id author title date pages extension mime words sentences flesch summary cache txt cord-002973-bkr4ndl2 Seifi, Morteza Accurate prediction of functional, structural, and stability changes in PITX2 mutations using in silico bioinformatics algorithms 2018-04-17 .txt text/plain 5062 237 40 Our results showed that for PITX2, and likely other members of this homeodomain transcription factor family, MutPred, Provean, PMUT, molecular modeling, and CUPSAT can reliably be used to predict PITX2 missense variants pathogenicity. The protein sequence and/or protein structure with mutational position and amino acid residue of 18 previously functionally characterized pathogenic PITX2 missense variants, plus 16 SNPs with a population frequency of higher than 0.05% (thus considered benign polymorphisms), were used to test the predictive value of eleven common bioinformatics prediction programs; SIFT, PolyPhen-2, PANTHER-PSEP, MutPred, MutationTaster, Provean, PMUT, FATHMM, nsSNPAnalyzer, Align GV-GD, and REVEL (Table 4 and Table 5 ). To assess the performance of eight different stability predictor programs (DUET, SDM, mCSM, I-Mutant3.0, MUpro, iPTREE-STAB, CUPSAT, and iStable) in predicting the effect of missense mutations on PITX2 protein stability, the change in protein stability (ΔΔG) were computed for all 24 PITX2 homeodomain variants (15 functionally characterised and 9 functionally uncharacterised mutations) (Table 7) . ./cache/cord-002973-bkr4ndl2.txt ./txt/cord-002973-bkr4ndl2.txt