key: cord-266034-811lov8f authors: Benameur, Karima; Agarwal, Ankita; Auld, Sara C.; Butters, Matthew P.; Webster, Andrew S.; Ozturk, Tugba; Howell, J. Christina; Bassit, Leda C.; Velasquez, Alvaro; Schinazi, Raymond F.; Mullins, Mark E.; Hu, William T. title: Encephalopathy and Encephalitis Associated with Cerebrospinal Fluid Cytokine Alterations and Coronavirus Disease, Atlanta, Georgia, USA, 2020 date: 2020-09-17 journal: Emerg Infect Dis DOI: 10.3201/eid2609.202122 sha: doc_id: 266034 cord_uid: 811lov8f There are few detailed investigations of neurologic complications in severe acute respiratory syndrome coronavirus 2 infection. We describe 3 patients with laboratory-confirmed coronavirus disease who had encephalopathy and encephalitis develop. Neuroimaging showed nonenhancing unilateral, bilateral, and midline changes not readily attributable to vascular causes. All 3 patients had increased cerebrospinal fluid (CSF) levels of anti-S1 IgM. One patient who died also had increased levels of anti-envelope protein IgM. CSF analysis also showed markedly increased levels of interleukin (IL)-6, IL-8, and IL-10, but severe acute respiratory syndrome coronavirus 2 was not identified in any CSF sample. These changes provide evidence of CSF periinfectious/postinfectious inflammatory changes during coronavirus disease with neurologic complications. There are few detailed investigations of neurologic complications in severe acute respiratory syndrome coronavirus 2 infection. We describe 3 patients with laboratory-confirmed coronavirus disease who had encephalopathy and encephalitis develop. Neuroimaging showed nonenhancing unilateral, bilateral, and midline changes not readily attributable to vascular causes. All 3 patients had increased cerebrospinal fluid (CSF) levels of anti-S1 IgM. One patient who died also had increased levels of anti-envelope protein IgM. CSF analysis also showed markedly increased levels of interleukin (IL)-6, IL-8, and IL-10, but severe acute respiratory syndrome coronavirus 2 was not identified in any CSF sample. These changes provide evidence of CSF periinfectious/ postinfectious inflammatory changes during coronavirus disease with neurologic complications. ELISA with 90% sensitivity and 89% specificity for confirmed COVID-19 against 78 pre-2020 controls. CSF was serially diluted from 1:2 to 1:16, and CSF from 1 case-patient who had HIV infection (hospitalized during March 2020) and from 3 pre-2020 healthy subjects (9) were included for comparison. We measured levels of plasma IgG against the receptor-binding domain of S1 by using a commercial ELISA (GenScript, https:// www.genscript.com) at a 1:16 dilution. We analyzed CSF inflammatory proteins (Milli-poreSigma, https://www.emdmillipore.com) by using a Luminex-200 platform and a modified manufacturer's protocol as described (9) . These proteins include interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL12-p40, IL12-p70, interferon-gamma-induced protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1/CCL2), macrophage-derived chemokine (MDC/CCL22), fractalkine (CX3CL1), and tumor necrosis factor α (TNF-α). We performed molecular testing for SARS-CoV-2 by using real-time quantitative reverse transcription PCR (qRT-PCR). We extracted total nucleic acid from 120 µL of CSF from each person by using the EZ1 Virus Mini Kit version 2.0 and the EZ1 Advanced XL Instrument (QIAGEN, https://www.qiagen.com) after lysis with AVL lysis buffer (QIAGEN). We performed a 1-step qRT-PCR by using 2019-nCoV_N1 or 2019-nCoV_N2 combined Primer/Probe Mix (Integrated DNA Technologies, Inc., https://www.idtdna.com) in a Roche LightCycler 480 II (https://lifescience. roche.com), an endogenous control, and an in vitro transcribed full-length RNA of known titer (Integrated DNA Technologies, Inc.) as a positive control. We followed the same procedure for influenza A virus except using a primer/probe mixture (10) and a mitochondrial cytochrome oxidase subunit 2 DNA endogenous control (11) . We tested all samples in duplicate. Patient 1, a 31-year-old African-American woman who had sickle cell disease (SCD) and was receiving dabigatran for a recent pulmonary embolus, came to a community hospital after 5 days of progressive dyspnea. An initial chest radiograph showed a right lower lobe infiltrate, and she was given a blood transfusion and antimicrobial drugs for presumed SCD crisis and pneumonia. Her breathing became more labored, and a repeat chest radiograph showed worsening bilateral infiltrates. A nasopharyngeal swab specimen was positive for SARS-CoV-2 and influenza A virus (negative for influenza B virus). She was empirically given hydroxychloroquine (400 mg daily) and peramivir (100 mg daily), but acute kidney injury and progressive hypoxemic respiratory failure developed. She was intubated and transferred to our institution on day 11. Her paralysis and sedation were discontinued on day 13 after improved oxygenation, but she remained comatose with absent brainstem reflexes on day 15. Brain magnetic resonance imaging (MRI) showed nonenhancing cerebral edema and diffusion weighted imaging abnormalities predominantly involving the right cerebral hemisphere, as well as brain herniation ( Figure 1 ). An occlusive thrombus was identified in the right internal carotid artery, and edema was also identified in the cervical spinal cord. The overall appearance was most consistent with encephalitis and myelitis, with superimposed hypoxic ischemic changes. CSF showed high opening pressure of 30 cm of water, 115 nucleated cells/mL, 7,374 erythrocytes/mL, an increased protein level (>200 mg/dL), and a glucose level within a standard range (Table) . Her nucleated cell count remained strongly increased even after correction for the traumatic tap (≈1 nucleated cell/700 erythrocytes). Given a grave prognosis, the family withdrew life-sustaining care and the patient died on day 16. Patient 2, a 34-year-old African-American man who had hypertension, showed development of fever, shortness of breath, and cough. Computed tomography of the chest showed bilateral, diffuse ground glass infiltrates. A nasopharyngeal swab specimen obtained on day 1 showed SARS-CoV-2. He was given a 6-day course of hydroxychloroquine, but hypoxic respiratory failure developed, which required intubation, followed by encephalopathy with myoclonus on day 9. His neurologic examination showed profound encephalopathy, absent corneal and gag reflexes, multifocal myoclonus involving both arms, and absent withdrawal to painful stimuli. Electroencephalography showed diffuse slowing with a suggestion that the myoclonus was seizure-related. Brain MRI on day 15 showed a nonenhancing hyperintense lesion within the splenium of the corpus callosum on fluid-attenuated inversion recovery and diffusion weighted imaging sequences ( Figure 1 ). CSF showed high opening pressure of 48 cm H 2 O, no pleocytosis, 27 erythrocytes/mL, a mildly increased protein level, and glucose level within the reference range. Patient 3, a 64-year-old African-American man who had hypertension, showed development of cough, dyspnea, and fever with multifocal, patchy, ground glass opacities on chest computed tomography and a nasopharyngeal swab specimen positive for SARS-CoV-2. His symptoms progressed to hypoxic respiratory failure requiring intubation, and his multifocal myoclonus began soon after starting to take hydroxychloroquine. His neurologic examination showed profound encephalopathy, absent oculocephalic reflex, multifocal myoclonus affecting bilateral arms and legs, absent withdrawal to pain, and diminished deep tendon reflexes. The resolution of his myoclonus coincided with fentanyl cessation, but it is not clear that the 2 symptoms were related. A motion-degraded brain MRI showed an equivocal nonenhancing area of fluid-attenuated inversion recovery abnormality in the right temporal lobe. CSF obtained on hospital day 11 showed a normal opening pressure; levels of nucleated cells, erythrocytes, and protein within reference ranges; and an increased glucose level (Table) . His mentation began to improve on day 13, and he was subsequently discharged without major neurologic sequelae. Plasma anti-S1 receptor-binding domain IgG levels were increased for all 3 patients, consistent with severe COVID-19 (T. Ozturk et al., unpub. data ). An indirect ELISA for plasma showed an increased level of anti-S1 IgM for patients 1 (1:512) and 2 (1:256), a highly increased level of anti-S1 IgM for patient 3 (1:2,048); an increased level of anti-E IgM for patients 1 and 2 (1:128), and a standard level of anti-E IgM for patient 3. An indirect ELISA for CSF showed markedly increased levels of IgM for SARS-CoV-2 S1 (Figure 2 , panel A) and E (Figure 2, panel B) proteins for the most severely ill patient 1, and mildly elevated levels of IgM for S1 only for patients 2 and 3. The number of CSF erythrocytes in patient 1 suggested plasma contamination at an approximate dilution of 1:1,000, which still 2018 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 9, September 2020 placed these CSF IgM levels higher than those for patients 2 and 3. CSF from patients 1 and 3 underwent detailed inflammatory protein profiling as described (9, 12, 13) . When we compared historical and present control subjects who had normal cognition (no viral illness) (13), we found that patients with COVID-19 and neurologic symptoms had increased CSF levels of IL-6, IL-8, IL-10, IP-10, and TNF-α ( Figure 2 , panel C). Levels of IL-8, IL-10, IP-10, and TNF-α were also available for subjects who had HIV-associated neurocognitive disorders (12) . Increased levels of IL-8 and IL-10 appeared to be unique for neurologic complications of SARS-CoV-2, and increased levels of IP-10 and TNF-α were common features between neurologic complications of SARS-CoV-2 and HIV. We used a real-time RT-PCR to test for SARS-CoV-2 and influenza A virus (tested because patient 1 showed a co-infection). Results were negative for all patients. We report 3 patients who had severe COVID-19 and showed development of various neurologic symptoms and findings in a US hospital. All patients had more severe symptoms affecting cortical and brainstem functions at the peak of their neurologic illnesses than a recent series of 7 case-patients with milder illness in France (6) . All 3 patients were also co-incidentally given a short course of empiric hydroxychloroquine, although there was no temporal correlation between the medication and their neurologic manifestation. Similar to the case-series in France, we did not isolate SARS-CoV-2 RNA from CSF, although such viral RNA has been inconsistently identified in other cases (14) . However, increased levels of CSF anti-S1 IgM and altered levels of CSF cytokines are consistent with direct CNS involvement by SARS-CoV-2. Because MRI changes seen in these patients could be caused by hypercoagulability (15) or metabolic encephalopathy (16) , we propose that CSF investigation can improve the distinction between neurologic involvement of SARS-CoV-2 (or neuro-COVID) and neurologic symptoms caused by other COVID-related causes. In health and many noninflammatory neurologic disorders, the intact blood-brain barrier prevents major central translocation by plasma immunoglobulins or cells that secrete them (17) . Increased levels of CSF antibodies can thus result from disrupted blood-brain barrier, regulated migration of peripheral antibodysecreting cells into the CNS, or de novo antibody synthesis within the CNS. The relatively normal protein levels in patients 2 and 3 would argue against an unequivocal blood-brain barrier disruption. The lack of clear correlation between plasma and CSF titers provides some support for an active CNS process. The failure to detect CSF SARS-CoV-2 RNA does not diminish the likelihood of direct CNS infection because it is only recovered from blood in 1% of the actively infected cases (18) , and increased levels CSF IgM are also more commonly found as evidence for CNS infection than viral recovery in other encephalitides, including those for infection with Japanese encephalitis virus (19) , dengue virus (20) , human parvovirus 4 (21) , and rabies virus (22) . At the same time, undetectable CSF RNA raises the possibility that mechanisms other than direct brain infection might account for the observed MRI and clinical changes. These changes include peri-infectious inflammation (mediated by antibodies, complement, or both) (5,23), vasculopathy, and altered neurotransmission. Until definitive neuropathologic studies or effective antiviral therapies are possible, infectious and peri-infectious etiologies need to be examined for neuro-COVID. Increased levels of CSF multiple cytokines in these neuro-COVID patients are consistent with earlier reports of cytokine analysis of blood (24; M. Woodruff et al., unpub. data). We additionally identified changes shared (and not shared) by SARS-CoV-2 and HIV. Factors associated with increased levels of CSF IL-10 in patients infected with HIV should be investigated in future neuro-COVID studies, and increased levels of CSF IL-8 might uniquely provide useful information on the pathophysiology of CNS. We did not include plasma cytokine levels because their levels are much more influenced by demographic factors than their CSF counterparts (W.T. Hu et al., unpub. data). A larger cohort is necessary to better distinguish between CSF and plasma cytokine alterations, and including patients without confounding disease (e.g., SCD in patient 1) or standard MRI results can also determine the relative roles of noninfectious/inflammatory causes of encephalopathy, including hypoxia or hypercoagulability (25, 26) . Nevertheless, we demonstrated in these case-patients that SARS-CoV-2 antibodies are detectable in the CSF for patients with neurologic complications and are associated with selective CSF cytokine alterations. Future investigations should align neurologic outcomes with CSF infectious and immunologic profiles, such that an evidence-based treatment algorithm can be determined for preventing and treating neuro-COVID-19. Dr. Benameur is an neurologist and associate professor in the Department of Neurology at Emory University School of Medicine, Atlanta, GA. Her primary research interest is in neuroinflammatory changes related to COVID-19 Asymptomatic patients with novel coronavirus disease (COVID-19) Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study Possible central nervous system infection by SARS coronavirus Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) Nervous system involvement after infection with COVID-19 and other coronaviruses Neurologic features in severe SARS-CoV-2 infection Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2 Interleukin 9 alterations linked to Alzheimer disease in African Americans Epidemiology of hospital admissions with influenza during the 2013/2014 Northern Hemisphere influenza season: results from the Global Influenza Hospital Surveillance Network Antiviral activities and cellular toxicities of modified 2′,3′-dideoxy-2′,3′-didehydrocytidine analogues Linked CSF reduction of phosphorylated tau and IL-8 in HIV associated neurocognitive disorder CSF cytokines in aging, multiple sclerosis, and dementia A first case of meningitis/encephalitis associated with SARS-coronavirus-2 Hematological findings and complications of COVID-19 Toxic and acquired metabolic encephalopathies: MRI appearance Immune regulation of antibody access to neuronal tissues Detection of SARS-CoV-2 in different types of clinical specimens How many patients with anti-JEV IgM in cerebrospinal fluid really have Japanese encephalitis? Importance of cerebrospinal fluid investigation during dengue infection in Brazilian Amazonia region Detection of human parvovirus 4 DNA in the patients with acute encephalitis syndrome during seasonal outbreaks of the disease in Gorakhpur Long-term follow-up after treatment of rabies by induction of coma Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses Clinical features of patients infected with 2019 novel coronavirus in Wuhan Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2 Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19)