key: cord-348777-pk9y6vfp authors: Ding, Cheng; Feng, Xuewen; Chen, Yanfei; Yuan, Jing; Yi, Ping; Li, Yongtao; Ni, Qin; Zou, Rongrong; Li, Xiaohe; Sheng, Jifang; Li, Lanjuan; Xu, Kaijin title: Effect of Corticosteroid Therapy on the Duration of SARS-CoV-2 Clearance in Patients with Mild COVID-19: A Retrospective Cohort Study date: 2020-09-28 journal: Infect Dis Ther DOI: 10.1007/s40121-020-00337-y sha: doc_id: 348777 cord_uid: pk9y6vfp INTRODUCTION: In December, 2019, an outbreak of the coronavirus disease 2019 (COVID-19), which was caused by a novel coronavirus, started in Wuhan, China. So far, there is limited clinical evidence on the effect of corticosteroid therapy for this disease. This study aims to investigate the association between corticosteroid therapy and the duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance among patients with mild COVID-19. METHODS: Patients with mild COVID-19 were enrolled from two medical centers in China between January 13, 2020 and February 29, 2020. Baseline characteristics and durations of RNA clearance were compared between the corticosteroid and non-corticosteroid therapy groups. The independent effects of corticosteroid therapy on the duration of RNA clearance were estimated by generalized linear models. RESULTS: Of 82 patients with a mild infection, 40 patients were male (48.8%), with a median age of 49 years (interquartile range, IQR 36–61). Among those patients, 36 patients (43.9%) received corticosteroid therapy. The adjusted multivariate models showed that the effects of corticosteroids were non-significant on the durations of onset to first RNA clearance [β 2.48, 95% CI (95% confidence interval) − 0.42 to 5.38, P = 0.0926] and to persistent RNA clearance (β 1.54, 95% CI − 1.41 to 4.48, P = 0.3016), and durations of therapy to first RNA clearance (β 2.16, 95% CI − 0.56 to 4.89, P = 0.1184) and to persistent RNA clearance (β 1.22, 95% CI − 1.52 to 3.95, P = 0.3787). CONCLUSIONS: Corticosteroid therapy in patients with mild COVID-19 was not associated with the duration of SARS-CoV-2 clearance, suggesting that the use of corticosteroids may not be beneficial for patients with mild COVID-19 and should be prudently recommended in clinical practice. However, further studies are needed to verify the findings. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40121-020-00337-y) contains supplementary material, which is available to authorized users. A cluster of pneumonia cases associated with the novel betacoronavirus was reported in Wuhan, China, in late December, 2019 [1] . The coronavirus was classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2] and the novel coronavirus pneumonia was named coronavirus disease 2019 (COVID-19) by World Health Organization (WHO) [3] . The epidemic of COVID-19 represents a continuous threat [4] . WHO increased the assessment of the risk of spread and impact to very high at the global level [5] and characterized it as a pandemic since March 11, 2020 [6] . As of July 29, 2020, a total of 14,348,858 confirmed cases (603,691 deaths) have been reported from 215 countries or territories globally [7] . This figure is strongly expected to increase in the near future with the confirmed person-toperson transmission of SARS-CoV-2 [8] and the lack of effective vaccines or specific medications [9, 10] . Infections with the human coronavirus (CoVs) strains usually resulted in mild, selflimiting upper respiratory tract infections in humans [11] . Disease spectrum analysis by the Chinese Center for Disease Control and Prevention showed that patients with mild infection (including mild with non-pneumonia) account for the vast majority (81.4%) among 44,415 confirmed cases [12] . To date, there is no specific treatment or antiviral drug available for the Middle East respiratory syndrome (MERS) or severe acute respiratory syndrome (SARS), and management is largely supportive [13, 14] . Clinical improvement was observed in 36 of 53 patients with severe COVID-19 receiving compassionate-use remdesivir [15] . Another trial showed that remdesivir was superior to placebo in shortening the recovery time, while it has no statistical significance in reducing mortality [16] . A retrospective study reported that the 28-day allcause mortality was 5.2% in the statin used group, which was lower than that of 9.4% in the matched non-statin used group [17] . Likewise, no pharmacological therapies (of proven efficacy) or no Food and Drug Administration-approved medications yet exist to treat the emerging COVID-19 [1, 9, 18] , and vaccine or new interventions are likely to require months to years for testing and development [10] . Corticosteroids have been widely used during the previous outbreaks of SARS [19] , MERS [14] , and are currently used along with other therapeutics in patients with COVID-19 [1] . The clinical use of corticosteroids was controversial, and there was insufficient evidence on the benefits in patients with coronavirus infections. A systematic review on SARS showed that 25 studies were inconclusive and the remaining four studies provided conclusive data of harm-not benefiting the patients [19] . Another study reported that corticosteroid therapy in patients with MERS was not associated with mortality but was associated with delayed coronavirus RNA clearance [14] . Since there is limited data on the overall benefit of applying corticosteroids in the treatment of respiratory infections caused by respiratory syncytial virus (RSV), influenza, SARS-CoV, and MERS-CoV, corticosteroids are not recommended for the treatment of lung injury or shock caused by COVID-19 [18, 20] . Clinical evidence for the effect of corticosteroids on COVID-19 remains limited (currently, one trial has shown that low-dose dexamethasone reduces mortality in patients with COVID-19 who need ventilation [21] ). The aim of our study was to provide a clinical evaluation of corticosteroid therapy on the duration of RNA clearance among patients with mild COVID-19, to support clinical practices and management. For this retrospective cohort study, we recruited patients (mild or mild with non-pneumonia) with COVID-19 at hospital admission in the First Affiliated Hospital, School of Medicine, Zhejiang University from January 19, 2020 and the Third People's Hospital of Shenzhen from January 13, 2020, in China. The last patient was followed till February 29, 2020 and all patients were under inpatient management. Throat swabs from each patient were collected during the hospitalization. The real-time reverse-transcriptase polymerase chain reaction (RT-PCR) assay was used to detect viral RNA, with the SARS-CoV-2 nucleic acid detection kit (Shanghai bio-germ Medical Technology Co. Ltd.). A cycle threshold value (C t value) less than 37 was defined as positive, and a C t value of 40 or more was defined as negative. A C t value of 37 to less than 40 required confirmation by retesting. RT-PCR assay was conducted throughout the study according to the manufacturer's protocol. The severity of illness at admission was assessed according to the guideline released by the National Health Commission of China [22] . The severity of symptoms was categorized as mild with non-pneumonia, mild, severe, or critical. Mild infection included non-pneumonia and mild pneumonia (fever, respiratory symptoms, and manifestation of pneumonia on imaging). Severe infection was characterized by one of the following: dyspnea, respiratory rate C 30/min, arterial oxygen saturation (SaO2) B 93%, the ratio of partial pressure of oxygen/ absorption concentration of oxygen (PaO 2 / FiO 2 ) \ 300 mmHg (1 mmHg = 0.133 kPa), and/or lung infiltrates [ 50% within 24-48 h. Critical infection was characterized by one of the following: respiratory failure, septic shock, and/or multiple organ dysfunction/failure. Patients were divided into two groups based on whether they received corticosteroid therapy: a corticosteroid therapy group and a noncorticosteroid therapy group. We converted all preparations to methylprednisolone equivalent doses (mg/day) (hydrocortisone 5:1, dexamethasone 1:5, prednisolone 1:0.8) when patients received different types of corticosteroids. Epidemiological, clinical, laboratory and radiological characteristic data of patients were obtained with standardized data collection forms by using EpiData software (version 3.1). The data included age, gender, smoking status, comorbidity (diabetes, hypertension, cardiovascular disease, etc.), disease onset time (selfreported the start of either fever or cough during epidemiological investigation), therapy time (start time of an antiviral drug, supportive care, etc., except for corticosteroids use), antiviral regimens (duration of a drug used for more than 3 days), corticosteroids (start time, corticosteroid type, daily dose, and maximum dose), progress to severe or critical, non-invasive assisted ventilation (non-invasive ventilation or high-flow nasal cannula), invasive mechanical ventilation, time of body temperature recovery (lower than 37.5°C and being stable), and time of radiological recovery (improvement or absorption of initial pulmonary lesions and no new radiological lesions occurred at other parts); the main outcomes were first RNA clearance time (the first time of RNA negative) and persistent RNA clearance time (initial time of three consecutive RNA negatives with at least 24 h apart per time; the first two results were from local sites and the last one was checked by the local Center for Disease Control and Prevention). Ethics approval was obtained from the Institutional Review Board of the First Affiliated Hospital, School of Medicine, Zhejiang University (2020IIT83). Continuous variables were expressed as median and interquartile range (IQR) and were compared between the groups by the Kruskal-Wallis test. Categorical variables were expressed as number (%) and compared by chi-square (v 2 ) test or Fisher's exact test as appropriate. The durations of SARS-CoV-2 RNA clearance (first and persistent) from onset or therapy were compared by univariate analysis. Multiple regressions by generalized linear models with identity-link function were used to evaluate the independent effect of corticosteroid therapy on the duration of RNA clearance. The age, sex, and covariates such as oxygen inhalation, invasive mechanical ventilation, and progress to severe or critical were included in adjusted models. All statistical analyses were performed using the SAS 9.4 software (SAS Institute Inc., Cary, NC, USA). The significance level of the hypothesis tests was set at 0.05 (two-sided). During the study period, a total of 82 patients with mild infection were enrolled (Fig. S1 in the supplementary material). The median age of the patients was 49 years (IQR 36-61), and there were 40 male patients (48.8%) and 42 female patients (51.2%). There were 17 (20.7%) patients with normal body temperature and 3 (3.7%) patients with normal CT imaging at hospital admission. There were 36 patients (43.9%) who received corticosteroid therapy. Patients in both groups were similar in most baseline characteristics (sex, smoking status, comorbidities, therapy, duration of onset to hospital admission or therapy, and death) ( Table 1 ). The median age in the corticosteroid group was 59 years (IQR 45-65.5), which was older than that in the noncorticosteroid group (45 years, IQR 34-55). For the use of antiviral drugs or therapy (arbidol, darunavir/cobicistat, favipiravir, lopinavir/ritonavir, or interferon-a), there was no significant difference between the groups-except for the ribavirin (8.7% vs. 25%, P = 0.0448), noninvasive assisted ventilation (41.67% vs. 8.7%, P = 0.0004), and invasive mechanical ventilation (22.22% vs. 2.17%, P = 0.0088). In the corticosteroid group, 19 patients (52.78%) progressed from mild to severe or critical compared to 5 patients (10.87%) in the non-corticosteroid group (P \ 0.0001). There was no statistically significant difference in the cure rates between the two groups (97.22% vs. 100%, P = 0.4390). From the univariate analysis, the median duration of onset to persistent RNA clearance in the corticosteroid group was delayed (18.5 days vs. 15 days, P = 0.0161). A similar delay was observed for onset to first RNA clearance (17 days vs. 13 days, P = 0.0042), to body temperature recovery (11.5 days vs. 9 days, P = 0.0088), and to radiological recovery (16 days vs. 13 days, P = 0.0082). Also, the median durations of therapy to (1) persistent RNA clearance (11.5 days vs. 9 days, P = 0.0275), (2) first RNA clearance (11 days vs. 7.5 days, P = 0.0081), (3) body temperature recovery (6.5 days vs. 3 days, P = 0.0040), and (4) radiological recovery (13 days vs. 8 days, P = 0.0264) were delayed ( Table 1) . The crude models also showed that corticosteroid therapy delayed the durations of the onset to first RNA clearance (b 3.99, P = 0.0044) and to persistent RNA clearance (b 3.43, P = 0.0148). The durations were also delayed from therapy to first RNA clearance (b 3.85, P = 0.0031) and to persistent RNA clearance (b 3.29, P = 0.0126). The crude models showed that corticosteroid therapy would delay the The urgency of the COVID-19 outbreak did not allow sufficient time for testing the efficacy of antiviral regimens and treatments-although they were the most needed. Clinicians were left with no option other than to repurpose existing antiviral agents (e.g., for viral infections such as HIV-1), to test drugs in development, or to rely on therapeutic experience with SARS or MERS [10] . The SARS-CoV-2 infection could result in severe diseases such as acute respiratory distress syndrome and septic shock [23] . Corticosteroids could downregulate proinflammatory cytokine transcription and have been shown to improve innate immunity in patients with septic shock [24] . Corticosteroids possess potent anti-inflammatory, immunomodulatory and antineoplastic properties, and they are integral in the treatment of numerous conditions including autoimmune diseases, allergic reactions, asthma exacerbations, chronic obstructive pulmonary disease, and malignancies [25] . During the outbreak of SARS, standard treatment protocols involved the combination treatment with ribavirin and methylprednisolone [26] . However, there is no standard protocol for clinical use of corticosteroids among patients with COVID-19, and it is empirically applied in our study by clinicians under the following conditions [27] : (1) high body temperature ([ 39°C) persists, (2) widely affected areas of the lung lobe ([ 30% are involved), (3) ground-glass exudation lesions, and (4) the affected areas in the lung increased rapidly (the areas progress [ 50% in 48 h). Our observational results revealed that corticosteroid therapy had no positive effect on the durations of SARS-CoV-2 RNA clearance among patients with mild COVID-19. Preliminary results from the RECOVERY trial showed that low-dose dexamethasone reduced deaths by one-third; however, the results were restricted to patients who needed ventilation [21, 28] . Clinical outcomes are the most important endpoints; however, the duration of RNA clearance was used as an observational indicator in previous studies [14, 29, 30] . Studies on MERS showed that corticosteroid therapy was associated with delayed RNA clearance [14] . In addition, the median viral shedding time in patients with influenza A (H7N9) viral pneumonia was longer in the high-dose corticosteroids group [31] . Observational studies on SARS reported that a high dose of corticosteroid was associated not only with delayed viral clearance but also with adverse effects and increased risk of mortality [32, 33] . Thus, it remains difficult to make a clear recommendation about whether corticosteroids should be used to treat SARS-associated lung injury [33] . The delayed durations of RNA clearance were found to be highly associated with the age and progress of the disease (potential confounding factors) instead of corticosteroid therapy in our study. Since no benefit was observed from corticosteroid therapy and there was a high cure rate (81 of 82, 98.8%) among patients with mild COVID-19 evident through our study, corticosteroid therapy is unnecessary unless there is a specific condition (such as clinical, chest radiographic, or laboratory findings suggestive of worsening; or oxygen saturation \ 95% [26] ). On the other hand, well-known adverse effects (osteoporosis, cardiovascular disease, etc.) are associated with the systemic use of corticosteroids [25, 34, 35] . It is clear that such complications may decrease a patient's quality of life and are costly to be managed after therapy. Clinical studies, preferably randomized controlled trials (RCTs), are needed to evaluate the role of corticosteroid therapy. It is also valuable to monitor long-term and specific adverse effects [35] . The collaborations among clinicians, scientists, and public health administrators have made confronting the SARS-CoV-2 outbreak effectively, and greatly promoted the prevention and control of disease on different levels including virus traceability, diagnostics, drugs and vaccines development, and management of patients. Our study is limited by the following. First, the sensitivity and specificity of the used RT-PCR assay were not specified and this might influence our evaluations of the viral RNA clearance. Second, the number of participants was limited, which would result in a lack of power, and evidence from clinical studies (especially RCTs) with a larger sample size are needed. Third, patients with severe or critical COVID-19 were not included-the use of corticosteroid therapy at this group would be more controversial. Fourth, our retrospective observational study design might have recall bias, especially during the pre-hospital phase, and time-dependent variables were not involved, which may potentially cause confounding bias. Results from this study suggested that patients with mild COVID-19 may not benefit from corticosteroid therapy in terms of the duration of SARS-CoV-2 clearance. There were no differences in the duration of onset or therapy to RNA clearance between patients in the corticosteroid and non-corticosteroid therapy groups. Given the evidence of high cure rate among patients with mild COVID-19, and considering the possible long-term side effects, corticosteroids should be prudently recommended in clinical practice. However, further studies with large sample size are needed to verify our findings. Authorship. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published. Authorship Contributions. KX, LL, and CD conceived and designed the study; XF, YC, JY, PY, YL, QN, RZ, and XL collected data; CD, XF, and JS cleaned, analyzed the data and interpreted the results; YC, RZ, and XF contributed to figures; CD wrote the first draft; All authors critically revised the paper and gave final approval for publication. Disclosures. Cheng Ding, Xuewen Feng, Yanfei Chen, Jing Yuan, Ping Yi, Yongtao Li, Qin Ni, Rongrong Zou, Xiaohe Li, Jifang Sheng, Lanjuan Li, and Kaijin Xu have no conflicts of interest to declare. Compliance with Ethics Guidelines. Ethics approval was obtained from the Institutional Review Board of the First Affiliated Hospital, School of Medicine, Zhejiang University (2020IIT83). Data Availability. The datasets generated during and/or analyzed during the current study are not publicly available due to the privacy of participants. Open Access. This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by-nc/4.0/. Clinical features of patients infected with 2019 novel coronavirus in Wuhan Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 Novel Coronavirus (2019-nCoV) Situation report-22 The coronavirus seems unstoppable. What should the world do now? Novel coronavirus (2019-nCoV) situation report-39 World Health Organization. Coronavirus disease 2019 (COVID-19) situation report-51 World Health Organization. Coronavirus disease 2019 (COVID-19) Situation report-182 A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster COVID-19) treatment guidelines Therapeutic options for the 2019 novel coronavirus (2019-nCoV) Coronaviruses-drug discovery and therapeutic options Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention Coronavirus infections and immune responses Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome Compassionate use of remdesivir for patients with severe Covid-19 Remdesivir for the treatment of Covid-19-preliminary report In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19 Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury SARS: systematic review of treatment effects Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report Diagnosis and treatment strategy for the novel coronavirus pneumonia (7th trial version) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Stress doses of hydrocortisone in septic shock: beneficial effects on opsonization-dependent neutrophil functions Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease Development of a standard treatment protocol for severe acute respiratory syndrome Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients Clearance and persistence of SARS-CoV-2 RNA in patients with COVID-19 Adjuvant corticosteroid treatment in adults with influenza A (H7N9) viral pneumonia The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study Effects of early corticosteroid treatment on plasma SARS-associated coronavirus RNA concentrations in adult patients A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy Long-term systemic corticosteroid exposure: a systematic literature review We thank the participants of the study. We would like to thank Dr. Mohamed S. Draz (Faculty of Science, Tanta University and Department of Chemistry and Chemical Biology, Harvard University), for his contribution to the editing and revision of our manuscript.