Thomas Kuhn - Wikipedia Thomas Kuhn From Wikipedia, the free encyclopedia Jump to navigation Jump to search Thomas Kuhn Kuhn in 1973 Born Thomas Samuel Kuhn (1922-07-18)July 18, 1922 Cincinnati, Ohio, U.S. Died June 17, 1996(1996-06-17) (aged 73) Cambridge, Massachusetts, U.S. Education Harvard University (PhD, 1949) Era 20th-century philosophy Region Western philosophy School Analytic Historical turn[1] Historiographical externalism[2] Institutions Harvard University Main interests Philosophy of science History of science Notable ideas Paradigm shift Incommensurability Normal science Kuhn loss[3] Transcendental nominalism[4] Influences Immanuel Kant[5] Alexandre Koyré[6] Michael Polanyi[7] John Hasbrouck Van Vleck[8] Ludwik Fleck[9] Ludwig Wittgenstein[7] Anneliese Maier[9] Hélène Metzger[9] Émile Meyerson[9] Jean Piaget[10] Karl Popper[11] Norwood Russell Hanson[12] Herbert Butterfield[13] Influenced Paul Feyerabend Imre Lakatos Philip Kitcher Martin Cohen Thomas Samuel Kuhn (/kuːn/; July 18, 1922 – June 17, 1996) was an American philosopher of science whose 1962 book The Structure of Scientific Revolutions was influential in both academic and popular circles, introducing the term paradigm shift, which has since become an English-language idiom. Kuhn made several claims concerning the progress of scientific knowledge: that scientific fields undergo periodic "paradigm shifts" rather than solely progressing in a linear and continuous way, and that these paradigm shifts open up new approaches to understanding what scientists would never have considered valid before; and that the notion of scientific truth, at any given moment, cannot be established solely by objective criteria but is defined by a consensus of a scientific community. Competing paradigms are frequently incommensurable; that is, they are competing and irreconcilable accounts of reality. Thus, our comprehension of science can never rely wholly upon "objectivity" alone. Science must account for subjective perspectives as well, since all objective conclusions are ultimately founded upon the subjective conditioning/worldview of its researchers and participants. Contents 1 Life 2 The Structure of Scientific Revolutions 3 Post-Structure Philosophy 4 Polanyi–Kuhn debate 5 Thomas Kuhn Paradigm Shift Award 6 Honors 7 Bibliography 8 References 9 Further reading 10 External links Life[edit] Kuhn was born in Cincinnati, Ohio, to Samuel L. Kuhn, an industrial engineer, and Minette Stroock Kuhn, both Jewish.[14] From kindergarten through fifth grade, he was educated at Lincoln School, a private progressive school in Manhattan, which stressed independent thinking rather than learning facts and subjects. The family then moved 40 miles north to the small town of Croton-on-Hudson where, once again, he attended a private progressive school – Hessian Hills School. It was here that, in sixth through ninth grade, he learned to love mathematics. He left Hessian Hills in 1937. He graduated from The Taft School in Watertown, CT, in 1940.[15] He obtained his BSc degree in physics from Harvard College in 1943, where he also obtained MSc and PhD degrees in physics in 1946 and 1949, respectively, under the supervision of John Van Vleck.[16] As he states in the first few pages of the preface to the second edition of The Structure of Scientific Revolutions, his three years of total academic freedom as a Harvard Junior Fellow were crucial in allowing him to switch from physics to the history and philosophy of science. He later taught a course in the history of science at Harvard from 1948 until 1956, at the suggestion of university president James Conant. After leaving Harvard, Kuhn taught at the University of California, Berkeley, in both the philosophy department and the history department, being named Professor of the History of science in 1961. Kuhn interviewed and tape recorded Danish physicist Niels Bohr the day before Bohr's death.[17] At Berkeley, he wrote and published (in 1962) his best known and most influential work:[18] The Structure of Scientific Revolutions. In 1964, he joined Princeton University as the M. Taylor Pyne Professor of Philosophy and History of Science. He served as the president of the History of Science Society from 1969–70.[19] In 1979 he joined the Massachusetts Institute of Technology (MIT) as the Laurance S. Rockefeller Professor of Philosophy, remaining there until 1991. In 1994 Kuhn was diagnosed with lung cancer. He died in 1996. Thomas Kuhn was married twice, first to Kathryn Muhs with whom he had three children, then to Jehane Barton Burns (Jehane R. Kuhn). The Structure of Scientific Revolutions[edit] Main article: The Structure of Scientific Revolutions The Structure of Scientific Revolutions (SSR) was originally printed as an article in the International Encyclopedia of Unified Science, published by the logical positivists of the Vienna Circle. In this book, Kuhn argued that science does not progress via a linear accumulation of new knowledge, but undergoes periodic revolutions, also called "paradigm shifts" (although he did not coin the phrase, he did contribute to its increase in popularity),[20] in which the nature of scientific inquiry within a particular field is abruptly transformed. In general, science is broken up into three distinct stages. Prescience, which lacks a central paradigm, comes first. This is followed by "normal science", when scientists attempt to enlarge the central paradigm by "puzzle-solving". Guided by the paradigm, normal science is extremely productive: "when the paradigm is successful, the profession will have solved problems that its members could scarcely have imagined and would never have undertaken without commitment to the paradigm".[21] In regard to experimentation and collection of data with a view toward solving problems through the commitment to a paradigm, Kuhn states: "The operations and measurements that a scientist undertakes in the laboratory are not 'the given' of experience but rather 'the collected with difficulty.' They are not what the scientist sees—at least not before his research is well advanced and his attention focused. Rather, they are concrete indices to the content of more elementary perceptions, and as such they are selected for the close scrutiny of normal research only because they promise opportunity for the fruitful elaboration of an accepted paradigm. Far more clearly than the immediate experience from which they in part derive, operations and measurements are paradigm-determined. Science does not deal in all possible laboratory manipulations. Instead, it selects those relevant to the juxtaposition of a paradigm with the immediate experience that that paradigm has partially determined. As a result, scientists with different paradigms engage in different concrete laboratory manipulations."[22] During the period of normal science, the failure of a result to conform to the paradigm is seen not as refuting the paradigm, but as the mistake of the researcher, contra Popper's falsifiability criterion. As anomalous results build up, science reaches a crisis, at which point a new paradigm, which subsumes the old results along with the anomalous results into one framework, is accepted. This is termed revolutionary science. In SSR, Kuhn also argues that rival paradigms are incommensurable—that is, it is not possible to understand one paradigm through the conceptual framework and terminology of another rival paradigm. For many critics, for example David Stove (Popper and After, 1982), this thesis seemed to entail that theory choice is fundamentally irrational: if rival theories cannot be directly compared, then one cannot make a rational choice as to which one is better. Whether Kuhn's views had such relativistic consequences is the subject of much debate; Kuhn himself denied the accusation of relativism in the third edition of SSR, and sought to clarify his views to avoid further misinterpretation. Freeman Dyson has quoted Kuhn as saying "I am not a Kuhnian!",[23] referring to the relativism that some philosophers have developed based on his work. The Structure of Scientific Revolutions is the single most widely cited book in the social sciences.[24] The enormous impact of Kuhn's work can be measured in the changes it brought about in the vocabulary of the philosophy of science: besides "paradigm shift", Kuhn popularized the word "paradigm" itself from a term used in certain forms of linguistics and the work of Georg Lichtenberg to its current broader meaning, coined the term "normal science" to refer to the relatively routine, day-to-day work of scientists working within a paradigm, and was largely responsible for the use of the term "scientific revolutions" in the plural, taking place at widely different periods of time and in different disciplines, as opposed to a single scientific revolution in the late Renaissance. The frequent use of the phrase "paradigm shift" has made scientists more aware of and in many cases more receptive to paradigm changes, so that Kuhn's analysis of the evolution of scientific views has by itself influenced that evolution.[citation needed] Kuhn's work has been extensively used in social science; for instance, in the post-positivist/positivist debate within International Relations. Kuhn is credited as a foundational force behind the post-Mertonian sociology of scientific knowledge. Kuhn's work has also been used in the Arts and Humanities, such as by Matthew Edward Harris to distinguish between scientific and historical communities (such as political or religious groups): 'political-religious beliefs and opinions are not epistemologically the same as those pertaining to scientific theories'.[25] This is because would-be scientists' worldviews are changed through rigorous training, through the engagement between what Kuhn calls 'exemplars' and the Global Paradigm. Kuhn's notions of paradigms and paradigm shifts have been influential in understanding the history of economic thought, for example the Keynesian revolution,[26] and in debates in political science.[27] A defense Kuhn gives against the objection that his account of science from The Structure of Scientific Revolutions results in relativism can be found in an essay by Kuhn called "Objectivity, Value Judgment, and Theory Choice."[28] In this essay, he reiterates five criteria from the penultimate chapter of SSR that determine (or help determine, more properly) theory choice: Accurate – empirically adequate with experimentation and observation Consistent – internally consistent, but also externally consistent with other theories Broad Scope – a theory's consequences should extend beyond that which it was initially designed to explain Simple – the simplest explanation, principally similar to Occam's razor Fruitful – a theory should disclose new phenomena or new relationships among phenomena He then goes on to show how, although these criteria admittedly determine theory choice, they are imprecise in practice and relative to individual scientists. According to Kuhn, "When scientists must choose between competing theories, two men fully committed to the same list of criteria for choice may nevertheless reach different conclusions."[28] For this reason, the criteria still are not "objective" in the usual sense of the word because individual scientists reach different conclusions with the same criteria due to valuing one criterion over another or even adding additional criteria for selfish or other subjective reasons. Kuhn then goes on to say, "I am suggesting, of course, that the criteria of choice with which I began function not as rules, which determine choice, but as values, which influence it."[28] Because Kuhn utilizes the history of science in his account of science, his criteria or values for theory choice are often understood as descriptive normative rules (or more properly, values) of theory choice for the scientific community rather than prescriptive normative rules in the usual sense of the word "criteria", although there are many varied interpretations of Kuhn's account of science. Post-Structure Philosophy[edit] Years after the publication of The Structure of Scientific Revolutions, Kuhn dropped the concept of a paradigm and began to focus on the semantic aspects of scientific theories. In particular, Kuhn focuses on the taxonomic structure of scientific kind terms. As a consequence, a scientific revolution is not defined as a 'change of paradigm' anymore, but rather as a change in the taxonomic structure of the theoretical language of science.[29] Some scholars describe this change as resulting from a 'linguistic turn'.[30][31] In their book, Andersen, Barker and Chen use some recent theories in cognitive psychology to vindicate Kuhn's mature philosophy.[32] Apart from dropping the concept of a paradigm, Kuhn also began to look at the process of scientific specialisation. In a scientific revolution, a new paradigm (or a new taxonomy) replaces the old one; by contrast, specialisation leads to a proliferation of new specialties and disciplines. This attention to the proliferation of specialties would make Kuhn's model less 'revolutionary' and more 'evolutionary'. Some philosophers claim that Kuhn attempted to describe different kinds of scientific change: revolutions and specialty-creation.[33] Others claim that the process of specialisation is in itself a special case of scientific revolutions.[34] It is also possible to argue that, in Kuhn's model, science evolves through revolutions.[35] Polanyi–Kuhn debate[edit] Although they used different terminologies, both Kuhn and Michael Polanyi believed that scientists' subjective experiences made science a relativized discipline. Polanyi lectured on this topic for decades before Kuhn published The Structure of Scientific Revolutions. Supporters of Polanyi charged Kuhn with plagiarism, as it was known that Kuhn attended several of Polanyi's lectures, and that the two men had debated endlessly over epistemology before either had achieved fame. After the charge of plagiarism, Kuhn acknowledged Polanyi in the Second edition of The Structure of Scientific Revolutions.[7] Despite this intellectual alliance, Polanyi's work was constantly interpreted by others within the framework of Kuhn's paradigm shifts, much to Polanyi's (and Kuhn's) dismay.[36] Thomas Kuhn Paradigm Shift Award[edit] In honor of his legacy, the "Thomas Kuhn Paradigm Shift Award" is awarded by the American Chemical Society to speakers who present original views that are at odds with mainstream scientific understanding. The winner is selected based on the novelty of the viewpoint and its potential impact if it were to be widely accepted.[37] Honors[edit] Kuhn was named a Guggenheim Fellow in 1954, and in 1982 was awarded the George Sarton Medal by the History of Science Society. He also received numerous honorary doctorates. Bibliography[edit] Kuhn, T. S. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge: Harvard University Press, 1957. ISBN 0-674-17100-4 Kuhn, T. S. The Function of Measurement in Modern Physical Science. Isis, 52 (1961): 161–193. Kuhn, T. S. The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1962. ISBN 0-226-45808-3 Kuhn, T. S. "The Function of Dogma in Scientific Research". pp. 347–69 in A. C. Crombie (ed.). Scientific Change (Symposium on the History of Science, University of Oxford, July 9–15, 1961). New York and London: Basic Books and Heineman, 1963. Kuhn, T. S. The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago and London: University of Chicago Press, 1977. ISBN 0-226-45805-9 Kuhn, T. S. Black-Body Theory and the Quantum Discontinuity, 1894-1912. Chicago: University of Chicago Press, 1987. ISBN 0-226-45800-8 Kuhn, T. S. The Road Since Structure: Philosophical Essays, 1970–1993. Chicago: University of Chicago Press, 2000. ISBN 0-226-45798-2 References[edit] ^ K. Brad Wray, Kuhn's Evolutionary Social Epistemology, Cambridge University Press, 2011, p. 87. ^ Alexander Bird, "Kuhn and the Historiography of Science" in Alisa Bokulich and William J. Devlin (eds.), Kuhn's Structure of Scientific Revolutions: 50 Years On, Springer, 2015. ^ Thomas Kuhn (Stanford Encyclopedia of Philosophy): "Not all the achievements of the preceding period of normal science are preserved in a revolution, and indeed a later period of science may find itself without an explanation for a phenomenon that in an earlier period was held to be successfully explained. This feature of scientific revolutions has become known as 'Kuhn-loss'". The term was coined by Heinz R. Post in Post, H. R. (1971), "Correspondence, Invariance and Heuristics," Studies in History and Philosophy of Science, 2, 213–255. ^ "Transcendental nominalism" is a position ascribed to Kuhn by Ian Hacking (see D. Ginev, Robert S. Cohen (eds.), Issues and Images in the Philosophy of Science: Scientific and Philosophical Essays in Honour of Azarya Polikarov, Springer, 2012, p. 313). ^ Aviezer Tucker (ed.), A Companion to the Philosophy of History and Historiography, Blackwell Publishing, 2011 : "Analytic Realism". ^ Thomas S. Kuhn, The Structure of Scientific Revolutions. Chicago and London: University of Chicago Press, 1970 (2nd ed.), p. 48. ^ a b c Thomas S. Kuhn, The Structure of Scientific Revolutions. Chicago and London: University of Chicago Press, 1970 (2nd ed.), p. 44. ^ Robert J. Richards, Lorraine Daston (eds.), Kuhn's 'Structure of Scientific Revolutions' at Fifty: Reflections on a Science Classic, University of Chicago Press, 2016, p. 47. ^ a b c d Thomas S. Kuhn, The Structure of Scientific Revolutions. Chicago and London: University of Chicago Press, 1970 (2nd ed.), p. vi. ^ Burman, J. T. (2007). "Piaget No 'Remedy' for Kuhn, But the Two Should be Read Together: Comment on Tsou's 'Piaget vs. Kuhn on Scientific Progress'". Theory & Psychology. 17 (5): 721–732. doi:10.1177/0959354307079306. S2CID 145497321. ^ Thomas S. Kuhn, The Structure of Scientific Revolutions. Chicago and London: University of Chicago Press, 1970 (2nd ed.), p. 146. ^ Thomas S. Kuhn, The Structure of Scientific Revolutions. Chicago and London: University of Chicago Press, 1970 (2nd ed.), p. 27. ^ Thomas S. Kuhn, The Structure of Scientific Revolutions. Chicago and London: University of Chicago Press, 1970 (2nd ed.), p. 85. ^ http://www.jinfo.org/Philosophers.html ^ "Thomas Kuhn - Biography, Facts and Pictures". Retrieved November 30, 2019. ^ The title of his doctoral thesis was The Cohesive Energy of Monovalent Metals as a Function of Their Atomic Quantum Defects[citation needed] . ^ Thomas S. Kuhn; et al. (November 17, 1962). "Last interview with Niels Bohr by Thomas S. Kuhn, Leon Rosenfeld, Aage Petersen, and Erik Rudinger at Professor Bohr's Office, Carlsberg, Copenhagen, Denmark Saturday morning, November 17, 1962". Oral History Transcript – Niels Bohr. Center for History of Physics. Retrieved October 5, 2015. ^ Alexander Bird (2004), Thomas Kuhn, Stanford Encyclopedia of Philosophy ^ The History of Science Society "The Society: Past Presidents of the History of Science Society" Archived December 12, 2013, at the Wayback Machine. Retrieved December 4, 2013 ^ Horgan, John (May 1991). "Profile: Reluctant Revolutionary". Scientific American. 264 (5): 40–49. doi:10.1038/scientificamerican0591-40. Archived from the original on September 20, 2011. ^ Kuhn, Thomas (2000). The Structure of Scientific Revolutions. The University of Chicago Press. pp. 24–25. ISBN 978-1-4432-5544-8. ^ https://projektintegracija.pravo.hr/_download/repository/Kuhn_Structure_of_Scientific_Revolutions.pdf ^ Dyson, Freeman (May 6, 1999). The Sun, the Genome, and the Internet: Tools of Scientific Revolutions. Oxford University Press, Inc. pp. 144. ISBN 978-0-19-512942-7. ^ Green, Elliott (May 12, 2016). "What are the most-cited publications in the social sciences (according to Google Scholar)?". LSE Impact Blog. Retrieved September 27, 2019. ^ Harris, Matthew (2010). The notion of papal monarchy in the thirteenth century : the idea of paradigm in church history. Lewiston, N.Y.: Edwin Mellen Press. p. 120. ISBN 978-0-7734-1441-9. ^ E.g. Ghanshyam Mehta, The Structure of the Keynesian Revolution, London, 1977 ^ E.g. Alan Ryan, "Paradigms Lost: How Oxford Escaped the Paradigm Wars of the 1960s and 1970s', in Christopher Hood, Desmond King, & Gillian Peele, eds, Forging a Discipline, Oxford University Press, 2014. ^ a b c Kuhn, Thomas (1977). The Essential Tension: Selected Studies in Scientific Tradition and Change (PDF). University of Chicago Press. pp. 320–39. ^ Kuhn, T., 2000 The Road since Structure, University of Chicago Press ^ Irzik, G., Grünberg, T., 1998, Whorfian variations on Kantian themes: Kuhn's linguistic turn, Studies in History and Philosophy of Science 29: 207-221 [1] ^ Bird, A., 2002, Kuhn’s wrong turning, Studies in History and Philosophy of Science 33: 443-463 [2] ^ Andersen, H., Barker, P., and Chen, X., The Cognitive Structure of Scientific Revolutions, Cambridge University Press, 2006[3] ^ Wray, K. Brad, Kuhn's Evolutionary Social Epistemology, Cambridge University Press, 2011 ^ Politi, V., 2018 [4] Scientific revolutions, specialization and the discovery of the structure of DNA: toward a new picture of the development of the sciences, Synthese195: 2267–2293 ^ Kuukkanen, J.M., 2012 [5] Revolution as Evolution: The Concept of Evolution in Kuhn’s Philosophy, in Kindi, V., Arabatsis, T. (Eds.) Kuhn's The Structure of Scientific Revolutions Revisited ^ Moleski, Martin X. Polanyi vs. Kuhn: Worldviews Apart The Polanyi Society. Retrieved October 19 2020. ^ "Thomas Kuhn Paradigm Shift Award". American Chemical Society. Retrieved September 19, 2012. Further reading[edit] Hanne Andersen, Peter Barker, and Xiang Chen. The Cognitive Structure of Scientific Revolutions, Cambridge University Press, 2006. ISBN 978-0521855754 Alexander Bird. Thomas Kuhn. Princeton and London: Princeton University Press and Acumen Press, 2000. ISBN 1-902683-10-2 Steve Fuller. Thomas Kuhn: A Philosophical History for Our Times. Chicago: University of Chicago Press, 2000. ISBN 0-226-26894-2 Matthew Edward Harris. The Notion of Papal Monarchy in the Thirteenth Century: The Idea of Paradigm in Church History.' Lampeter and Lewiston, NY: Edwin Mellen Press, 2010. ISBN 978-0-7734-1441-9. Paul Hoyningen-Huene Reconstructing Scientific Revolutions: Thomas S. Kuhn's Philosophy of Science. Chicago: University of Chicago Press, 1993. ISBN 978-0226355511 Jouni-Matti Kuukkanen, Meaning Changes: A Study of Thomas Kuhn's Philosophy. AV Akademikerverlag, 2012. ISBN 978-3639444704 Errol Morris. The Ashtray (Or the Man Who Denied Reality). Chicago: University of Chicago Press, 2018. ISBN 978-0-226-51384-3 Sal Restivo, The Myth of the Kuhnian Revolution. Sociological Theory, Vol. 1, (1983), 293–305. External links[edit] Wikiquote has quotations related to: Thomas Kuhn Wikimedia Commons has media related to Thomas Kuhn (philosopher). Notes for Thomas Kuhn's "The Structure of Scientific Revolutions" Bird, Alexander. "Thomas Kuhn". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. James A. Marcum, "Thomas S. Kuhn (1922–1996)", Internet Encyclopedia of Philosophy Thomas S. Kuhn (obituary, The Tech p. 9 vol 116 no 28, June 26, 1996) Review in the New York Review of Books Color Portrait History of Twentieth-Century Philosophy of Science, BOOK VI: Kuhn on Revolution and Feyerabend on Anarchy – with free downloads for public use. Thomas S. Kuhn, post-modernism and materialist dialectics Errol Morris, The Ashtray: The Ultimatum (Part 1 [of 5 parts]), a critical view and memoir of Kuhn Daniel Laskowski Tozzini, "Objetividade e racionalidade na filosofia da ciência de Thomas Kuhn" Thomas S. Kuhn Papers, MC 240. Massachusetts Institute of Technology, Institute Archives and Special Collections, Cambridge, Massachusetts. v t e Analytic philosophy Related articles Areas of focus Epistemology Language Mathematics Science Turns Aretaic Linguistic Logic Classical Mathematical Non-classical Philosophical Theories Anti-realism Australian realism Descriptivist theory of names Emotivism Functionalism Analytical feminism Logical atomism Logical positivism Analytical Marxism Neopragmatism Neurophilosophy Ordinary language Quietism Scientific structuralism Sense data Concepts Analysis (paradox of analysis) Analytic–synthetic distinction Counterfactual Natural kind Reflective equilibrium Supervenience Modality Actualism Necessity Possibility Possible world Realism Rigid designator Philosophers Noam Chomsky Keith Donnellan Paul Feyerabend Gottlob Frege Ian Hacking Karl Popper Ernest Sosa Barry Stroud Michael Walzer Cambridge Charlie Broad Norman Malcolm G. E. Moore Graham Priest Bertrand Russell Frank P. Ramsey Ludwig Wittgenstein Oxford G. E. M. Anscombe J. L. Austin A. J. Ayer Michael Dummett Antony Flew Philippa Foot Peter Geach Paul Grice R. M. Hare Alasdair MacIntyre Derek Parfit Gilbert Ryle John Searle P. F. Strawson Richard Swinburne Charles Taylor Bernard Williams Timothy Williamson Logical positivists Ernest Nagel Berlin Circle Carl Gustav Hempel Hans Reichenbach Vienna Circle Rudolf Carnap Kurt Gödel Otto Neurath Moritz Schlick Harvard Roderick Chisholm Donald Davidson Daniel Dennett Nelson Goodman Christine Korsgaard Thomas Kuhn Thomas Nagel Robert Nozick Hilary Putnam W. V. O. Quine John Rawls Pittsburgh School Robert Brandom Patricia Churchland Paul Churchland Adolf Grünbaum John McDowell Ruth Millikan Nicholas Rescher Wilfrid Sellars Bas van Fraassen Princeton Jerry Fodor David Lewis Jaegwon Kim Saul Kripke Richard Rorty Notre Dame Robert Audi Peter van Inwagen Alvin Plantinga Australian David Chalmers J. L. Mackie Peter Singer J. J. C. Smart Quietism James F. Conant Alice Crary Cora Diamond Category Index v t e Philosophy of science Concepts Analysis Analytic–synthetic distinction A priori and a posteriori Causality Commensurability Consilience Construct Creative synthesis Demarcation problem Empirical evidence Explanatory power Fact Falsifiability Feminist method Functional contextualism Ignoramus et ignorabimus Inductive reasoning Intertheoretic reduction Inquiry Nature Objectivity Observation Paradigm Problem of induction Scientific law Scientific method Scientific revolution Scientific theory Testability Theory choice Theory-ladenness Underdetermination Unity of science Metatheory of science Coherentism Confirmation holism Constructive empiricism Constructive realism Constructivist epistemology Contextualism Conventionalism Deductive-nomological model Hypothetico-deductive model Inductionism Epistemological anarchism Evolutionism Fallibilism Foundationalism Instrumentalism Pragmatism Model-dependent realism Naturalism Physicalism Positivism / Reductionism / Determinism Rationalism / Empiricism Received view / Semantic view of theories Scientific realism / Anti-realism Scientific essentialism Scientific formalism Scientific skepticism Scientism Structuralism Uniformitarianism Vitalism Philosophy of Physics thermal and statistical Motion Chemistry Biology Geography Social science Technology Engineering Artificial intelligence Computer science Information Mind Psychiatry Psychology Perception Space and time Related topics Alchemy Criticism of science Descriptive science Epistemology Faith and rationality Hard and soft science History and philosophy of science History of science History of evolutionary thought Logic Metaphysics Normative science Pseudoscience Relationship between religion and science Rhetoric of science Science studies Sociology of scientific knowledge Sociology of scientific ignorance Philosophers of science by era Ancient Plato Aristotle Stoicism Epicureans Medieval Averroes Avicenna Roger Bacon William of Ockham Hugh of Saint Victor Dominicus Gundissalinus Robert Kilwardby Early modern Francis Bacon Thomas Hobbes René Descartes Galileo Galilei Pierre Gassendi Isaac Newton David Hume Late modern Immanuel Kant Friedrich Schelling William Whewell Auguste Comte John Stuart Mill Herbert Spencer Wilhelm Wundt Charles Sanders Peirce Wilhelm Windelband Henri Poincaré Pierre Duhem Rudolf Steiner Karl Pearson Contemporary Alfred North Whitehead Bertrand Russell Albert Einstein Otto Neurath C. D. Broad Michael Polanyi Hans Reichenbach Rudolf Carnap Karl Popper Carl Gustav Hempel W. V. O. Quine Thomas Kuhn Imre Lakatos Paul Feyerabend Jürgen Habermas Ian Hacking Bas van Fraassen Larry Laudan Daniel Dennett Category  Philosophy portal  Science portal v t e Positivism Perspectives Antihumanism Empiricism Rationalism Scientism Declinations Legal positivism Logical positivism / analytic philosophy Positivist school Postpositivism Sociological positivism Machian positivism (empirio-criticism) Rankean historical positivism Polish positivism Russian Machism Principal concepts Consilience Demarcation Evidence Induction Justification Pseudoscience Critique of metaphysics Unity of science Verificationism Antitheses Antipositivism Confirmation holism Critical theory Falsifiability Geisteswissenschaft Hermeneutics Historicism Historism Human science Humanities Methodological dualism Problem of induction Reflectivism Related paradigm shifts in the history of science Non-Euclidean geometry (1830s) Uncertainty principle (1927) Related topics Behavioralism Post-behavioralism Critical rationalism Criticism of science Epistemology anarchism idealism nihilism pluralism realism Holism Instrumentalism Modernism Naturalism in literature Nomothetic–idiographic distinction Objectivity in science Operationalism Phenomenalism Philosophy of science Deductive-nomological model Ramsey sentence Sense-data theory Qualitative research Relationship between religion and science Sociology Social science Philosophy Structural functionalism Structuralism Structuration theory Positivist-related debate Method Methodenstreit (1890s) Werturteilsstreit (1909–1959) Positivismusstreit (1960s) Fourth Great Debate in international relations (1980s) Science wars (1990s) Contributions The Course in Positive Philosophy (1830) A General View of Positivism (1848) Critical History of Philosophy (1869) Idealism and Positivism (1879–1884) The Analysis of Sensations (1886) The Logic of Modern Physics (1927) Language, Truth, and Logic (1936) The Two Cultures (1959) The Universe in a Nutshell (2001) Proponents Richard Avenarius A. J. Ayer Alexander Bogdanov Auguste Comte Eugen Dühring Émile Durkheim Ernst Laas Ernst Mach Berlin Circle Vienna Circle Criticism Materialism and Empirio-criticism (1909) History and Class Consciousness (1923) The Logic of Scientific Discovery (1934) The Poverty of Historicism (1936) World Hypotheses (1942) Two Dogmas of Empiricism (1951) Truth and Method (1960) The Structure of Scientific Revolutions (1962) Conjectures and Refutations (1963) One-Dimensional Man (1964) Knowledge and Human Interests (1968) The Poverty of Theory (1978) The Scientific Image (1980) The Rhetoric of Economics (1986) Critics Theodor W. Adorno Gaston Bachelard Mario Bunge Wilhelm Dilthey Paul Feyerabend Hans-Georg Gadamer Thomas Kuhn György Lukács Karl Popper Willard Van Orman Quine Max Weber Concepts in contention Knowledge Objectivity Phronesis Truth Verstehen Category v t e Presidents of the History of Science Society 1924–1949 Lawrence Joseph Henderson (1924–1925) James Henry Breasted (1926) David Eugene Smith (1927) Edgar Fahs Smith (1928) Lynn Thorndike (1929) Henry Crew (1930) William H. Welch (1931) Berthold Laufer (1932) J. Playfair McMurrich (1933) Harvey Williams Cushing (1934) Charles Albert Browne, Jr. (1935–1936) Chauncey D. Leake (1937–1938) Henry E. Sigerist (1939) Richard H. Shryock (1940–1942) Louis Charles Karpinski (1943–1944) Isaiah Bowman (1944) Vilhjalmur Stefansson (1945–1946) John Farquhar Fulton (1947–1950) 1950–1999 Harcourt Brown (1951–1952) Dorothy Stimson (1953–1956) Henry Guerlac (1957–1960) I. Bernard Cohen (1961–1962) Marshall Clagett (1963–1964) Charles Coulston Gillispie (1965–1966) C. D. O'Malley (1967–1968) Thomas Kuhn (1969–1970) Lynn Townsend White, Jr. (1971–1972) Erwin N. Hiebert (1973–1974) John C. Greene (1975–1976) Richard S. Westfall (1977-1978) Robert P. Multhauf (1979–1980) Frederic L. Holmes (1981–1982) Gerald Holton (1983–1984) Edward Grant (1985–1986) William Coleman (1987) Mary Jo Nye (1988–1989) Stephen G. Brush (1990–1991) Sally Gregory Kohlstedt (1992–1993) David C. Lindberg (1994–1995) Frederick Gregory (1996–1997) Albert Van Helden (1998–1999) 2000–present Ronald Numbers (2000–2001) John Servos (2002–2003) Michael Sokal (2004–2005) Joan Cadden (2006–2007) Jane Maienschein (2008–2009) Paul Lawrence Farber (2010–2011) Lynn K. Nyhart (2012–2013) Angela N. H. Creager (2014–2015) Janet Browne (2016–2017) Authority control BIBSYS: 90157872 BNC: 000037207 BNE: XX943335 BNF: cb119101699 (data) CANTIC: a10964289 CiNii: DA00189268 GND: 118567918 ISNI: 0000 0001 2099 7889 LCCN: n50046179 LNB: 000036392 NDL: 00446465 NKC: jn19990004721 NLA: 35364780 NLG: 96989 NLI: 000195661 NLK: KAC199634870 NLP: A11804257 NSK: 000033733 NTA: 068307985 PLWABN: 9810569007705606 RERO: 02-A003478743 SELIBR: 261431 SNAC: w68b3td6 SUDOC: 027422119 Trove: 926651 VcBA: 495/274210 VIAF: 22144060 WorldCat Identities: lccn-n50046179 Retrieved from "https://en.wikipedia.org/w/index.php?title=Thomas_Kuhn&oldid=996096307" Categories: Thomas Kuhn 1922 births 1996 deaths Historians of science Philosophers of science Jewish American historians Jewish agnostics Jewish philosophers American agnostics 20th-century American historians 20th-century American philosophers Taft School alumni Massachusetts Institute of Technology faculty Princeton University faculty University of California, Berkeley College of Letters and Science faculty Harvard University faculty Harvard University alumni Scientists from Cincinnati Writers from Berkeley, California Deaths from lung cancer Members of the European Academy of Sciences and Arts Center for Advanced Study in the Behavioral Sciences fellows Hidden categories: All articles with unsourced statements Articles with unsourced statements from March 2018 Webarchive template wayback links Use mdy dates from August 2016 Articles with hCards Articles with unsourced statements from February 2008 Commons category link from Wikidata Articles containing German-language text Wikipedia articles with BIBSYS identifiers Wikipedia articles with BNC identifiers Wikipedia articles with BNE identifiers Wikipedia articles with BNF identifiers Wikipedia articles with CANTIC identifiers Wikipedia articles with CINII identifiers Wikipedia articles with GND identifiers Wikipedia articles with ISNI identifiers Wikipedia articles with LCCN identifiers Wikipedia articles with LNB identifiers Wikipedia articles with NDL identifiers Wikipedia articles with NKC identifiers Wikipedia articles with NLA identifiers Wikipedia articles with NLG identifiers Wikipedia articles with NLI identifiers Wikipedia articles with NLK identifiers Wikipedia articles with NLP identifiers Wikipedia articles with NSK identifiers Wikipedia articles with NTA identifiers Wikipedia articles with PLWABN identifiers Wikipedia articles with RERO identifiers Wikipedia articles with SELIBR identifiers Wikipedia articles with SNAC-ID identifiers Wikipedia articles with SUDOC identifiers Wikipedia articles with Trove identifiers Wikipedia articles with VcBA identifiers Wikipedia articles with VIAF identifiers Wikipedia articles with WORLDCATID identifiers AC with 27 elements Navigation menu Personal tools Not logged in Talk Contributions Create account Log in Namespaces Article Talk Variants Views Read Edit View history More Search Navigation Main page Contents Current events Random article About Wikipedia Contact us Donate Contribute Help Learn to edit Community portal Recent changes Upload file Tools What links here Related changes Upload file Special pages Permanent link Page information Cite this page Wikidata item Print/export Download as PDF Printable version In other projects Wikimedia Commons Wikiquote Languages Afrikaans العربية Asturianu Azərbaycanca বাংলা Беларуская Български Català Čeština Dansk Deutsch Eesti Ελληνικά Español Esperanto Euskara فارسی Français Frysk Gaeilge Galego Gĩkũyũ 한국어 हिन्दी Hrvatski Ido Bahasa Indonesia Íslenska Italiano עברית Қазақша Latviešu Lietuvių Magyar Македонски Malagasy മലയാളം مصرى Nederlands 日本語 Norsk bokmål ਪੰਜਾਬੀ Polski Português Română Runa Simi Русиньскый Русский Scots Sicilianu සිංහල Simple English Slovenčina Slovenščina Српски / srpski Srpskohrvatski / српскохрватски Suomi Svenska Türkçe Українська Tiếng Việt Winaray 吴语 Yorùbá 中文 Edit links This page was last edited on 24 December 2020, at 14:27 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Mobile view Developers Statistics Cookie statement