoagulant. Cytokine storm, endothelial dysfunction, von Willebrand factor elevation, Tolllike receptor activation, and tissue-factor pathway activa-6 DOI: 10.1159/000510178 tion may contribute to hypercoagulability [84] . Overactivation of NADPH oxidase-2 (Nox2), resulting in increased reactive oxidant species, is implicated in arterial vasoconstriction, clotting, and platelet activation [85] . Tang et al. [86] provided data in a retrospective study on 449 patients and showed that anticoagulant with unfractionated heparin (10,000-15,000 U/day) or low-molecular-weight heparin (LMWH, enoxaparin 40-60 mg/ day) reduced mortality in patients with sepsis-induced coagulopathy score (a scoring system including platelet count, PT, and major organ failure assessment) of ≥4 (from 64.2% to 40.0%, p = 0.029) [86, 87] . A 20% reduction in mortality was also seen in patients with D-dimer level 6-fold the upper limit of normal who received anticoagulant [87] . Interestingly, no improvement in mortality was seen in anticoagulation therapy for patients with severe pneumonia caused by pathogens other than SARS-CoV-2 even with high D-dimer level [88] . A brief report showed that 25% of 81 patients with severe COVID-19 requiring ICU care developed venous thromboembolism (VTE) [89] , which may explain the promising results of anticoagulation. In a cohort of 184 patients admitted to the ICU who received at least standard doses of thromboprophylaxis, the cumulative incidence of VTE and arterial thrombosis was 31% [90] . Coagulopathy, defined as spontaneous prolongation of PT > 3 s or APTT > 5 s, was an independent predictor of thrombotic complications (adjusted HR 4.1, 95% CI 1.9-9.1). In another multicentre prospective cohort of 150 patients with ARDS admitted to ICU, 25 (16.7%) of them developed pulmonary embolisms and 3 (2%) developed deep vein thrombosis despite prophylactic or therapeutic anticoagulation [91] . Since diagnostic tests were only performed based on clinical suspicion, the actual incidence of thrombosis could have been underestimated. Llitjos et al. [92] conducted a retrospective study on 26 patients admitted to ICU with systematic screening of VTE using complete duplex ultrasound performed on days 1-3 of ICU admission, followed by a second scan on day 7 if the first one was negative. The incidence of VTE was 69% in the group of patients who received anticoagulation [92] . Autopsy of 12 consecutive COVID-19 deaths revealed deep vein thrombosis in 7 patients (58%) in whom VTE was not suspected before death. Pulmonary embolism was the direct cause of death in 4 patients [93] . Histologic analysis of pulmonary vessels in 7 patients who died from COVID-19 showed widespread thrombosis with microangiopathy and a much higher prevalence of alveolar capillary microthrombi when compared with those who died from influenza-associated respiratory failure [94] . In addition to VTE, arterial thromboses such as acute myocardial infarction have been reported [95] . Large vessel stroke can be a presenting feature in young patients [96] . In a retrospective study of 214 hospitalized patients from Wuhan, 5.7% of the severe patients suffered from acute cerebrovascular disease [97] . Hypercoagulability was also demonstrated in ICU patients with respiratory failure by thromboelastography [98] . All these findings suggested a pro-coagulant tendency in COVID-19 patients, especially if critically ill. Middeldorp et al. [99] administered thromboprophylaxis to all patients admitted for COVID-19. Patients admitted to the general ward received nadroparin 2,850 IU once daily or 5,700 IU for patients with a body weight of ≥100 kg. From April 3 onwards, the dose of anticoagulation in ICU patients was doubled. Symptomatic VTE was detected in 21 out of 75 (28%) ICU patients and 4 out of 123 (3.3%) ward patients (sub-distribution hazard ratios 3.9; 95% CI 1.3-12) [99] . Lodigiani et al. [100] studied venous and arterial thromboembolic complications in 388 hospitalized patients. Thromboprophylaxis was used in all ICU patients and 75% of those on the general ward. Eight events occurred in ICU patients (16.7%; 95% CI 8.7-29.6%), while 20 events occurred in patients on the general ward (6.4%; 95% CI 4.2-9.6%), corresponding to cumulative rates of 27.6 and 6.6%, respectively. Importantly, 7 events in the general ward occurred in patients with cancer, highlighting that additional risk factors might further increase the risks of VTE [100] . Racial difference on thrombotic risk should also be taken into consideration [101] . The International Society on Thrombosis and Haemostasis (ISTH) suggested all patients (including non-critically ill) who require hospital admission for COVID-19 infection should receive a prophylactic dose of LMWH unless contraindicated (Table 2 ) [102] . LMWH was the preferred drug of choice due to a high instability of international normalized ratio for vitamin K antagonists and drug-drug interaction between direct oral anticoagulants and anti-viral agents [103] . The American Society of Hematology (ASH) recommended all hospitalized patients with COVID-19 should receive pharmacological thromboprophylaxis. If it is contraindicated or unavailable, mechanical prophylaxis should be implemented [104] . However, the recommendations of pharmacological thromboprophylaxis on non-critically ill patients are still controversial [105, 106] . We recommend physicians stay vigilant to thrombotic complication. Decision on thromboprophylaxis should also be based on clinical judgement and other risk factors, such as prolonged immobilization, active malignancy, obesity, previous history of VTE, and ethnicity. The efficacy, safety, and optimal dosage of anticoagulation in non-critically ill COVID-19 patients need to be confirmed by prospective studies. A more recent consensus statement recommended VTE risk assessment for non-critically ill patients, and only to consider pharmacological thromboprophylaxis in patients with a moderate to high risk of VTE [107] . A significant reduction of blood donations has been reported after the outbreak [108] . Possible reasons include lockdown, stay-at-home order, anxiety for volunteer donors to attend blood donation centres, and additional deferral policy on travel history. The number of eligible donors may further decrease if the outbreak continues to evolve. Establishment of a crisis system to reduce usage (e.g., deferring elective surgery), coordination of blood products delivery to areas with a shortage, use of social media to promote blood donation, etc. might help to overcome the crisis of paucity in blood supply [109] . If the supply of blood product is limited, there may be a need to adopt a more restrictive blood transfusion approach. Transfusion alternatives such as use of iron supplement in iron deficiency anaemia and erythropoiesisstimulating agents should be encouraged. Currently there is no reported case of transmission of the coronavirus from donor to recipient through blood product transfusion or cellular therapies, but given that SARS-CoV-2 RNA was detected in the serum of COVID-19 patients [30] , the actual risk of transfusion transmission of SARS-CoV-2 remains unknown [110] . There is no additional screening test for blood donors recommended by the American Association of Blood Banks (AABB) at the moment [111] . Use of riboflavin and ultraviolet light-based photochemical treatment to plasma and platelet products may be effective in reducing the theoretical risk of transfusion-transmitted SARS-CoV-2 [112] . The COVID-19 pandemic poses a big challenge for the medical community, with a great impact on management of patients with haematological conditions. In a cohort study of 128 hospitalized subjects with haematological cancers at two centres in Wuhan, they have a similar rate of COVID-19 compared with normal health care providers but have more severe disease and a higher case fatality rate [113, 114] . Non-hospitalized patients with haematological cancers may also have a higher chance of developing symptomatic COVID-19. In a study using a questionnaire to evaluate 530 subjects with chronic myeloid leukaemia in Hubei, prevalence of COVID-19 in chronic myeloid leukaemia patients was 9-fold higher than the 0.1% reported in normal [114, 115] . Chemotherapy and transplant schedules have been affected during the outbreak when hospitals are overwhelmed by confirmed COVID-19 cases. The huge demand in isolation facilities compromises the care of patients who have received myelosuppressive therapy complicated with profound neutropenia requiring isolation rooms and prolonged hospitalization. Treatment may also be deferred due to lockdown, quarantine order, disrupted medical health care service, shortage of isolation bed and blood product, and phobia towards attending hospital. Delay in treatment may have a negative impact on the clinical conditions and outcomes of patients, especially those with more aggressive diseases. Their need for timely treatment should not be neglected. In general, less essential service should be postponed [116] in order to reduce the number of patients requiring hospital care so as to minimise risk of nosocomial COVID-19 infection, to conserve personal protective equipment for high-risk clinical activities, and to maintain the capacity of the health care system. Monitor D-dimers, PT, platelet count, and fibrinogen can help to stratify patients who may need admission and close monitoring Prophylactic dose LMWH should be given to all patients (including non-critically ill) who require hospital admission unless contraindicated (active bleeding and platelet count <25 × 10 9 /L) Transfuse and aim platelet count above 50 × 10 9 /L; fibrinogen above 2.0 g/L; PT <1.5 LMWH, low-molecular-weight heparin; PT, prothrombin time. Cheung/Law/Lui/Wong/Wong Acta Haematol 8 DOI: 10.1159/000510178 Table 3 . Suggested strategies in the management of haematological malignancies under COVID-19 pandemic [103, [114] [115] [116] Disease Management recommendation AML Induction and consolidation -All patients should be tested for COVID-19 prior to initiation of intensive chemotherapy -Delay treatment if possible for patients positive for COVID-19 -Standard induction therapy should be offered to eligible patients -Intermediate-dose cytarabine (1.5 g/m 2 ) or decreasing the number of consolidation cycles can be considered in patients who achieve complete remission Salvage therapy -Intensive re-inductions should be performed according to the algorithms of the individual centre -For patients without proliferative disease or significant transfusion dependence, therapy may be temporarily postponed HSCT -Consider cryopreservation of donor cells prior to the start of conditioning APL -Standard regime including ATRA and ATO should be given -Prophylactic dexamethasone should be considered for patients at high risk of differentiation syndrome ALL Induction and consolidation -All patients should be tested for COVID-19 prior to initiation of intensive chemotherapy -Delay treatment if possible for patients positive for COVID-19; intrathecal chemotherapy may be given if CNS symptoms are present -Philadelphia chromosome negative -Proceed with standard curative induction therapy -Dose reduction may be considered for patients at high risk for complications -Philadelphia chromosome positive -Consider TKI with minimal steroid exposure as initial treatment Salvage therapy -Treatment that can be administered at outpatient setting such as inotuzumab or blinatumomab should be considered for B-ALL HSCT -Allogeneic HSCT should be considered for patient who achieved CR2 despite the pandemic Aggressive lymphoma -Standard regime such as R-CHOP for diffuse large B-cell lymphoma and DA-EPOCH-R for double-hit and primary mediastinal B-cell lymphomas should be offered -Dose reduction or limiting treatment cycle can be considered for elderly or early stage disease -Consider subcutaneous rituximab to reduce patient's time spent in clinical area -For relapse/refractory disease, admission for ASCT may be delayed if another cycle of outpatient chemotherapy can be administered Indolent lymphoma -Treatment deferral with close monitoring is recommended for asymptomatic patients -When treatment is indicated, consider rituximab monotherapy rather than chemoimmunotherapy -Treatment options that minimize clinic or chemotherapy unit visits are preferred HL Initial therapy -Strategies to reduce the risk of bleomycin pneumonitis should be prioritized especially during the pandemic -Standard treatment such as ABVD, AAVD, and radiotherapy should be given General recommendation -Patients should be tested for COVID-19 before hospital admission, starting a new treatment, cell apheresis, or ASCT in countries with high spread of SARS-CoV-2 -Treatment re-schedule and de-intensification can be considered for responding patients -Patients receiving bisphosphonates should reduce frequency of drug infusion to every 3 months or temporarily withheld Transplant eligible -Bortezomib, lenalidomide, or daratumumab-based triplet therapy for 6-12 cycles should be offered -For patients with standard risk disease, delay ASCT by additional induction cycles and/or lenalidomide maintenance -Patients with high-risk disease may proceed with ASCT after exclusion of COVID-19 infection Transplant ineligible -Dexamethasone should be reduced to 20 mg weekly -All-oral drug combinations, e.g., lenalidomide with dexamethasone, are preferred -Addition of bortezomib or daratumumab can be considered for patients with high-risk disease Relapsed/refractory -Watchful waiting may be considered for biochemical relapses -Orally administered agents (such as ixazomib, lenalidomide, pomalidomide, and panobinostat) should be considered -Modify treatment regime to minimize clinic/hospital visit, such as once weekly instead of twice weekly bortezomib/ carfilzomib and monthly daratumumab infusions are recommended Confirmed COVID-19 -If anti-myeloma treatment has been started, therapy might be continued for asymptomatic COVID-19 infection, although pausing of treatment is also an option; steroids and drugs inducing lymphopenia should be de-intensified -For symptomatic infection, treatment should be interrupted and steroids should be tapered to zero until full recovery from COVID-19 AAVD, brentuximab vedotin, adriamycin, vinblastine, dacarbazine; ABVD, adriamycin, bleomycin, vinblastine, dacarbazine; ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; APL, acute promyelocytic leukaemia; ASCT, autologous stem cell transplantation; ATRA, all-trans-retinoic acid; ATO, arsenic trioxide; BCR, B-cell receptor; CLL, chronic lymphocytic leukaemia; CML, chronic myeloid leukaemia; CNS, central nervous system; CR, complete remission; DA-EPOCH-R, dose-adjusted etoposide, prednisolone, vincristine, cyclophosphamide, doxorubicin-rituximab; HL, Hodgkin lymphoma; HSCT, haematopoietic stem cell transplantation; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; PD-1, programmed cell death protein 1; R-CHOP, rituximabcyclophosphamide, doxorubicin, vincristine, prednisolone; TFR, treatment-free remission; TKI, tyrosine kinase inhibitor. Life-saving chemotherapy for conditions such as acute leukaemia or aggressive lymphoma should not be delayed. Watchful waiting approach may be considered for patients with indolent diseases if the risk of severe CO-VID-19 infection outweighs treatment benefit, while single-agent monoclonal antibody instead of combination chemoimmunotherapy can be considered in patients who require treatment. Oral formulation is preferred to intravenous injection to minimize hospital visit. Prioritization and triage of anti-cancer therapy should be based on disease-and patient-specific considerations through communication with specialists and patients [117] . Recommendations on induction, consolidation, and salvage therapies on haematological malignancy during the pandemic by the ASH, European Hematology Association (EHA), and International Myeloma Society are summarized in Table 3 [104, [118] [119] [120] . Primary prophylaxis using G-CSF in patients receiving intensive chemotherapy reduces the risk of febrile neutropenia and the risk of hospitalization and thus should be considered [121, 122] . Effective non-immunosuppressive treatments, such as intravenous immunoglobulin and thrombopoietin receptor agonists, may be considered in lieu of high-dose steroid for patients with immune thrombocytopenia purpura and severe thrombocytopenia. If patients are stable on low doses of immunosuppressive drugs, no modification of drug regimen is needed. Infection prevention measures such as hand hygiene in ambulatory chemotherapy centres or clinics should be implemented. Screening procedures, including questionnaire on respiratory symptoms, travel and contact history, and measuring of body temperature, should be performed for patients and hospital visitors [123] . Patients may benefit from increased surveillance of SARS-CoV-2 infection and protective isolation [113] [114] [115] . Psychosocial support should be provided where possible, when measures of social distancing might have affected the well-being of patients with haematological malignancies. Great obstacles on allogeneic haematopoietic stem cell transplantation have been encountered during the CO-VID-19 outbreak. Closure of international borders, travel restriction, and shutdown of air travel has affected international donor travel and the shipping of cellular products. Cryopreserved stem cell transplantation during the pandemic can be considered if alternative cellular products or donors are not available and does not appear to have a negative impact on the long-term outcome [124, 125] . Appropriate measures such as home quarantine and screening of donors for COVID-19 prior to donation should be implemented in areas with a high frequency of SARS-CoV-2 infection [126] . All transplant recipients should also be tested negative for SARS-CoV-2 irrespective of respiratory symptoms before initiating conditioning chemotherapy [127] . Treatment cycles may be increased to achieve a deeper remission before proceeding to allogeneic haematopoietic stem cell transplantation. The European Society for Blood and Marrow Transplantation (EBMT) proposed suggestions on haematopoietic stem cell transplantation during the COVID-19 pandemic, which is shown in Table 4 [127] . In summary, the COVID-19 disease has had notable haematological manifestations. Lymphopenia, thrombocytopenia, and coagulation abnormalities on presentation and during the disease courses have been associated with poor outcomes, and serial monitoring is recommended. Physicians should stay vigilant against VTE and For transplant candidate ---For confirmed COVID-19 patients with high-risk malignancy, HSCT should be deferred for a minimum of 14 days until the patient is asymptomatic and has two negative virus PCR swabs taken at least 24 h apart In patients infected with COVID-19 with low-risk malignancy, a 3-month HSCT deferral is recommended For patients who had close contact with a person diagnosed with COVID-19, any transplant procedures (PBSC mobilization, BM harvest, conditioning) shall not be performed within at least 14 days from the last contact For donor ---Donors should have been asymptomatic for at least 14 days before donation and a negative test for COVID-19 is recommended In case of diagnosis of COVID-19, donor should be excluded from donation. Stem cell collection should be deferred for at least 28 days after recovery. If the recipient's need for transplant is urgent and the donor is completely well and there are no suitable alternative donors, an earlier collection may be considered if local public health requirements permit, subject to careful risk assessment In case of close contact with a person diagnosed with SARS-CoV-2, the donor shall be excluded from donation for at least 28 days; if the patient's need for transplant is urgent, the donor is completely well, a test is negative for SARS-CoV-2, and there are no suitable alternative donors, earlier collection may be considered subject to careful risk assessment BM, bone marrow; HSCT, haematopoietic stem cell transplantation; PBSC, peripheral blood stem cell; PCR, polymerase chain reaction. consider pharmacological thromboprophylaxis in highrisk patients. Changes in clinical practice are unavoidable in the current pandemic. Treatment decision should be tailored on an individual basis to minimize risk of infection without jeopardizing the disease outcome. Coronavirus infections and immune responses A new coronavirus associated with human respiratory disease in China. Nature A pneumonia outbreak associated with a new coronavirus of probable bat origin WHO Health Emergency Dashboard Coronavirus (COVID-19): World Health Organization (WHO) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment The Untold Toll -The Pandemic's Effects on Patients without Covid-19 China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China: JAMA Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Hubei Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city Clinical features and treatment of CO-VID-19 patients in northeast Chongqing Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COV-ID-19) Pneumonia Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients Clinical characteristics of 30 medical workers CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2 Chest CT Findings in Patients With Coronavirus Disease 2019 and Its Relationship With Clinical Features Novel Coronavirus (2019-nCoV) Pneumonia. Radiology Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha Differences between COVID-19 and suspected then confirmed SARS-CoV-2-negative pneumonia: A retrospective study from a single center Clinical features of patients infected with 2019 novel coronavirus in Wuhan and the Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the Hematologic parameters in patients with COVID-19 infection Korea National Committee for Clinical Management of COVID-19. Clinical Course and Outcomes of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Preliminary Report of the First 28 Patients from the Korean Cohort Study on COVID-19 Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State Covid-19 in Critically Ill Patients in the Seattle Region -Case Series Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study Dysregulation of immune response in patients with COVID-19 in Wuhan, China Clinical and immunological features of severe and moderate coronavirus disease 2019 Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19 Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury Correlation between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19 T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19 Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients Functional exhaustion of antiviral lymphocytes in COVID-19 patients T cellmediated immune response to respiratory coronaviruses COVID-19: immunopathology and its implications for therapy Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a metaanalysis Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America Thrombocytopenia and its association with mortality in patients with COVID-19 Hematological features of persons with COVID-19. Leukemia Association between platelet parameters and mortality in coronavirus disease 2019: retrospective cohort study Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19 The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol The effect of SARS coronavirus on blood system: its clinical findings and the pathophysiologic hypothesis. Zhongguo Shi Yan Xue Ye Xue Za Zhi Thrombocytopenia in patients with severe acute respiratory syndrome (review) Role of vascular cell adhesion molecules and leukocyte apoptosis in the lymphopenia and thrombocytopenia of patients with severe acute respiratory syndrome (SARS). Microbes Infect Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression The Scientific Standardization Committee on DIC of the International Society on Thrombosis Haemostasis. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines COVID-19): A Haematologist's Perspective 13 Blood and blood product use during COVID-19 infection Autoimmune haemolytic anaemia associated with COVID-19 infection Evidence for Gastrointestinal Infection of SARS-CoV-2 Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID-19 Potential therapeutic agents against COVID-19: what we know so far Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha, and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate novel coronavirus disease 2019: study protocol A cohort study assessing the impact of small volume blood tubes on diagnostic test quality and iatrogenic blood loss in a cohort of adult haematology patients Safety and efficacy of erythropoiesis-stimulating agents in critically ill patients admitted to the intensive care unit: a systematic review and meta-analysis Patient blood management during the COVID-19 pandemic: a narrative review Prominent changes in blood coagulation of patients with SARS-CoV-2 infection Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia International Society on Thrombosis and Haemostasis score for overt disseminated intravascular coagulation predicts organ dysfunction and fatality in sepsis patients D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19 Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past Hypercoagulation and Antithrombotic Treatment in Coronavirus 2019: A New Challenge Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2 Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia Incidence of thrombotic complications in critically ill ICU patients with COVID-19 High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients Autopsy Findings and Venous Thromboembolism in Patients with COVID-19 Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19 Virus Disease 2019 (COVID-19) Presenting as Acute ST Elevation Myocardial Infarction Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis Incidence of venous thromboembolism in hospitalized patients with COVID-19 Humanitas COVID-19 Task Force. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in More on COVID-19 coagulopathy in Caucasian patients ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost Switch from oral anticoagulants to parenteral heparin in SARS-CoV-2 hospitalized patients ASH) recommendations on Coronavirus disease and COVID-19 RE: ISTH interim guidance to recognition and management of coagulopathy in COVID-19 ISTH interim guidance on recognition and management of coagulopathy in COV-ID-19: a comment Prevention Treatment of VTE Associated with COVID-19 Infection Consensus Statement Group. Prevention and Treatment of Venous Thromboembolism Associated with Coronavirus Disease 2019 Infection: A Consensus Statement before Guidelines Prepare to adapt: blood supply and transfusion support during the first 2 weeks of the 2019 novel coronavirus (COVID-19) pandemic affecting Washington State Coronavirus disease 2019 (COVID-19) and decrease in blood donation: experience of Iranian Blood Transfusion Organization (IBTO) Coronavirus Disease 2019: Coronaviruses and Blood Safety American Association of Blood Bank (AABB)'s Coronavirus Resources Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment COVID-19 in persons with haematological cancers Perspective: SARS-CoV-2, COV-ID-19 and Haematologists Hubei Anti-Cancer Association. COVID-19 in persons with chronic myeloid leukaemia Health impact of hospital restrictions on seriously ill hospitalized patients: lessons from the Toronto SARS outbreak Cancer, COVID-19 and the precautionary principle: prioritizing treatment during a global pandemic Management of patients with multiple myeloma in the era of COVID-19 pandemic: a consensus paper from the European Myeloma Network (EMN). Leukemia International Myeloma Society Recommendations for the Management of Myeloma Patients during the COVID-19 Pandemic EHA) COVID-19 Hematology Hub Granulocyte colony-stimulating factor in combination with intensive chemotherapy in the treatment of acute myeloid leukemia Barron R. The impact of primary prophylaxis with granulocyte colony-stimulating factors on febrile neutropenia during chemotherapy: a systematic review and meta-analysis of randomized controlled trials. Support Care Cancer Managing Oncology Services during a Major Coronavirus Outbreak: Lessons from the Saudi Arabia Experience Cryopreservation of allogeneic PBSC from related and unrelated donors is associated with delayed platelet engraftment but has no impact on survival Long-term follow-up of leukaemia patients after related cryopreserved allogeneic bone marrow transplantation Coronavirus and Haematopoietic Stem Cell Transplantation. Worldwide Network for Blood & Marrow Transplantation. WBMT Coronavirus disease COVID-19: European Society for Blood and Marrow Transplantation (EBMT) Recommendations Update The authors have no relevant conflict of interest to disclose. Carmen K.M. Cheung: acquisition, analysis, and interpretation of data/references; drafting and approving the manuscript. Man Fai Law: acquisition, analysis, and interpretation of data/references; drafting and approving the manuscript. Grace C.Y. Lui: analysis, interpretation of data/references; revising critically and approving the manuscript. Sunny Hei Wong: analysis, interpretation of data/references; revising critically and approving the manuscript. Raymond S.M. Wong: analysis, interpretation of data/references; drafting, revising critically, and approving the manuscript.