8:10 1330–1353R Shah et al. Case series of head neck TIO and review RESEARCH Tumor induced osteomalacia in head and neck region: single center experience and systematic review Ravikumar Shah1, Anurag R Lila1, Swati Ramteke-Jadhav1, Virendra Patil1, Abhishek Mahajan2, Sushil Sonawane1, Puja Thadani1, Anil Dcruz3, Prathamesh Pai3, Munita Bal4, Subhada Kane4, Nalini Shah1 and Tushar Bandgar1 1Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India 2Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India 3Department of Head Neck Surgery, Tata Memorial Hospital, Mumbai, Maharashtra, India 4Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India Correspondence should be addressed to A R Lila: anuraglila@gmail.com Abstract Tumor-induced osteomalacia in the head and neck region remains a challenging diagnosis to manage. Literature pertaining to management and outcome details remains sparse. We describe two cohorts: cohort 1 included seven patients from a single center in Western India with tumors located in paranasal sinuses (n = 3), intracranial (n = 2) and maxilla (n = 2). The unique features from our series is the management of persistent disease with radiation therapy (n = 2) and peptide receptor radionuclide therapy (PRRT) (n = 1). Cohort two has 163 patients identified from 109 publications for systematic review. Paranasal sinuses, mandible, intracranial disease, maxilla and oral cavity, in descending order, are reportedly common tumor sites. Within this cohort, mean age was 46 ± 14 years at presentation with 44.1% having local symptoms. Duration of symptoms varied from 1 to 240 months. Pre-surgery mean serum phosphorus was 1.4 ± 0.4 mg/dL and median FGF-23 levels were 3.6 (IQR:1.8–6.8) times of normal upper limit of normal. Majority (97.5%) were managed primarily with surgical excision; however, primary radiotherapy (n = 2) and surgery combined with radiotherapy (n = 2) were also reported. Twenty patients had persistent disease while nine patients had recurrence, more commonly noted with intracranial and oral cavity tumors. Surgery was the most common second mode of treatment employed succeeded by radiotherapy. Four patients had metastatic disease. The most common histopathological diagnosis reported is PMT mixed connective tissue, while the newer terminology ‘PMT mixed epithelial and connective tissue type’ has been described in 15 patients. Introduction Tumor-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23 (FGF23) by a tumor. FGF-23 plays a vital role in renal phosphate handling and vitamin D synthesis. Hence, TIO is characterized by hypophosphatemia due to renal phosphate wasting, inappropriately normal or low 1,25 dihydroxy vitamin D, and elevated or inappropriately normal plasma FGF-23. These biochemical alterations eventually result in osteomalacia. Due to its rarity, the diagnosis of TIO is delayed with the average time from onset of symptoms to diagnosis being more than 2.5 years (1). As a result, patients often present in a debilitated state with multiple fractures, severe muscle weakness -19-0341 Key Words f tumor-induced osteomalacia (TIO) f oncogenic osteomalacia f head and neck f systematic review Endocrine Connections (2019) 8, 1330–1353 ID: 19-0341 8 10 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access mailto:anuraglila@gmail.com https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1331 PB–24 8:10 and loss of height due to skeletal deformities. Even with a high index of suspicion, tumor localization remains challenging as the offending tumor may be very small and can be anywhere in the body. Complete tumor resection remains the mainstay of treatment and is known to result in dramatic resolution of symptoms. The first case of TIO was reported by Robert McCance in 1947 who treated a patient having low phosphorus levels and bone pain with high doses of vitamin D suspecting her to be a case of ‘vitamin D resistance’; however, the symptoms did not completely resolve until a tumor found in the femur was removed (2). Thereafter, more than 300 cases of TIO have been reported in literature with more than 200 being reported since 2000 (3). The most common tumor site is the lower extremity (>40%) followed by the head and neck region (>20%) (4). There have been several reviews on pathological characters of such tumors but there is no comprehensive review describing clinical characteristics and management of patients with TIO in head and neck region. This article aims to describe a single-center experience with TIO involving the head and neck region followed by a comprehensive clinically oriented review of world literature for the same. Materials and methods Cohort 1 Medical records of patients attending Department of Endocrinology, KEM Hospital, Mumbai who were diagnosed with TIO from January 2005 till August 2018 were reviewed after obtaining approval from Institutional Ethical Committee II, Seth G S Medical college and KEM Hospital, Mumbai. Informed consent for the photographs, publication of their clinical details and/or imaging was taken. Patients diagnosed with TIO involving the head and neck region were identified and reviewed for inclusion. Concurrently, patients diagnosed with TIO in other regions, and patients with secondary TIO (3) (including neurofibromatosis, epidermal nevus syndrome, and polyostotic fibrous dysplasia of bone) were excluded from the study. Diagnosis of TIO was considered in patients presenting with features of hypophosphatemia in absence of relevant family history, evidence of renal phosphate wasting (as demonstrated by low % fractional tubular reabsorption of phosphate (TRP) and tubular maximum for phosphate corrected for glomerular filtration rate (TMP/GFR)) with elevated fibroblast growth factor-23 (FGF-23). Only those patients who had anatomical/functional imaging (CT/MRI or Ga-DOTATATE PET/CT) demonstrating localization of tumor in head and neck region have been included for analysis (n = 7). Biochemical parameters recorded pre-operatively include S. calcium, S. phosphorus, S. alkaline phosphatase (ALP), TMP/GFR, TRP and FGF23 levels, and post- operatively include S. phosphorus and FGF-23 levels. Normal ranges for various parameters at our institute are as follows: S. calcium (9–10.5 mg/dL), S. phosphorus (2.5–5 mg/dL), S. ALP (<117 U/L), TMP/GFR (age- and sex-adjusted values as recommended by Chong et  al. (3)), TRP (>85%) and C-terminal FGF-23 (0–150 RU/mL). Furthermore, details from imaging studies done for localization (CT or Ga-DOTATATE PET/CT), treatment modality used, and histopathology reports have been included for analysis. For patients having recurrent disease additional information including time of recurrence following primary management, biochemical profile, localization of recurrent disease and secondary modality of treatment used was documented. Tubular resorption of phosphate was measured from phosphate and creatinine levels in a spot fasting urine and serum samples at baseline before starting phosphate supplements. TMP/GFR was calculated with use of a nomogram reported by Bijvoet et al. FGF23 was assessed by enzyme-linked immunosorbent assay (FGF23 (C-terminal) kit, Immunotopics, Inc, San Clemente, CA, USA). The kit has sensitivity, an intra-assay coefficient of variation (CV), and an inter-assay CV of 30 RU/mL, 5 and 7.3%, respectively. Serum 1,25(OH)2 vitamin D was assessed by radioimmunoassay (RIA), using a DIA source RIA CT kit by DIA source Immunoassays, SA, with an intra-assay CV of 4.5–9.3% (at 77.3 and 24.5 ng/L concentrations, respectively) and inter-assay CV of 11.3–12.7% (at 33.4 and 13.6 ng/L concentrations, respectively). Whole-body (head to toe) scanning with two acquisitions were obtained 1–1.5 h post intravenous injection of 74–111 MBq of DOTATATE labeled with 68Ga. 68Ga was obtained from an in-house 68Ge/68Ga generator. Scans were acquired on a GE Discovery STE PET/CT with 128 × 128 matrix size and 3 min per bed position of iterative algorithm time. The numbers of bed positions were dependent on the height of the patient, usually 10–12 per patient. CT scans were obtained on a 64-slice Phillips Brilliance CT scanner, while MRI scans were performed on a 1.5 tesla Siemens Sonata (Henkestrabe, Germany) MR scanner. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13328:10 Cohort 2 We searched for all original and review articles in PubMed till June 2019 (Fig. 1). Individual search was carried out for terms ‘Tumour-Induced Osteomalacia’, ‘Oncogenic Osteomalacia’, and ‘Phosphaturic Mesenchymal Tumour’. All original and review articles published in English were reviewed for inclusion. Only publications describing TIO in head and neck region were included. A secondary search for relevant publications was carried out by handsearching through the reference lists of selected publications. Hence, in addition to the cases described in our series, we reviewed 163 index cases from 109 publications of TIO of head and neck region previously reported in literature. Clinical profile, biochemical investigations, imaging modality used for localization, location of tumor, treatment modalities used, histopathology findings, recurrence and its management, and metastasis if any were noted. Whenever serum levels of calcium, phosphorus, parathyroid hormone (PTH), 1,25 (OH)2 vitamin D3 levels were available in SI units, they were converted to conventional units with online calculators for uniformity in documentation. Serum ALP when available in units/liter only was included for analysis, while values reported in any other units were excluded due to non-availability of a suitable conversion method. Statistical analysis Statistical analysis was performed using SPSS software version 23.0. Mean (±standard deviation (s.d.)) was used for continuous variables when they were normally distributed and median (interquartile range (IQR)) was used for variables with skewed distribution. The difference between categorical variables was analyzed using chi- square test. P value <0.05 is considered significant. Results Cohort 1 This cohort includes seven index patients with TIO involving head and neck region. Their characteristics are described in Table 1. The cohort comprised four males and three females with mean age of 42.7 ± 10.6 years whose tumors were located in paranasal sinuses (n = 3), maxilla (n = 2), and intra-cranially (n = 2). All patients presented with bone pain and muscle weakness, while pathologic fractures (n = 4) and local symptoms (n = 5) were present in majority of patients. The time lag from onset of symptoms to diagnosis was lengthy (mean: 65.1 ± 50.3 months). In four patients, location of tumor was suspected at initial presentation based on clinical history and examination. Thereafter, tumor location was confirmed with Ga-DOTANOC in two patients, with MRI in one patient and CT in one patient. Three patients were primarily detected on Ga-DOTANOC/DOTATATE PET/CT; one patient had a history of epistaxis elicited retrospectively after tumor localization. Mean tumor size was 3.6 ± 1.3 cm. Except for one patient (who was initially operated at another hospital), pre and post-operative serum phosphorus and FGF-23 levels were available in all patients (Table 1). Three patients were cured with initial surgery, while four had persistent disease. No recurrence was documented in patients cured initially (n = 3) over a mean follow-up of 17 months. Out of four patients with persistent disease, one patient was cured with repeat surgery only, two patients were cured with repeat surgery and external beam radiation therapy (EBRT), and one has stable disease after peptide receptor radionuclide therapy (PRRT). Histopathologic findings revealed phosphaturic mesenchymal tumor mixed connective tissue type (PMTMCT) in four patients, while the remaining three patients had PMT-OF (ossifying fibroma like), hemangiopericytoma, and odontogenic fibroma, respectively. Clinical images of case numbers one, five and six are shown in Figs 2, 3 and 4 respectively. Addi�onal case records from bibliographic review of large case series (n=10) Studies iden�fied from PUBMED database (n=840) Publica�ons included (n=99) Studies excluded: (n= 741) TIO of other regions Secondary TIO PMT without osteomalacia Non-English literature Non relevant to TIO Duplica�ons/Erratum Ar�cles included for final analysis (n=109) Figure 1 Flowchart of search strategy and selection of studies for inclusion in systematic review. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1333 PB–24 8:10 Ta b le 1   D et ai ls o f co h o rt 1 p at ie n ts . C as e n o. A ge /s ex Lo ca ti on o f tu m or C li n ic al f ea tu re s Im ag in g ch ar ac te ri st ic s S. P h os p h or u s (m g/ d L) FG F- 23 (R U /m L) (0 –1 50 ) Lo ca l s ym p to m s Fe at u re s o f TI O D u ra ti o n (m o n th s) Lo ca liz at io n w it h Si ze o f tu m o r (c m ) P re -o p P o st -o p P re -o p P o st -o p 1 32 /F R ig h t m ax ill ar y al ve o lu s Sw el lin g ov er ri gh t a lv eo lu s P , F 84 H is to ry a n d P E 1. 2 1. 9 4. 3 95 0 10 2 2 46 /M Le ft p et ro u s tu m o r Ea ra ch e, p ro tr u d in g m as s fr o m le ft e ar P , M W , F 15 6 H is to ry a n d P E 5 1. 2 3. 3 N A 11 8. 6 3 60 /M Le ft e th m o id si n u s Ep is ta xi s P , M W , F 12 G a- D O TA N O C 4. 7 0. 9 1. 8 64 6 72 .5 4 39 /M R ig h t fr o n ta l & et h m o id s in u s N o P , M W 48 G a- D O TA N O C 2. 3 0. 9 1. 03 78 7 19 1 5 53 /F B as e o f th e sk u ll N o P , M W 36 G a- D O TA TA TE 3. 5 1. 5 N A 72 5 15 3 6 33 /F R ig h t m ax ill a R ig h t u pp er gu m s w el lin g P , M W , F 36 H is to ry a n d P E 3 0. 6x 1. 3 88 98 85 7 36 /M R ig h t n as al c av it y Ep is ta xi s, n as al o b st ru ct io n P , M W 84 H is to ry a n d P E 5 1. 9 4 20 24 82 C as e n o. Su rg ic al m an ag em en t Pe rs is te n ce Se co n d li n e m od al it y To ta l d u ra ti on o f fo ll ow -u p St at u s H is to p at h ol og y P ro ce d u re C o m p le te r es ec ti o n Su rg er y R T P R R T 1 In fr as tr u ct u re m ax ill ec to m y Ye s – – – – 48 C u re d O d o n to ge n ic fi b ro m a 2 R et ro m as to id cr an io to m y w it h le ft p et ro se ct o m y N o Ye s – Ye s – 96 C u re d H em an gi o p er ic yt o m a 3 FE SS N o Ye s FE SS 2 t im es IM R T 54 G y in 30 f ra ct io n s – 36 C u re d P M TM C T 4 Fr o n ta l cr an io to m y an d ex ci si o n N o Ye s En d o sc o p ic en d o n as al t u m o r ex ci si o n – – 29 C u re d P M TM C T 5 R et ro m as to id cr an io to m y w it h t u m o r ex ci si o n N o Ye s Ye s – Ye s 13 P er si st en ce P M TM C T 6 R ig h t m ax ill ec to m y Ye s N o – – – 12 C u re d P M T O F lik e 7 En d o sc o p ic en d o n as al tu m o r ex ci si o n Ye s – – – – 2 C u re d P M TM C T F, f ra ct u re s; F ES S, f u n ct io n al e n d o sc o p ic s in u s su rg er y; IM R T, in te n si ty -m o d u la te d r ad ia ti o n t h er ap y; M W , m u sc le w ea kn es s; N A , n o t av ai la b le ; O F, o ss ify in g fib ro m a lik e; P , p ai n ; P E, p h ys ic al ex am in at io n ; P M TM C T, p h o sp h at u ri c m es en ch ym al t u m o r m ix ed c o n n ec ti ve t is su e ty p e; P R R T, p ep ti d e re ce p to r ra d io n u cl id e th er ap y; R T, r ad ia ti o n t h er ap y. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13348:10 Cohort 2 This cohort consists of 163 index patients from 109 publications. Pertinent data relevant to index patients is provided in Table 2. Details of clinically relevant parameters are summarized in Table 3. Tests done using two different methods have been tabulated separately in Table 3. Due to heterogeneity in reporting of various parameters, the number of cases included (as denominator) have been specified for each parameter. The mean age was 46 ± 14 years with equal male:female ratio. The reported frequency of tumor sites, in descending order, are paranasal sinuses, mandible, intracranial, maxilla, oral cavity and others. Approximately half the patients (44.1%) had evident local symptoms. Bone pain and muscle weakness were most commonly reported. Late complications of hypophosphatemia such as fractures (61%) and bony deformities including kyphosis/scoliosis with resultant height loss (25.7%) were seen in a significant number of patients. Most patients were diagnosed late in their disease course, despite early access to health care, with median duration from symptom onset being almost 4 years. Out of 163 patients, median elevation of FGF-23 up to 3.6 times ULN has been reported in 55 patients with the interquartile range (IQR) being 1.8–6.8 × ULN. The primary treatment modality was surgery in most Figure 2 (Case 1): A 32-year-old female presented with bone pains and multiple fractures for 7 years. On examination, approximately 2 cm-sized round swelling in right upper alveolus was seen (A). Preoperative chest radiograph (image contrast adjusted) showing Looser’s zone along lateral border of scapula (arrows) suggestive of osteomalacia (B). Axial contrast-enhanced CT image soft tissue window showing small enhancing lesion in right upper alveolus (arrow) extending from canine to 1st molar tooth causing erosion of right upper alveolus (C). Ga-DOTATATE PET scan showing increased uptake at the level of right maxillary alveolus (arrow) (D). After excision histopathological examination showing tumor comprising of spindle cells with scattered osteoclastic giant cells bearing histologic semblance to giant cell granuloma (odontogenic fibroma) (E) (H&E, 400×). Figure 3 (Case 5): A 53-year-old female presenting with pain in bilateral groins and difficulty in walking for 3-year duration. As investigations confirmed the diagnosis of FGF-23-dependent hypophosphatemic osteomalacia, 68Ga-DOTATATE PET scan was done to locate the tumor which showed increased uptake in base of skull in left side (dashed arrows) (A). Corresponding axial CT images (B) showing soft tissue density lesion involving occipital bone on left side with erosion of the mastoid and petrous part of adjacent temporal bone. Retromastoid craniotomy with tumor excision was done. Histopathological examination showed hypercellular tumor composed of prominent small blood vessels with areas of hemorrhage (H&E, 200×) (D). Post first surgery repeat 68Ga-DOTATATE scan and corresponding CT images showing residual uptake in base of skull in left side (dashed arrows) in the soft tissue density lesion involving occipital bone on left side with erosion of the mastoid and petrous part of adjacent temporal bone (E). After failed second surgery, patient is now having stable disease after two cycles of PRRT. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1335 PB–24 8:10 patients (97.5%). Two patients with intracranial tumors, who declined surgery, were treated with primary EBRT. Also, two patients received immediate post-operative EBRT for prevention of recurrence due to fear of incomplete tumor removal. Out of 148 patients for whom outcome data were available; 119 patients had complete initial response to surgery, 20 patients had persistent disease and 9 patients had recurrence as defined by worsening of post-operatively documented normal biochemistry over a variable period of 2–204 months. Patients with persistent/recurrent disease (n = 29) were predominantly managed with surgery (65.3%) and/or radiotherapy (30.7%). Among these patients 11 were reported to be alive with no evidence of disease (ANED) and remaining patients were managed with phosphorus supplements with/without other treatment modalities. Four patients had metastatic disease with lymph node and/or lung metastasis. Histopathologically, PMTMCT (48.7%) remains the most commonly reported tumor type followed by hemangiopericytoma (22.7%), PMT of mixed epithelial and connective tissue type (9.4%), giant cell tumor (3.1%) and odontogenic fibroma (3.1%). Other rare types of tumor have been shown in Table 3. Discussion TIO is a rare and underreported condition due to unawareness about the characteristic clinical and biochemical profile among treating clinicians. Through this study, we aim to highlight our experience with TIO cases involving head and neck region and provide a review of published literature analyzed on a per-patient basis. This will increase awareness and provide valuable insight on critical management issues for this rare diagnosis. Cohort 1 A significant time gap between initial presentation till diagnosis persists even in the presence of local symptoms (1). For any atypical head and neck mass, clinician should enquire into history relevant to osteomalacia, and for a symptomatic patient appropriate biochemistry (S. calcium, S. phosphorus and alkaline phosphatase) should be requested. Vice versa, in a patient with non- localized TIO, a clinician should examine oral and nasal cavities for palpable swellings and enquire about relevant local symptoms. At our center we carry out a complete biochemical evaluation for TIO which includes calcium studies (S. calcium, S. phosphorus, ALP), TMP/GFR, 1,25 (OH) vitamin D3 and FGF-23 levels. FGF-23 serves as a diagnostic marker as well as an indicator of residual disease or recurrence during long-term follow-up. Thereafter, functional imaging with Ga-DOTANOC PET/CT for localization is done. Its superiority compared to FDG-PET/CT is well established (110, 111, 112). Functional imaging is followed by appropriate anatomic imaging to determine tumor extent and plan for surgical management. Alternatively, in a TIO patient presenting with local symptoms or a mass in head and neck region, anatomic imaging (CT/MRI) followed by biopsy can also be used. Figure 4 (Case 6): A 33-year-old female presenting with pain in bilateral groins, difficulty in walking and multiple fractures for 3-year duration. There was past history of dental surgery for some ‘gum swelling’. On examination, there was swelling in right upper alveolar region (A). X-ray right forearm AP view (image contrast adjusted) showing ulnar shaft fracture (B). MRI hip showing bilateral femoral neck insufficiency fractures which was reported as ‘bilateral avascular necrosis’ (C). Ga-DOTANOC scan showing uptake in the right maxillary tumor (D). CECT PNS axial view showing 3 cm tumor in right maxillary region (E). Patient was cured with right maxillectomy and osseous reconstruction. Histopathology showed tumor composed of cellular connective tissue intermixed with woven bone displaying osteoblastic rimming (i.e. ossifying fibroma-like histology) (H&E, 100×). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13368:10 Ta b le 2   R ev ie w o f p u b lis h ed li te ra tu re o n h ea d a n d n ec k TI O c as es : l is t o f in d ex c as es w it h r el ev an t d at a. C as e n o. A u th or A ge /s ex Lo ca ti on o f tu m or D u ra ti on o f sy m pt om s Lo ca li zi n g im ag in g FG F- 23 Pe rs is te n ce / re cu rr en ce Se co n d ar y m od al it y H PR P re -s u rg er y P o st -s u rg er y 1 R en to n (5 ) 53 F Le ft e th m o id 60 X- ra y N A N A N A – H em an gi o p er ic yt o m a 2 Sw ee t (6 ) 25 F Le ft m id d le tu rb in at e 12 C T N A N A N o – H em an gi o p er ic yt o m a 3 N it za n (7 ) 26 M Le ft m an d ib u la r m o la r le gi o n 24 X- ra y N A N A N o – G ia n t ce ll tu m o r 4 N o m u ra (8 ) 29 M M an d ib le 24 X- ra y N A N A P er si st en ce R T, c h em o th er ap y, 2n d s u rg er y, ch em o th er ap y P M T o ss ify in g fib ro m a lik e 5 Li n se y (9 ) 54 F R ig h t n as o p h ar yn x 30 C T N A N A N A – P M TM C T 6 Sh en ke r (1 0) 55 M N ec k N A N A N A N A N o – P M TM C T 7 Sh es h ad ri (1 1) 40 F Et h m o id s in u s N A C T N A N A N A – H em an gi o p er ic yt o m a 8 Je ff er ie s (1 2) 27 F Le ft m ax ill ar y si n u s 24 C T N A N A N A – P M T 9 W ei d n er (1 3) 39 F R ig h t m ax ill ar y si n u s 24 C T N A N A R ec u rr en ce R ep ea t su rg er y P ri m it iv e m es en ch ym al t u m o r 10 P ap o tt i ( 10 ) 38 F N as al c av it y N A N A N A N A N o – P M TM C T 11 H ar ve y (1 0) 32 F Th yr o id 14 4 P E N A N A P er si st en ce R ep ea t su rg er y: p ar ti al f /b t o ta l la ry n ge ct o m y f/ b R T an d c o n ti n u ed o n m ed ic al m an ag em en t M al ig n an t P M TM C T 12 Le e (1 4) 66 F Le ft n as al c av it y 36 C T N A N A N o – H em an gi o p er ic yt o m a 13 C at al an o (1 5) 66 F R ig h t m ax ill ar y an d e th m o id al si n u s m an y ye ar s C T N A N A N o – H em an gi o p er ic yt o m a 14 W ilk in s (1 6) 55 M Le ft in fr at em p o ra l m as s 24 C T N A N A N o – Si n on as al h em an gi op er ic yt om a lik e 15 D av id (1 7) 60 F R ig h t su b fr o n ta l m as s 18 C T N A N A R ec u rr en ce M ed ic al m an ag em en t H em an gi o p er ic yt o m a 16 K im (1 8) 41 M R ig h t u p p er p re m o la r 48 P E N A N A N o – G ia n t ce ll tu m o r 17 K im (1 8) 32 F Le ft m an d ib u la r m o la r ar ea 96 P E N A N A N o – O ss ify in g fib ro m a 18 A vi la (1 9) 48 M M an d ib le 60 M R I N A N A N o – C h ro n ic in fla m m at o ry ti ss u e w it h fi b ro si s an d e p it h el ia l r es ts 19 Ya n g (2 0) 31 F Le ft m an d ib le 96 C T N A N A N A – P M T- M C T 20 G o n za le z- C o m p ta (2 1) 69 F R ig h t et h m o id o - fr o n ta l m as s 21 6 C T N A N A P at ie n t d ie d o f tu m o r – P M T 21 O h as h i ( 22 ) 43 M Le ft m ax ill ar y si n u s 14 C T N A N A N A – H em an gi o p er ic yt o m a 22 C lu n ie (2 3) 60 F Et h m o id s in u se s 60 C T N A N A R ec u rr en ce M ed ic al m an ag em en t H em an gi o p er ic yt o m a 23 Sa n d h u (2 4) 46 M R ig h t et h m o id si n u s 18 C T N A N A N o – H em an gi o p er ic yt o m a 24 R ey es - M u gi ca (2 5) 9 F Le ft m an d ib le 1. 5 M R I N A N A N o – P M T- M C T (C on tin ue d) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1337 PB–24 8:10 C as e n o. A u th or A ge /s ex Lo ca ti on o f tu m or D u ra ti on o f sy m pt om s Lo ca li zi n g im ag in g FG F- 23 Pe rs is te n ce / re cu rr en ce Se co n d ar y m od al it y H PR P re -s u rg er y P o st -s u rg er y 26 Jo h n (2 7) 54 F R ig h t fr o n ta l, et h m o id al , sp h en o id si n u se s N A P E N A N A N A P at ie n t re ce iv ed Im m ed ia te R T fo llo w in g su rg er y M al ig n an t Sc h w an n o m a 27 R ei s- Fi lh o (2 8) 47 F C av er n o u s si n u s 84 C T N A N A N o – P M TM C T 28 Fu en te al b a (2 9) 63 F M ax ill ar y si n u s 60 C T N A N A P er si st en ce Su rg er y, R T, em b o liz at io n H em an gi o p er ic yt o m a 29 U n ga ri (3 0) 24 M Et h m o id N A C T N A N A N A – H em an gi o p er ic yt o m a 30 Fo lp e (1 0) 29 M Et h m o id / sp h en o id s in u s 24 N A N A N A N o – H em an gi o p er ic yt o m a 31 Fo lp e (1 0) 46 M Et h m o id s in u s 36 N A N A N A R ec u rr en ce R ep ea t su rg er y H em an gi o p er ic yt o m a 32 D u p o n d (3 1) 71 M Lo w er m an d ib le 12 FD G -P ET 19 9  R u /m L (N < 10 0) 22  R u /m L (P O D 8 ) N A – P M TM C T 33 K ay lie (3 2) 46 F Te m p o ra l b o n e 12 0 C T N A N A N A – P M TM C T 34 In o ku ch i ( 33 ) 24 F R ig h t n as al ca vi ty a n d p ar an as al si n u se s 4 C T 48 4  R u /m L (N : 3 2– 84 ) 58  R u /m L (P O D 3 ) N o – H em an gi o p er ic yt o m a 35 Yo sh io ka (3 4) 45 M C liv u s 10 M R I N A 49  p g/ m L R ec u rr en ce A ft er fi rs t su rg er y re ce iv ed R T fo llo w ed b y m ed ic al m an ag em en t. O ct re o ti d e w as n o t eff ec ti ve . H em an gi o p er ic yt o m a 36 K o ri ya m a (3 5) 41 F R ig h t m ax ill ar y si n u s 36 C T 30 9  p g/ m L (N : 1 0– 50 ) 50 (2  h p o st su rg er y) N o – P M TM C T 37 El st o n (3 6) 69 F Sk u ll 84 O ct re o sc an 67  R U /m L (N : 3 –4 5) 32  R U /m L (3 –4 5) (P O D 0 ) N o – P M TM C T 38 B ee ch (3 7) 42 M R ig h t et h m o id si n u s 84 M R I N A N A N o – H em an gi o p er ic yt o m a 39 A h n (3 8) 61 M Le ft lo w er b u cc al ve st ib u le 17 P E N A N A N o – H em an gi o p er ic yt o m a 40 U ra m o to (3 9) 48 M To n gu e 24 C T N A N A R ec u rr en ce Se co n d s u rg er y, R T M al ig n an t P M TM C T 41 Le w ie ck i ( 40 ) 46 M M an d ib le 24 O ct re o sc an 26 2  R U /m L (N < 18 0) U D (P O D 1 0) N o – P M T 42 K en ea ly (4 1) 79 F Le ft e th m o id si n u s N A C T 35 5  U /m L (N : 3 –4 5) N A N A – P M TM C T 43 K en ea ly (4 1) 40 F Le ft e th m o id si n u s 60 O ct re o sc an 48 4  U /m L (N : 3 –4 5) N A N A – H em an gi o p er ic yt o m a 44 K yo u n g- In Yu n (4 2) 71 F M an d ib le 10 8 P E N A N A N o – H em an gi o p er ic yt o m a 45 W o o (4 3) 42 F M an d ib le 10 8 P E 19 2  p g/ m L (N : 1 –7 1) 98  p g/ m L (P O D 11 ) P er si st en ce P at ie n t o n o ra l p h o sp h at e so lu ti o n w it h c lo se f o llo w -u p la st F G F- 23 9 2  p g/ m L P M TM C T 46 Sa va ge (4 4) 73 F Le ft m ax ill ar y si n u s 84 11 1I n -p en te tr eo ti d e N A N A N o – H em an gi o p er ic yt o m a Ta b le 2   C o n ti n u ed This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13388:10 47 K u ri en (4 5) 55 M R ig h t sp h en o id , et h m o id s in u s 24 C T N A N A N o – H em an gi o p er ic yt o m a 48 G u p ta (4 6) 51 M N as al c av it y 10 8 FD G -P ET N A N A N o – P M TM C T 49 G o re (4 7) 52 F N as al c av it y 48 O ct re o sc an 57 3  R u /m L (N < 23 0) N o rm al (4 5  m in p o st su rg er y) N o – P M TM C T 50 K o b ay as h i ( 48 ) 53 F Te m p o ra l b o n e 48 SV S 55 8. 8  p g/ m L (N : 4 –5 4. 3) N o rm al (P O D 4 ) N o – P M TM C T 51 Sh el ek h o va (4 9) 70 F M ax ill ar y si n u s N A M R I N A N A N A – P M TM C T 52 Sh el ek h o va (4 9) 53 M Fr o n ta l s in u s N A C T N A N A N A – P M TM C T 53 P ed ra zz o li (5 0) 37 F R ig h t m ax ill ar y si n u s 32 C T N A N A N o – H em an gi o p er ic yt o m a 54 M o ri (5 1) 42 M Le ft m ax ill ar y al ve o lu s 36 M R I 24 1  p g/ m L (N : 1 0– 50 ) N o rm al (1  h p o st s u rg er y) N o – P M TM C T 55 P ar sh w an at h (5 2) 42 F Le ft n as al c av it y an d e th m o id si n u s 42 C T N A N A N o – P M T 56 B at to o (5 3) 34 F Le ft n as al c av it y 60 P E N A N A N A – G ia n t ce ll tu m o r 57 P et er so n (5 4) 33 F M ax ill ar y si n u s N A N A N A N A N A – P M T 58 P et er s (5 5) 22 M R ig h t te m p o ra l lo b e m as s 96 P E N A N A P er si st en ce Th re e cr an io to m ie s w it h an gi o em b o liz at io n , R T, P R R T, o ct re o ti d e, d as at in ib H em an gi o p er ic yt o m a 59 A kh te r (5 6) 52 M C 5 ve rt eb ra e N A FD G -P ET N A N A N o – P M TM C T 60 Xi an -L in g (5 7) 43 F R ig h t p et ro u s ap ex 48 M R I N A N A P er si st en ce O ct re o ti d e th er ap y P M TM C T 61 Xi an -L in g (5 7) 42 F Le ft e th m o id si n u s 24 O ct re o sc an N A N A N o – P M TM C T 62 G u gl ie lm i ( 58 ) 22 M Le ft e th m o id si n u s 24 O ct re o sc an N A N A P er si st en ce R ep ea t su rg er y H em an gi o p er ic yt o m a 63 U n o (5 9) 53 F R ig h t te m p o ra l b o n e 48 C T >2 00 (N : 1 0– 50   p g/ m L) <5 0 (P O D -2 ) N A – P M T- M C T 64 U n o (5 9) 61 M Le ft b as i fr o n ta lis 60 C T 40 0 (N : 1 0– 50   p g/ m L) <3  p g/ m L (im m ed ia te ly ) P er si st en ce R ep ea t su rg er y P M T- M C T 65 A n d re u p o u lo u (6 0) 63 M Le ft f ro n ta l l o b e N A SV S 15 6  p g/ m L 10 1  p g/ m L (6 m o n th s p o st R T) A t 6 m o n th s, p at ie n t h ad d ec lin in g FG F- 23 – P M TM C T 66 B er gw it z (6 1) 56 M M an d ib le 22 8 P E 87 0  R u /m l ( N <1 80 ) N A P er si st en ce M u lt ip le s u rg er ie s, ci n ac al ce t A m el o b la st ic fib ro sa rc o m a 67 M o n ap p a (6 2) 35 M R ig h t m an d ib le 36 P E N A N A N o – P M TM C T 68 C h o ky u (6 3) 57 M M id d le c ra n ia l fo ss a 24 M R I 84  p g/ m L (N : 1 0– 50 ) 14  p g/ m L (P O D 7 ) N o – P M T 69 C h ia m (6 4) 55 M R ig h t n as al ca vi ty 18 M R I 23 2  R U /m L (N < 18 0) 18 R U /m L (< 18 0) d ay 5 N o – P M TM C T 70 C h o (6 5) 47 F N as al c av it y, et h m o id al si n u s 36 C T N A N A N o – H em an gi op er ic yt om a (C on tin ue d) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1339 PB–24 8:10 C as e n o. A u th or A ge /s ex Lo ca ti on o f tu m or D u ra ti on o f sy m pt om s Lo ca li zi n g im ag in g FG F- 23 Pe rs is te n ce / re cu rr en ce Se co n d ar y m od al it y H PR P re -s u rg er y P o st -s u rg er y 72 B ra n d w ei n - G en sl er (6 7) 66 F N as al c av it y, m ax ill a N A P E N A N A N o – G lo m an gi o p er ic yt o m a 73 M u n o z (6 8) 60 M P o st er io r n ec k 24 FD G -P ET 57 5  R U /m L (N < 18 0) N o rm al N o – P M TM C T 74 C h an g (6 9) 37 m Le ft n as al c av it y 60 P E N A N A N o – H em an gi o p er ic yt o m a 75 Jia n g (7 0) 38 F M an d ib le 24 O ct re o sc an N A N A N o – P M T- M C T 76 Jia n g (7 0) 69 F M an d ib le 24 0 O ct re o sc an 39 3  p g/ m L (N : 1 0– 50 ) 8 N o – P M T- M C T 77 Jia n g (7 0) 28 M M an d ib le 48 O ct re o sc an N A N A N o – O d o n to ge n ic fi b ro m a 78 Jia n g (7 0) 56 F M an d ib le 12 0 O ct re o sc an N A N A N o – P M T- M C T 79 Jia n g (7 0) 55 F Lo w er g in gi va 20 4 O ct re o sc an N A N A N o – P M T- M C T 80 Jia n g (7 0) 45 F M an d ib le 13 2 O ct re o sc an N A N A N o – O d o n to ge n ic fi b ro m a 81 Jia n g (7 0) 50 F M an d ib le 36 O ct re o sc an N A N A N o – P M T- M C T 82 Jia n g (7 0) 27 M M ax ill a 72 O ct re o sc an N A N A N o – O d o n to ge n ic fi b ro m a 83 Jia n g (7 0) 49 F N as al s in u s 72 O ct re o sc an N A N A R ec u rr en ce O b se rv at io n P M T- M C T 84 Jia n g (7 0) 24 M N as al s in u s 48 O ct re o sc an N A N A N o – P M T- M C T 85 Jia n g (7 0) 45 F N as al s in u s 12 0 O ct re o sc an N A N A N o – P M T- M C T 86 Jia n g (7 0) 57 F N as al s in u s 10 2 O ct re o sc an N A N A N o – P M T- M C T 87 Fa ta n i ( 71 ) 58 M Fl o o r o f m o u th , m an d ib le 24 0 C T N A N A R ec u rr en ce M u lt ip le s u rg er ie s, w ed ge lu n g re se ct io n M al ig n an t P M TM C T 88 M at h is (7 2) 28 F C ri b ri fo rm p la te 36 M R I N A N A N o – P M TM C T 89 M at h is (7 2) 32 M A n te ri o r cr an ia l fo ss a, e th m o id si n u s 12 C T N A N A P er si st en ce M u lt ip le s u rg er ie s P M TM C T 90 Ta ra so va (7 3) 60 F Le ft f ro n ta l m as s 48 SV S 13 2  p g/ m L (N : 10 –5 0) 13 4  R u /m L (N <1 80 ) ( 3 ye ar s af te r R T) N o – N A 91 P ap ie rs ka (7 4) 40 N A R ig h t m ax ill ar y si n u s N A O ct re o sc an 26 0. 4  R u /m l (N : 5 -1 05 ) N A N A – G lo m an gi o p er ic yt o m a 92 Le e (7 5) 60 F R ig h t m ax ill ar y si n u s 72 C T N A N A N o – G lo m an gi o p er ic yt o m a 93 A lle vi (7 6) F R ig h t m ax ill ar y si n u s O ct re o sc an N A N A N o – P M T h em an gi o p er ic yt o m a 94 A n n am al ai (7 7) 49 M Le ft n as al c av it y 18 0 FD G -P ET /D O TA 22 4. 5  R U /m L (N < 15 0) 64 .6  R U /m L (P O D 2 ) N o – P M TM C T 95 O ka m iy a (7 8) 35 F Le ft e th m o id si n u s 8 FD G -P ET 14 7  p g/ m L (N : 14 –4 0) 16  p g/ m L N o – P M TM C T 96 A rn ao u ta ki s (5 4) 50 F R ig h t et h m o id si n u s 6 P E N A N A N A – P M T 97 M o k (7 9) 48 M R ig h t m ax ill ar y si n u s 12 M R I N A N A N o – P M T 98 Fe rn án d ez - C o o ke (8 0) 3 M M ax ill a an d m an d ib le 6 P E 39 5. 1  p g/ m L (N < 40 ) 12 67 .2   R U /M L (N < 60 ) N o rm al P er si st en ce R FA , L o ca l s te ro id in fil tr at io n , ca lc it o n in , b is p h o sp h o n at es , p ro p ra n o lo l, ci n ac al ce t C en tr al g ia n t ce ll gr an u lo m a 99 Fa th al la (8 1) 49 F R ig h t fr o n ta l lo b e 36 O ct re o sc an 60 9  R U /m L (N : 0 –1 80 ) N A N o – P M TM C T Ta b le 2   C o n ti n u ed This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13408:10 10 0 R ay (8 2) 35 M Le ft n as al c av it y 24 C T 5 X N N A N o – H em an gi o p er ic yt o m a 10 1 Q ar i ( 83 ) 60 M G in gi va o f m an d ib u la r te et h 72 P E N A N A N o – P M T 10 2 W as se rm an (8 4) 50 M C 3 ve rt eb ra e 24 N A N A N A N o – P M TM C T 10 3 W as se rm an (8 4) 33 F N o se , l ip s, to n gu e 12 0 N A N A N A P er si st en ce N A M al ig n an t P M TM C T 10 4 M an i ( 85 ) 56 M O cc ip it al b o n e 36 P E N A N A N o – P M TM C T 10 5 Yu (8 6) 37 M M ax ill a 36 P E 12 9. 97   p g/ m L (N : 3 3. 9– 51 .6 ) 64 .9  p g/ m L N o – P M TM C T 10 6 Yu (8 6) 50 M M an d ib le 6 P E 31 2. 84  p g/ m L (N : 3 3. 9– 51 .6 ) N A N o – Sp in d le c el l t u m o r w it h P M T fe at u re s 10 7 Yu (8 6) 50 M Le ft n as al c av it y 72 O ct re o sc an 27 2. 71  p g/ m L (N : 3 3. 9– 51 .6 ) 5. 93  p g/ m L N o – P M TM C T 10 8 Yu (8 6) 38 F Le ft n as al c av it y an d e th m o id si n u s 12 O ct re o sc an 35 0. 9  p g/ m L (N : 3 3. 9– 51 .6 ) N A N o – P M TM C T 10 9 Ta ka sh i ( 87 ) 77 M Le ft p ar o ti d gl an d 96 FD G -P ET 18 6. 9  p g/ m L 6. 5  p g/ m L N o – P M TM C T 11 0 G re sh am (8 8) 42 M Et h m o id m as s 36 M R I N A N A N o – G lo m an gi o m a 11 1 A ga im y (8 9) 48 M N as al c av it y N A N A N A N A – C el lu la r, n o n d es cr ip t 11 2 Le e (9 0) 33 M R ig h t m an d ib le 15 6 G a- D O TA N O C 86 .7  p g/ m L (N : 1 0– 50 ) N A N o – G ia n t ce ll gr an u lo m a 11 3 Le e (9 0) 52 M Le ft e th m o id si n u s 6 G a- D O TA N O C 49 2. 3  p g/ m L (N : 1 0– 50 ) N A P er si st en ce R T P M T 11 4 Sc h o b er (9 1) 59 F R ig h t fr o n to - b as al r eg io n 22 SV S 16 00  R u /m L (N : 2 6– 11 0) 74  R u /m L R ec u rr en ce R ep ea t su rg er y M en in gi o m a 11 5 Zu o (9 2) N A M Le ft n as al c av it y 36 O ct re o sc an N A N A N o – P M T 11 6 Zu o (9 2) N A F Le ft m ax ill ar y b o n e 36 FD G -P ET N A N A N o – P M T 11 7 H an a (9 3) 38 M B ila te ra l et h m o id s in u s 84 M R I 12 0  p g/ m L (N : 1 0– 50 ) N D (P O D -1 ) P er si st en ce R ep ea t su rg er y P M TM C T 11 8 C h an u ky a (9 4) 31 M Le ft n as al c av it y 24 G a- D O TA N O C 13 10  R u /m L (N : 0 –1 50 ) 10 9  R u /m L (1 m o n th p o st su rg er y) N o – H em an gi o p er ic yt o m a 11 9 G o n za le z (9 5) 42 M N as o fr o n ta l si n u s 72 P E 75 .9  p g/ m L (N : 8 –5 4) 8. 4  p g/ m L N o – P M TM C T 12 0 Si n gh (9 6) 67 M P o st er io r w al l o f m as to id an tr u m 20 4 G a- D O TA N O C 23 7  R u /m L (N : 0 –1 50 ) N A N A – P M T 12 1 Si n gh (9 6) 45 M Le ft s id e o f b o d y o f m an d ib le 12 G a- D O TA N O C 15 53  R u /m L (N : 0 –1 50 ) N A N A – P M T 12 2 P el le ti er (9 7) 37 M M an d ib le N A SV S f/ b M R I 31 0  R u / m L (N : 19 –1 14 ) N A N A – N A 12 3 P el le ti er (9 7) 49 F M an d ib le O ct re o sc an o f gr o w in g le si o n o n M R I w it h FD G -a vi d it y an d gr ad ie n t o n S V S 11 94  R u /m L (N : 1 9– 11 4) 20 0  R u /m L P er si st en ce N A N A (C on tin ue d) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1341 PB–24 8:10 C as e n o. A u th or A ge /s ex Lo ca ti on o f tu m or D u ra ti on o f sy m pt om s Lo ca li zi n g im ag in g FG F- 23 Pe rs is te n ce / re cu rr en ce Se co n d ar y m od al it y H PR P re -s u rg er y P o st -s u rg er y 12 5 V ill ep el et (9 9) 41 F R ig h t et h m o id si n u s N A C T N A 48  p g/ m L (P O D -5 ) N o – P M T 12 6 P el o (1 00 ) 62 F Le ft T M J 60 P E N A N A N o – P M T 12 7 H e (1 01 ) 54 F R ig h t p ar o ti d 24 G a- D O TA N O C N A N A N A – Sa liv ar y b as al c el l ad en o m a 12 8 W u (1 02 ) 49 F R ig h t m an d ib le 21 6 N A N A N A P er si st en ce M u lt ip le s u rg er ie s O d o n to ge n ic fi b ro m a 12 9 W u (1 02 ) 20 F Le ft m ax ill a 48 N A N A N A N o – O d o n to ge n ic fi b ro m a 13 0 W u (1 02 ) 30 F R ig h t m ax ill a 60 N A N A N A N o – PM T of m ix ed ep ith el ia l & co n n ec tiv e tis su e ty pe 13 1 W u (1 02 ) 36 M Le ft m an d ib le 60 N A N A N A N o – P M T o f m ix ed ep it h el ia l & co n n ec ti ve t is su e ty p e 13 2 W u (1 02 ) 25 M R ig h t m ax ill a 72 N A N A N A N o – P M T o f m ix ed ep it h el ia l a n d co n n ec ti ve t is su e ty p e 13 3 W u (1 02 ) 15 F R ig h t m an d ib le 24 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 13 4 W u (1 02 ) 41 M R ig h t m an d ib le 60 N A N A N A N A – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 13 5 W u (1 02 ) 34 M Le ft m ax ill a 72 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 13 6 W u (1 02 ) 50 M R ig h t m an d ib le 18 N A N A N A N o – P M T o f m ix ed ep it h el ia l a n d co n n ec ti ve t is su e ty p e 13 7 W u (1 02 ) 66 M R ig h t m ax ill a 10 8 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 13 8 W u (1 02 ) 26 M Le ft m ax ill a 36 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 13 9 W u (1 02 ) 32 M R ig h t m ax ill a 36 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 14 0 W u (1 02 ) 41 M R ig h t m an d ib le 60 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 14 1 W u (1 02 ) 22 M R ig h t m an d ib le 24 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 14 2 W u (1 02 ) 31 M R ig h t m ax ill a 36 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe Ta b le 2   C o n ti n u ed This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13428:10 14 3 W u (1 02 ) 51 M Le ft m an d ib le 13 2 N A N A N A N o – PM T of m ix ed e pi th el ia l an d co n n ec tiv e tis su e ty pe 14 4 W u (1 02 ) 75 M R ig h t m an d ib le 72 N A N A N A N o – P M T o f m ix ed ep it h el ia l a n d co n n ec ti ve t is su e ty p e 14 5 D in g (1 03 ) 66 F R ig h t n as al ca vi ty 48 G a- D O TA TA TE N A N A N A – N A 14 6 D in g (1 03 ) 41 M R ig h t m an d ib le 10 8 G a- D O TA TA TE N A N A N A – N A 14 7 M is h ra (1 04 ) 46 M R ig h t te m p o ra l lo b e m as s 60 G a- D O TA N O C 10 28  R u /m L (N < 18 0) N A N A – P M TM C T 14 8 M is h ra (1 04 ) 52 F Le ft s ku ll b as e tu m o r 24 G a- D O TA N O C 72 5  R u /m L (N < 18 0) 15 0  R u /m L (3 m o n th s p o st -s u rg er y) N o – P M TM C T 14 9 Li (1 05 ) 40 F Le ft n as al c av it y 12 H is to ry N A N A R ec u rr en ce R ep ea t su rg er y tw ic e H em an gi o p er ic yt o m a 15 0 A ch ar ya (1 06 ) 42 M R ig h t m an d ib le 12 FD G -P ET 33 2  R u /m L (N < 18 0) 53  R u /m L (P O D 54 ) N o – P M TM C T 15 1 K u ri en (1 07 ) 39 F R ig h t n as al ca vi ty 24 N A 26 0  R u /m L (N < 18 0) 40  R u /m L N o – P M TM C T 15 2 K u ri en (1 07 ) 36 F Le ft e th m o id si n u s 24 N A N A 12 6  R u /m L N o – P M TM C T 15 3 K u ri en (1 07 ) 51 M M id d le tu rb in at e 36 N A 60 4  R u /m L (N < 18 0) <5  R u /m L N o – P M TM C T 15 4 K u ri en (1 07 ) 44 M M id d le tu rb in at e 48 N A 14 5  R u /m L (N < 18 0) 94 .7  R u /m L N o – P M TM C T 15 5 K u ri en (1 07 ) 55 M P o st er io r et h m o id , sp h en o id 24 N A N A N A N o – P M TM C T 15 6 K u ri en (1 07 ) 37 F A n te ri o r et h m o id w it h in tr ac ra n ia l ex te n si o n 36 N A 69 5  R u /m L (N < 18 0) 38  R u /m L P er si st en ce R T M al ig n an t P M TM C T 15 7 K u ri en (1 07 ) 62 F N as al c av it y, a ll P N S 48 N A N A 89 9  R u /m L P er si st en ce O b se rv at io n P M TM C T 15 8 P au l ( 10 8) 54 F Le ft m an d ib le 24 G a- D O TA TA TE 10 94  R u /m L (N < 18 0) 36 9  R u /m L (P O D -5 ) 44  R u /m L (4 m o n th s p o st -s u rg er y) N o – P M TM C T 15 9 P al (1 09 ) 28 M M an d ib le N A G a- D O TA TA TE 20 1  R u /m L (N < 18 0) 30 7  R u /m L P er si st en t M ed ic al m an ag em en t H em an gi o p er ic yt o m a 16 0 P al (1 09 ) 52 F R ig h t n as al ca vi ty N A G a- D O TA TA TE 81 4  R u /m L (N < 18 0) N A N o – A rt er io ve n o u s h em an gi o m a 16 1 P al (1 09 ) 36 F Le ft m ax ill ar y si n u s N A G a- D O TA TA TE 12 39  R u /m L (N < 18 0) N A N o – P M TM C T 16 2 P al (1 09 ) 58 M Le ft n as al c av it y N A G a- D O TA TA TE 51 3  R u /m L (N < 18 0) N A N o – H em an gi o p er ic yt o m a 16 3 P al (1 09 ) 36 F Le ft n as al c av it y N A FD G -P ET 24 67  R u /m L (N < 18 0) N A N o – H em an gi o p er ic yt o m a F, f em al e; M , m al e; N , n o rm al v al u e; N A , n o t av ai la b le ; O F, o ss ify in g fib ro m a lik e; P E, p h ys ic al e xa m in at io n ; P M TM C T, p h o sp h at u ri c m es en ch ym al t u m o r m ix ed c o n n ec ti ve t is su e ty p e; P O D , p o st -o p d ay ; P R R T, p ep ti d e re ce p to r ra d io n u cl id e th er ap y; R T, r ad ia ti o n t h er ap y; S V S, s el ec ti ve v en o u s sa m p lin g o f FG F- 23 ; U D , u n d et ec ta b le . This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1343 PB–24 8:10 Table 3 Summary of literature review. Parameter Value No. of patients with available data Age (years) (mean ± s.d.) 46 ± 14 160 Sex 81:81 162 Location of tumor % (no.) 163  Paranasal sinuses 43.7 (76)  Mandible 21.5 (34)  Intracranial 11.8 (19)  Maxilla 9 (13)  Oral cavity 6.2 (10)  Skull 1.2 (2)  Parotid 1.3 (2)  Posterior neck 1.3 (2)  Cervical vertebra 1.3 (2)  Infratemporal fossa 0.7 (1)  Mastoid antrum 0.7 (1)  Thyroid 0.7 (1) Local symptoms % (no.) 44.1 (49) 111 Hypophosphatemic symptoms  Muscle weakness % (no.) 77.9 (106) 136  Fractures % (no.) 61.2 (68) 111  Bone pains % (no.) 100 (142) 142  Bony deformities % (no.) 25.7 (27) 105 Duration of symptoms (months), median (IQR) 36 (24–72) 139 Biochemical profile  S. Calcium (mg %) (mean ± s.d.) 8.9 ± 0.5 87  S. Phosphorus (mg %) (mean ± s.d.)   Pre-op 1.4 ± 0.4 119   Post-op 3 ± 0.7 62  S. Alkaline phosphatase (U/L) (median (IQR)) 313 (200–420) 95  TMP/GFR (median (IQR)) 0.9 (0.6–1.3) 39  TRP (median (IQR)) 61 (46.2–72.2) 21  PTH (pg/mL) (median (IQR)) 55.9 (39.3–83.7) 73  1,25 (OH)2 vitamin D3 (pg/mL) (median (IQR)) 18 (8.2–26.2) 46 FGF-23 (Pre-op) (median (IQR))  X ULN 3.6 (1.8–6.8) 55  C-terminal (Ru/mL) 573 (234–1058) 33  Intact (pg/mL) 256 (131–393) 22 FGF-23 (Post-op)  C-terminal (Ru/mL) 69.3 (36.5–138) 18  Intact (pg/mL) 14 (5.9–50) 15 Tumor size (cm) (median (IQR)) 2.5 (1.8–3.2) 70 Localization imaging % (no.) 131  History and PE 16.7 (22)  X-ray 2.3 (3)  CT scan 25.9 (34)  MRI 10.6 (14)  Octreotide scintigraphy 20.6 (27)  FDG-PET/CT 8.4 (11)  Ga-DOTA-based PET/CT 11.4 (15)  Selective venous sampling of FGF-23 3.8 (5) Primary modality of treatment % (no.) 160  Surgery 97.5 (156)  Radiation therapy 1.2 (2)  Combined surgery + radiation therapy 1.2 (2)  Complete response to primary treatment % (no.) 80.4 (119) 148  Persistent disease % (no.) 13.5 (20) 148  Follow-up (months) 13 (5.2–36) 108  Recurrence % (no.) 7 (9) 128  Time to recurrence (months) (range) 2–204 (Continued) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13448:10 Complete surgical removal with wide margin of excision remains the cornerstone of management in these cases (3). This is particularly difficult in intracranial tumors resulting in persistent disease as noted in both our patients with intracranial tumors. S. Phosphorus and FGF-23 levels are used for post- operative surveillance. Half-life of FGF-23 is very short and one can document it immediately post-operatively (93). Persistent elevation of FGF-23 was noted post-operatively in two patients (cases 1 and 6), which normalized on re-evaluation after 3 months. This observation has been previously reported particularly with C-terminal FGF-23 assay (108, 109). Phosphate supplements are discontinued post-operatively to allow for surveillance. Reimaging is performed in patients with persistent symptoms and biochemically active disease. In recurrent or persistent cases, complete tumor removal resulted in cure in two patients, hence, this remains the preferred approach at our institute. In inoperable cases, two patients received external beam radiotherapy (EBRT) and one patient received peptide receptor radiotherapy (PRRT). In one patient (Case 2) EBRT was given after first surgery due to difficult tumor location at petrous apex. He had a gradual and complete response to RT over next 4 years. In another scenario (case 3), the patient had persistent disease after functional endoscopic sinus surgery (FESS) for left ethmoid sinus tumor. Following two repeat FESS, patient was considered for EBRT for persistent disease. Patient received IMRT 54 Gy in 30 fractions. S. Phosphorus and FGF-23 normalized gradually over one and half years and this patient who was previously bedbound is now walking without any support. One patient (case 5) in our cohort has received PRRT for persistent disease after two surgeries for base of skull tumor (113). As tumor was Ga-DOTATATE avid having Parameter Value No. of patients with available data Site wise persistence/recurrence % (no./no.)  Paranasal sinuses 14.4 (7/4) 76  Mandible 17.6 (6/0) 34  Intracranial 36.8 (4/3) 19  Maxilla 7.6 (1/0) 13  Oral cavity 33.3 (1/2) 10  Thyroid 100 (1) 1 Secondary modality of treatment % (no.) 26  Surgery 65.4 (17)  RT 30.8 (8)  Chemotherapy 7.7 (2)  Cinacalcet 7.7 (2)  Octreotide 7.7 (2)  Radiofrequency ablation 3.8 (1)  PRRT 3.8 (1)  Others 3.8 (1)  Metastasis % (no.) 2.7 (4) 148 Histopathology % (no.) 158  PMTMCT 48.7 (77)  PMT ossifying fibroma like 1.3 (2)  PMT mixed epithelial and connective tissue type 9.5 (15)  Malignant PMTMCT 3.2 (5)  Hemangiopericytoma 22.8 (36)  Giant cell tumor 3.2 (5)  Odontogenic fibroma 3.2 (5)  Glomangiopericytoma 2.5 (4)  Malignant schwannoma 0.6 (1)  Meningioma 0.6 (1)  Salivary basal cell adenoma 0.6 (1)  Ameloblastic fibrosarcoma 0.6 (1)  Primitive mesenchymal tumor 0.6 (1)  Arteriovenous hemangioma 0.6 (1)  Spindle cell tumor with PMT features 0.6 (1)  Cellular non-descript 0.6 (1)  Chronic inflammatory tissue with fibrosis and epithelial cell rests 0.6 (1) Table 3 Continued This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1345 PB–24 8:10 Krenning score IV, patient was considered for PRRT after a thorough discussion in a multidisciplinary meeting. This patient has stable disease after two cycles of PRRT with 150–200 uCi 177Lu-DOTATATE. PMTMCT remains the commonest histopathologic entity in these patients. We also reported one patient for each of the following: PMT-OF like, odontogenic fibroma and hemangiopericytoma in our cohort. Detailed histopathological findings for cases three, four and six have been published previously (114). Although the sample size of cohort 1 was small, the epidemiological data are similar to cohort 2. There is an increased prevalence of local symptoms at presentation and higher rate of persistence following primary surgery at our center. This could be attributed to referral bias to a tertiary care center. Cohort 2 Here we present a detailed review of published English literature for TIO cases involving head and neck region (n = 163) (5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109). This is the largest series of its kind published to date. Epidemiology As is the case with overall TIO literature, almost equal male:female ratio is reported in head and neck TIO patients (3). Middle age is the most common age at presentation and three pediatric cases are reported so far. TIO is a difficult diagnosis in pediatric patients as heritable hypophosphatemic rickets is a more likely diagnosis unless the tumor is evident. Fernández-Cooke et al. have reported a 3-year-old child with rickets and a jaw tumor. Two years went by before a link was established between the two and a diagnosis of TIO was made (80). In the case described by Reyes-Mugica et al. the heightened awareness of pediatric endocrinologist for this condition led to early screening with imaging and subsequent surgical removal resulting in cure within 6 weeks of onset of symptoms (25). In the third case reported by Wu et al. also the duration of hypophosphatemic symptoms was 2 years (102). The time from symptom onset to final diagnosis remains dreadfully long. In this series of cases of TIO involving head and neck region, only 10% (n = 14) were diagnosed in the first year of disease onset with majority of them having local symptoms at presentation. Feng et  al. observed a misdiagnosis rate of 95.1% with 240 case-times of misdiagnoses among 144 cases of TIO even in the presence of evident hypophosphatemia in 43.1% cases (115). Reasons cited for misdiagnosis were disease rarity, insidious onset, nonspecific clinical manifestations and poor recognition by the clinician. Presence of local compressive symptoms and/or swelling in approximately 50% patients in this review highlights the problem of delayed or missed diagnosis as musculoskeletal symptoms are ignored until presentation with advanced local symptoms. Biochemical profile The typical biochemical profile in TIO is straightforward: hypophosphatemia with normocalcemia, moderately elevated ALP, normal PTH, inappropriately normal-to- high urinary phosphate excretion, low serum 1,25 (OH)2 vitamin D3 and elevated FGF-23 levels (3). FGF-23 is useful as a tumor marker. Based on two case reports, half-life of FGF-23 is between 20–50 min (116, 117). More recently, Hana et al. reported half-life of FGF-23 to be 18.5 min in a patient with intracranial PMTMCT using intact FGF-23 assay (93). This allows FGF-23 to be used for intraoperative monitoring to determine the extent of tumor removal. Immediate post-op decline in FGF-23 levels within normal range is reported by other investigators (36, 47, 51, 59) as well. Elston et al. reported discordant increase in C-terminal FGF-23 post-op which has not been confirmed by other studies (36). As previously stated, persistent elevation in C-terminal FGF-23 in immediate post-operative period has been documented despite complete tumor removal (108, 109). With no reports on levels of other postulated phosphotonins like matrix extracellular phosphoglycoprotein (MEPE) and secreted frizzled-related protein 4 (SFRP4) in patients with TIO, their role still remains unclear (118). Location of tumor Most common site for TIO in head and neck region is paranasal sinuses. Among them, ethmoid sinuses are the most common site followed by maxillary, sphenoid and frontal sinuses. Most common tumors are PMTMCT, hemangiopericytoma and glomangiopericytoma, in descending order. The second most common site is bony tumors arising from the mandible and maxilla with This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13468:10 odontogenic fibroma and, PMT of mixed connective tissue and epithelial components as special tumor types. Third position is for intracranial tumors involving anterior cranial fossa, middle cranial fossa, and posterior cranial fossa, in descending order of prevalence. Reported tumors include PMTMCT, hemangiopericytoma and meningioma. Tumors of oral cavity include gingival tumors (molar/premolar), tongue and buccal vestibule in that order of occurrence. Apart from PMTMCT (including malignant) and hemangiopericytoma, tumors from this region also include giant cell tumor and ossifying fibroma. Rarely tumors have been reported from skull, parotid glands, posterior neck, infratemporal fossa, mastoid antrum, thyroid and vertebra. Localization imaging Classically, history of local compressive symptoms and/or visible mass on physical examination is instrumental in diagnosing TIO even in this current era of sensitive imaging modalities. Earlier clinicians were dependent on physical examination and x-rays for diagnosing TIO. Renton et  al., Nitzan et  al., and Nomura et  al. have localized head and neck TIO through x-rays alone (5, 7, 8). With the introduction of CT scans (1980–2000), 60% tumors in the head and neck region were localized with this modality. The first localization of head and neck TIO on MRI was reported by Avila et  al. in 1996 using MR skeletal survey (19). Following in vitro demonstration of somatostatin receptors (SSTRs) by Reubi et al. (119), scintigraphic studies using 111In-pentetreotide for tumor localization was published by De Beur et  al. in 2002 (120). Subsequently, localization with 99mTc-MIBI and FDG-PET scans was reported (121, 122). Use of FDG-PET was limited due to poor specificity of non-receptor-based imaging, and slow-growing nature of these tumors resulting in false- negative results (96). With improved spatial resolution, lower radiation dose and more rapid whole-body tomographic imaging of PET/CT studies in comparison to scintigraphy, 68Ga-DOTA-based PET/CT scans became the investigation modality of choice in TIO patients (112, 123). Various studies have shown superiority of 68Ga-DOTATATE PET/CT and 68Ga-DOTANOC PET/CT over FDG-PET/CT and Octreoscan for tumor localization in TIO (110, 111, 112). The largest such study is that of 54 patients by Zhang et al. using 68Ga-DOTATATE PET/CT reported 100% sensitivity and 90.9% specificity in lesion detection (124). Use of positron emitter radiotracer 68Ga enabling PET-based imaging along with higher affinity SSTR ligands like DOTATATE (SSTR 2>5) and DOTANOC (SSTR 2,3,5) are postulated to be responsible for enhanced sensitivity of 68Ga-DOTA-based PET/CT over Octreoscan (112). Thereafter, Singh et  al. highlighted the issue of multiple low-grade benign uptakes using 68Ga-DOTANOC PET/CT especially at fracture sites and described the use of SUVmax and anatomical imaging showing soft tissue component in the lesion to pinpoint the causal lesion (96). In summary, Ga-DOTA-based PET/CT is superior to other functional studies like FDG-PET and Octreoscan, but its utilization will depend on local availability and expertise (119). Selective venous sampling of FGF-23 has been studied for accurate localization of TIO. Kobayashi et  al. used selective venous sampling as an initial guiding modality localizing the tumor to right head and neck region, although on retrospect distortion of right external ear canal was noted and no prior functional imaging was done to localize the tumor (48). Andreopoulou et  al. reported sensitivity of 87% and specificity of 71% at FGF-23 concentration ratio of 1.6 between the venous drainage of the tumor bed and general circulation after sampling 17 major veins and their branches (60). They concluded that selective venous sampling is not useful in the absence of suspicious lesion on imaging studies and its use should be limited to cases with multiple suspicious sites or before resection in anatomically challenging cases. In 2017, Lee et  al. reported contrasting results. In their cohort, five patients negative on both 111Indium- octreotide scintigraphy and FDG-PET/CT were subjected to selective blood sampling from 10 to 14 sites (90). They identified the culprit lesion on follow-up with targeted MRI or whole-body Ga-DOTATOC in four patients. Tarasova et  al. and Shober et  al. have used selective venous FGF-23 sampling to confirm the SSTR expressing meningioma to be the FGF-23 secreting culprit lesion as many meningiomas are avid on SSTR-based imaging but may not be the source of FGF-23 (73). In summary, in the current era of SSTR-based imaging, the role of this modality seems to be limited to cases with multiple suspicious uptake sites, intracranial lesions consistent with meningioma, and lastly in imaging negative cases to identify a target for focused follow-up imaging. Treatment Primary modality Complete surgical resection with adequate wide margin remains the treatment of choice in these tumors (3). This is supported in head and neck TIO cases where anatomical This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1347 PB–24 8:10 sites less amenable for this approach have higher persistence or recurrence rate for example intracranial tumors. Hana et  al. also reiterated this principle in their report on recurrent anterior skull base tumor with enbloc tumor removal followed by filling of the large skull base defect with pedicle subgaleal flap resulting in absence of recurrence over 25-month follow-up (93). Stereotactic radiotherapy has been described in two cases as primary modality. Both patients had frontal lobe tumors and both refused surgery. One patient had lower plasma FGF-23 and oral phosphorous requirement at 6-month follow-up. The details of RT are not described in this case report (60). The second patient received 60 Gy of fractionated stereotactic radiotherapy over 5 weeks (73). On follow-up, patient was off phosphorus supplement and had normal FGF-23 concentration after 4 years. The tumor was stable with areas of multiple small hemorrhages. BMD improved by approximately 50% with no evident new fracture. As the tumors are slow growing, radiotherapy is deemed to be less effective (3). Surgery combined with adjuvant post-op radiotherapy was used by John et  al. in a case of invasive ‘malignant schwannoma’ (27). Over 2.5 years of follow-up, serum phosphorus normalized but 1,25(OH) vitamin D3 was persistently low. MRI showed no evidence of residual/recurrent tumor. Similarly, Lee et  al. described a case where the patient received post-operative radiotherapy following incomplete removal of an ethmoid tumor, which resulted in normal serum phosphorus with no residual tumor on MRI after completion of RT (90). In summary, although complete surgical excision remains the treatment modality of choice, in rare cases radiation therapy can be used with an expectant slow response. Persistent/recurrent disease Persistent/recurrent disease signifies failure of complete resection of the tumor after primary excision. This occurs more commonly in intracranial disease and oral cavity lesions where enbloc tumor removal is challenging and leads to higher surgical morbidity and complications. Serial biochemical follow-up is essential as true recurrences after complete biochemical resolution are known, but usually it is the recurrence of symptoms which brings the disease to surface. After anatomic imaging to confirm the site of tumor recurrence, re-exploration of the surgical site along with attempted enbloc removal remains the preferred approach. Out of eleven patients with persistent/recurrent disease who have ANED on follow-up, eight have been treated with re-surgery alone. In persistent cases multiple re-surgeries, radiotherapy, cinacalcet and octeotride have been used with limited success. Seufert et al. reported a patient with left thigh TIO localized on octreotide scinitigraphy having complete resolution of phosphaturia and normalization of serum phosphorus with 50–100 µg of octreotide thrice a day in preoperative setting (125). However, this initial success has not been replicated in subsequent studies (34, 126). Extrapolating from patients with hypoparathyroidism with elevated FGF-23 and serum phosphorus levels, Gellers et  al. advocated for the use of cinacalcet in the treatment of TIO (127). But development of hypercalciuria and hypocalcemia limits the use of cinacalcet in this cohort. Disease stability with dasatinib has been reported (55). As these tumors also express SSTR, PRRT remains a potentially useful option in tumors showing Krenning III/IV uptake on 68Ga-DOTATATE PET/CT (113). It has been more than a decade of successful utilization of two radiopeptides 90Y-DOTATOC and 177Lu-DOTATATE for treatment of advanced neuroendocrine tumors (NETs) (128). After binding to SSTR these peptides are internalized in tumor cells and the released breakdown products in lysosomes mediate radioactivity-induced local damage (128). Apart from our case, we could not find any other experience with PRRT in TIO literature. In patients with persistent disease, treatment with oral phosphate supplements and calcitriol is continued for symptomatic improvement. Metastases Four cases of malignant TIO in head and neck region are reported so far. Three of them originated from oral cavity and one from mandible. Uramoto et  al. described a case of malignant PMTMCT involving tongue with lymph node metastases treated with two surgeries followed by radiation therapy with persistent disease on last follow-up (39). Bergwitz et  al. reported a patient with ameloblastic fibrosarcoma of mandible with pulmonary and lymph node metastases (61). Patient had multiple recurrences and was managed with repeated surgeries, and lastly cinacalcet with persistent hypophosphatemia. Fatani et al. reported an interesting case of malignant PMTMCT arising from oral cavity who after 17 years of follow-up developed lung metastases which were resected in addition to multiple surgeries for primary disease (71). Patient was normophosphatemic on follow-up. The fourth case of malignant PMTMCT was reported by Wasserman et al. (84). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13488:10 The tumor involved nose, lip and mouth. No further follow-up/management details have been reported. Histopathology Weidner et  al. initially proposed the term phosphaturic mesenchymal tumors (PMT) and their classification into four distinct subtypes: (I) mixed connective tissue variant (MCT), (II) osteoblastoma like, (III) Non-ossifying fibroma type, (IV) ossifying fibroma like (129). In 2004, Folpe et  al. reviewed all previously published cases and found that they all belong to PMTMCT category (10). In this review we have reported the revised diagnosis as mentioned by Folpe et  al. In 2018, Wu et  al. described a new entity called “PMT mixed epithelial and connective tissue type” which is found exclusively in alveolar bone of maxilla and mandible (102). They found this tumor to be common in males and in patients <40 years of age. They have proposed a revised diagnosis of previously published six cases to this new entity, but we have reported them according to the original report. Apart from PMTs, other reported tumors in head and neck region causing TIO include meningioma, salivary basal cell adenoma, malignant schwannoma, ameloblastic fibrosarcoma, and spindle cell tumor with PMT features. Study limitations To our knowledge this is the largest review of TIO due to tumors located in head and neck region till date. The per- patient analysis method used in this study with minute detailing of all clinically relevant published aspects is the major strength of this study. There are several limitations in this study. As the review is a retrospective analysis of published case reports, all the limitations pertaining to retrospective studies apply to it. Additionally, many case reports lacked important clinical details as majority of them focused on pathology or imaging. A meticulous attempt was made to include all published literature regarding the subject but a few studies may not have been included. Summary TIO in the head and neck region is a rare disorder that warrants management by a multidisciplinary team including an endocrinologist, head and neck surgeon, radiologist, nuclear physicist and pathologist. Low phosphorus with elevated FGF-23 levels in a patient with clinical features of osteomalacia and/or mass in the head and neck region should be evaluated with Ga-DOTA- based PET/CT imaging. An alternative approach would be anatomical imaging followed by biopsy in a patient with local symptoms and clinically apparent swelling. Complete surgical excision with wide margin is of utmost importance in these cases resulting in dramatic clinical and biochemical normalcy. Clinical and biochemical follow-up is necessary even after documented cure as true recurrences have been reported. Whenever complete excision is not achieved, repeat surgical excision is recommended for accessible disease burden. In inoperable cases, radiotherapy, PRRT and medical management are suitable alternatives which should be decided by a multidisciplinary team on an individual basis. Although the tumor remains benign in most cases, one must remain vigilant in case of long-standing disease due to the reported risk of metastasis. Histopathological examination in most cases reveals PMTMCT, but other types are also seen. Declaration of interest The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. Funding This research has been supported by Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India and Diamond Jubilee Society Trust (DJST), KEM Hospital, Mumbai, India. References 1 Drezner MK. Tumor-induced osteomalacia. In Primer on Metabolic Bone Diseases and Disorders of Mineral Metabolism, 4th ed., ch 74, pp 331–337. Ed. MJ Favus. Philadelphia, PA, USA: Lippincott-Raven, 1999. 2 McCance R. Osteomalacia with Loosers nodes (Milkman’s syndrome) due a raised resistance to vitamin D acquired about the age of 15 years. Quarterly Journal of Medicine 1947 16 33–46. 3 Chong WH, Molinolo AA, Chen CC & Collins MT. Tumor-induced osteomalacia. Endocrine-Related Cancer 2011 18 R53–R77. (https://doi. org/10.1530/ERC-11-0006) 4 Jiang Y, Xia WB, Xing XP, Silva BC, Li M, Wang O, Zhang HB, Li F, Jing HL, Zhong DR, et al. Tumor‐induced osteomalacia: an important cause of adult‐onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. Journal of Bone and Mineral Research 2012 27 1967–1975. (https://doi.org/10.1002/ jbmr.1642) 5 Renton P & Shaw DG. Hypophosphatemic osteomalacia secondary to vascular tumous of bone and soft tissue. Skeletal Radiology 1976 1 21–24. (https://doi.org/10.1007/BF00347723) 6 Sweet RA, Males JL, Hamstra AJ & DeLuca HF. Vitamin D metabolite levels in oncogenic osteomalacia. Annals of Internal Medicine 1980 93 279–280. (https://doi.org/10.7326/0003-4819-93-2-279) 7 Nitzan DW, Marmary Y & Azaz B. Mandibular tumor-induced muscular weakness and osteomalacia. Oral Surgery, Oral Medicine, and Oral Pathology 1981 52 253–256. (https://doi.org/10.1016/0030- 4220(81)90257-7) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://doi.org/10.1530/ERC-11-0006 https://doi.org/10.1530/ERC-11-0006 https://doi.org/10.1002/jbmr.1642 https://doi.org/10.1002/jbmr.1642 https://doi.org/10.1007/BF00347723 https://doi.org/10.7326/0003-4819-93-2-279 https://doi.org/10.1016/0030-4220(81)90257-7 https://doi.org/10.1016/0030-4220(81)90257-7 https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1349 PB–24 8:10 8 Nomura G, Koshino Y, Morimoto H, Kida H, Nomura S & Tamai K. Vitamin D resistant hypophosphatemic osteomalacia associated with osteosarcoma of the mandible: report of a case. Japanese Journal of Medicine 1982 21 35–39. (https://doi.org/10.2169/ internalmedicine1962.21.35) 9 Linsey M, Smith W, Yamauchi H & Bernstein L. Nasopharyngeal angiofibroma presenting as adult osteomalacia: case report and review of the literature. Laryngoscope 1983 93 1328–1331. (https:// doi.org/10.1002/lary.1983.93.10.1328) 10 Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, Econs MJ, Inwards CY, Jan de Beur SM, Mentzel T, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. American Journal of Surgical Pathology 2004 28 1–30. (https://doi.org/10.1097/00000478-200401000-00001) 11 Seshadri MS, Cornish CJ, Mason RS & Posen S. Parathyroid hormone like bioactivity in tumours from patients with oncogenic osteomalacia. Clinical Endocrinology 1985 23 689–697. (https://doi. org/10.1111/j.1365-2265.1985.tb01130.x) 12 Jefferis AF, Taylor PCA & Walsh-Waring GP. Tumour associated hypophosphatemic osteomalacia occurring in a patient with an odontogenic tumour of the maxilla. Journal of Laryngology and Otology 1985 99 1011–1017. (https://doi.org/10.1017/s0022215100098091) 13 Weidner N, bar RS, Weiss D & Strottmann MP. Neoplastic pathology of oncogenic osteomalacia/rickets. Cancer 1985 55 1691–1705. (https://doi.org/10.1002/1097-0142(19850415)55:8<1691::aid- cncr2820550814>3.0.co;2-s) 14 Lee HK, Sung WW, Solodnik P & Shimshi M. Bone scan in tumour- induced osteomalacia. Journal of Nuclear Medicine 1995 36 247–249. 15 Catalano PJ, Brandwein M, Shah DK, Urken ML, Lawson W & Biller HF. Sinonasal hemangiopericytomas: a clinicopathologic and immunohistochemical study of seven cases. Head and Neck 1996 18 42–53. (https://doi.org/10.1002/(SICI)1097- 0347(199601/02)18:1<42::AID-HED6>3.0.CO;2-Z) 16 Wilkins GE, Granleese S, Hegele RG, Holden J, Anderson DW & Bondy GP. Oncogenic osteomalacia: evidence for a humoral phosphaturic factor. Journal of Clinical Endocrinology and Metabolism 1995 80 1628–1634. (https://doi.org/10.1210/jcem.80.5.7745010) 17 David K, Revesz T, Kratimenos G, Krausz T & Crockard HA. Oncogenic osteomalacia associated with a meningeal phosphaturic mesenchymal tumour. Journal of Neurologicalsurgery 1996 84 288–292. 18 Kim YG, Choi YS, Lee SC & Ryu DM. Tumour-induced osteomalacia associated with lesions in the oral and maxillofacial region: report of two cases. Journal of Oral and Maxillofacial Surgery 1996 54 1352–1357. (https://doi.org/10.1016/s0278-2391(96)90497-8) 19 Avila NA, Skarulis M, Rubino DM & Doppman JL. Oncogenic osteomalacia: lesion detection by MR skeletal survey. American Journal of Roentgenology 1996 167 343–345. (https://doi.org/10.2214/ ajr.167.2.8686600) 20 Yang IM, Park YK, Hyun YJ, Kim DY, Woo JT, Kim SW, Kim JW, Kim YS & Choi YK. Oncogenic osteomalacia caused by a phosphaturic mesenchymal tumour of the oral cavity: a case report. Korean Journal of Internal Medicine 1997 12 89–95. (https://doi. org/10.3904/kjim.1997.12.1.89) 21 Gonzalez-Compta X, Manos-Pujol M, Foglia-Fernandez M, Peral E, Condom E, Claveguera T & Dicenta-Sousa M. Oncogenic osteomalacia: case report and review of head and neck associated tumours. Journal of Laryngology and Otology 1998 112 389–392. (https://doi.org/10.1017/s0022215100140551) 22 Ohashi K, Ohnishi T, Ishikawa T, Tani H, Uesugi K & Takagi M. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia. Skeletal Radiology 1999 28 46–48. (https://doi.org/10.1007/ s002560050471) 23 Clunie GPR, Fox PE & Stamp TCB. Four cases of acquired hypophosphatemic (oncogenic) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatology 2000 39 1415–1421. (https://doi.org/10.1093/ rheumatology/39.12.1415) 24 Sandhu FA & Martuza RL. Craniofacial hemangiopericytoma associated with oncogenic osteomalacia: case report. Journal of Neuro-Oncology 2000 46 241–247. (https://doi. org/10.1023/a:1006352106762) 25 Reyes-Mugica M, Arnsmeier SL, Backeljauw PF, Persing J, Ellis B & Carpenter TO. Phosphaturic mesenchymal tumour-induced rickets. Pediatric and Developmental Pathology 2000 3 61–69. (https://doi. org/10.1007/s100240050008) 26 Kawai Y, Morimoto S, Sakaguchi K, Yoshino H, Yotsui T, Hirota S, Inohara H, Nakagawa T, Hattori K, Kubo T, et al. Oncogenic osteomalacia secondary to nasal tumour with decreased urinary excretion of cAMP. Journal of Bone and Mineral Metabolism 2001 19 61–64. (https://doi.org/10.1007/s007740170062) 27 John MR, Wickert H, Zaar K, Jonsson KB, Grauer A, Ruppersberger P, Schmidt-Gayk H, Murer H, Ziegler R & Blind E. A case of neuroendocrine oncogenic osteomalacia associated with a PHEX and fibroblast growth factor-23 expressing sinusoidal malignant schwannoma. Bone 2001 29 393–402. (https://doi.org/10.1016/ s8756-3282(01)00586-5) 28 Reis-Filho JS, Paiva ME & Lopes JM. August 2003: 47-year-old female with a 7-year history of osteomalacia and hypophosphatemia. Brain Pathology 2004 14 111–112, 115. (https://doi. org/10.1111/j.1750-3639.2004.tb00505.x) 29 Fuentealba C, Pinto D, Ballesteros F, Pacheco D, Boettiger O, Soto N, Fernandez W, Gabler F, Gonzales G & Reginato AJ. Oncogenic hypophosphatemic osteomalacia associated with a nasal hemangiopericytoma. Journal of Clinical Rheumatology 2003 9 373–379. (https://doi.org/10.1097/01.rhu.0000101906.15276.ed) 30 Ungari C, Rocchi G, Rinna C, Agrillo A, Lattanzi A & Pagnoni M. Hypophosphaturic mesenchymal tumour of the ethmoid associated with oncogenic osteomalacia. Journal of Craniofacial Surgery 2004 15 523–527. 31 Dupond JL, Mahammedi H, Magy N, Blagosklonov O, Meaux- Ruault N & Kantelip B. Detection of a mesenchymal tumor responsible for hypophosphatemic osteomalacia using FDG-PET. European Journal of Internal Medicine 2005 16 445–446. (https://doi. org/10.1016/j.ejim.2005.07.003) 32 Kaylie DM, Jackson CG & Gardner EK. Oncogenic osteomalacia caused by phosphaturic mesenchymal tumor of the temporal bone. Otolaryngology–Head and Neck Surgery 2006 135 653–654. (https://doi. org/10.1016/j.otohns.2005.03.086) 33 Inokuchi G, Tanimoto H, Ishida H, Sugimoto T, Yamauchi M, Miyauchi A & Nibu K. A paranasal tumor associated with tumor- induced osteomalacia. Laryngoscope 2006 116 1930–1933. (https:// doi.org/10.1097/01.mlg.0000231295.67060.89) 34 Yoshioka K, Nagata R, Ueda M, Yamaguchi T, Konishi Y, Hosoi M, Inoue T, Yamanaka K, Iwai Y & Sato T. Phosphaturic mesenchymal tumor with symptoms related to osteomalacia that appeared one year after tumorectomy. Internal Medicine 2006 45 1157–1160. (https://doi.org/10.2169/internalmedicine.45.1797) 35 Koriyama N, Nishimoto K, Kodama T, Nakazaki M, Kurono Y, Yoshida H & Tei C. Oncogenic osteomalacia in a case with a maxillary sinus mesenchymal tumor. American Journal of the Medical Sciences 2006 332 142–147. (https://doi.org/10.1097/00000441- 200609000-00010) 36 Elston MS, Stewart IJ, Clifton-Bligh R & Conaglen JV. A case of oncogenic osteomalacia with preoperative secondary hyperparathyroidism: description of the biochemical response of FGF23 to octreotide therapy and surgery. Bone 2007 40 236–241. (https://doi.org/10.1016/j.bone.2006.07.027) 37 Beech TJ, Rokade A, Gittoes N & Johnson AP. A hemangiopericytoma of the ethmoid sinus causing oncogenic osteomalacia: a case report and review of the literature. International Journal of Oral and This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://doi.org/10.2169/internalmedicine1962.21.35 https://doi.org/10.2169/internalmedicine1962.21.35 https://doi.org/10.1002/lary.1983.93.10.1328 https://doi.org/10.1002/lary.1983.93.10.1328 https://doi.org/10.1097/00000478-200401000-00001 https://doi.org/10.1111/j.1365-2265.1985.tb01130.x https://doi.org/10.1111/j.1365-2265.1985.tb01130.x https://doi.org/10.1017/s0022215100098091 https://doi.org/10.1002/1097-0142(19850415)55:8<1691::aid-cncr2820550814>3.0.co;2-s https://doi.org/10.1002/1097-0142(19850415)55:8<1691::aid-cncr2820550814>3.0.co;2-s https://doi.org/10.1002/(SICI)1097-0347(199601/02)18:1<42::AID-HED6>3.0.CO;2-Z https://doi.org/10.1002/(SICI)1097-0347(199601/02)18:1<42::AID-HED6>3.0.CO;2-Z https://doi.org/10.1210/jcem.80.5.7745010 https://doi.org/10.1016/s0278-2391(96)90497-8 https://doi.org/10.2214/ajr.167.2.8686600 https://doi.org/10.2214/ajr.167.2.8686600 https://doi.org/10.3904/kjim.1997.12.1.89 https://doi.org/10.3904/kjim.1997.12.1.89 https://doi.org/10.1017/s0022215100140551 https://doi.org/10.1007/s002560050471 https://doi.org/10.1007/s002560050471 https://doi.org/10.1093/rheumatology/39.12.1415 https://doi.org/10.1093/rheumatology/39.12.1415 https://doi.org/10.1023/a:1006352106762 https://doi.org/10.1023/a:1006352106762 https://doi.org/10.1007/s100240050008 https://doi.org/10.1007/s100240050008 https://doi.org/10.1007/s007740170062 https://doi.org/10.1016/s8756-3282(01)00586-5 https://doi.org/10.1016/s8756-3282(01)00586-5 https://doi.org/10.1111/j.1750-3639.2004.tb00505.x https://doi.org/10.1111/j.1750-3639.2004.tb00505.x https://doi.org/10.1097/01.rhu.0000101906.15276.ed https://doi.org/10.1016/j.ejim.2005.07.003 https://doi.org/10.1016/j.ejim.2005.07.003 https://doi.org/10.1016/j.otohns.2005.03.086 https://doi.org/10.1016/j.otohns.2005.03.086 https://doi.org/10.1097/01.mlg.0000231295.67060.89 https://doi.org/10.1097/01.mlg.0000231295.67060.89 https://doi.org/10.2169/internalmedicine.45.1797 https://doi.org/10.1097/00000441-200609000-00010 https://doi.org/10.1097/00000441-200609000-00010 https://doi.org/10.1016/j.bone.2006.07.027 https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13508:10 Maxillofacial Surgery 2007 36 956–958. (https://doi.org/10.1016/j. ijom.2007.03.005) 38 Ahn JM, Kim HJ, Cha CM, Kim J, Yim SG & Kim HJ. Oncogenic osteomalacia: induced by tumour, cured by surgery. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2007 103 636–641. (https://doi.org/10.1016/j.tripleo.2005.12.027) 39 Uramoto N, Furukawa M & Yoshizaki T. Malignant phosphaturic mesenchymal tumor, mixed connective tissue variant of the tongue. Auris, Nasus, Larynx 2009 36 104–105. (https://doi.org/10.1016/j. anl.2008.01.003) 40 Lewiecki EM, Urig EJ & Williams RC. Tumor-induced osteomalacia: lessons learned. Arthritis and Rheumatism 2008 58 773–777. (https:// doi.org/10.1002/art.23278) 41 Kenealy H, Holdaway I & Grey A. Occult nasal sinus tumours causing oncogenic osteomalacia. European Journal of Internal Medicine 2008 19 516–519. (https://doi.org/10.1016/j.ejim.2008.01.011) 42 Yun KI, Kim DH & Pyo SW. A phosphaturic mesenchymal tumor of the floor of the mouth with oncogenic osteomalacia: report of a case. Journal of Oral and Maxillofacial Surgery 2009 67 402–405. (https:// doi.org/10.1016/j.joms.2008.01.007) 43 Woo VL, Landesberg R, Imel EA, Singer SR, Folpe AL, Econs MJ, Kim T, Harik LR & Jacobs TP. Phosphaturic mesenchymal tumor, mixed connective tissue variant, of the mandible: report of a case and review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2009 108 925–932. (https:// doi.org/10.1016/j.tripleo.2009.07.005) 44 Savage CR & Zimmer LA. Oncogenic osteomalacia from pterygopalatine fossa mass. Journal of Laryngology and Otology 2009 123 1052–1054. (https://doi.org/10.1017/S0022215109004927) 45 Kurien R, Manipadam MT & Rupa V. Oncogenic osteomalacia in a patient with an ethmoid sinus tumour. Journal of Laryngology and Otology 2010 124 799–803. (https://doi.org/10.1017/ S0022215109992313) 46 Gupta R, Sharma A, Ksh A, Khadgawat R & Dinda AK. Phosphaturic mesenchymal tumour of the sinonasal tract. Acta Endocrinologica (Bucharest) 2009 5 537–541. (https://doi.org/10.4183/aeb.2009.537) 47 Gore MO, Welch BJ, Geng W, Kabbani W, Maalouf NM, Zerwekn JE, Moe OW & Sakhaee K. Renal phosphate wasting due to tumor- induced osteomalacia: a frequently delayed diagnosis. Kidney International 2009 76 342–347. (https://doi.org/10.1038/ ki.2008.355) 48 Kobayashi K, Nakao K, Kawai K, Ito K, Hukumoto S, Asakage T, Oota S & Motoi R. Tumor-induced osteomalacia originating from the temporal bone: a case report. Head and Neck 2011 33 1072–1075. (https://doi.org/10.1002/hed.21355) 49 Shelekhova KV, Kazakov DV & Michal M. Sinonasal phosphaturic mesenchymal tumor (mixed connective tissue variant): report of 2 cases. American Journal of Surgical Pathology 2010 34 596–597. (https://doi.org/10.1097/PAS.0b013e3181d594fa) 50 Pedrazzoli M, Colletti G, Ferrari M, Rossetti G, Moneghini L & Autelitano L. Mesenchymal phosphaturic neoplasm in the maxillary sinus: a case report. International Journal of Oral and Maxillofacial Surgery 2010 39 1027–1032. (https://doi.org/10.1016/j. ijom.2010.04.039) 51 Mori Y, Ogasawara T, Motoi T, Shimizu Y, Chikazu D, Tamura K, Fukumoto S & Takato T. Tumor-induced osteomalacia associated with a maxillofacial tumor producing fibroblast growth factor 23: report of a case and review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2010 109 e57–e63. (https:// doi.org/10.1016/j.tripleo.2009.10.052) 52 Parshwanath HA, Kulkarni PR, Rao R, Joshi SK & Patil P. Phosphaturic mesenchymal tumor of ethmoid sinus. Indian Journal of Pathology and Microbiology 2010 53 384–385. (https://doi.org/10.4103/0377- 4929.64317) 53 Battoo AJ, Salih S, Unnikrish AG, Jojo A, Bahadur S, Iyer S & Kuriakose MA. Oncogenic osteomalacia from nasal cavity giant cell tumor. Head and Neck 2012 34 454–457. (https://doi. org/10.1002/hed.21562) 54 Arnaoutakis D & Naseri I. Sinonasal phosphaturic mesenchymal tumor: a rare and misinterpreted entity. Journal of Neurological Surgery Reports 2015 76 e233–e238. (https://doi. org/10.1055/s-0035-1562852) 55 Peters KB, McLendon R, Morse MA & Vredenburgh JJ. Treatment of recurrent intracranial hemangiopericytoma with SRC-related tyrosine kinase targeted therapy: a case report. Case Reports in Oncology 2010 3 93–97. (https://doi.org/10.1159/000307468) 56 Akhter M, Sugrue PA, Bains R & Khavkin YA. Oncogenic osteomalacia of the cervical spine: a rare case of curative resection and reconstruction. Journal of Neurosurgery. Spine 2011 14 453–456. (https://doi.org/10.3171/2010.11.SPINE09750) 57 Xian-Ling W, Jian-Ming B, Wen-wen Z, Zhao-Hui L, Jing-Tao D, Ju-Ming L & Yi-Ming M. Osteomalacia caused by tumors in facies cranii mimicking rheumatoid arthritis. Rheumatology International 2012 32 2573–2576. (https://doi.org/10.1007/s00296-011-2018-4) 58 Guglielmi G, Bisceglia M, Scillitani A & Folpe AL. Oncogenic osteomalacia due to phosphaturic mesenchymal tumor of the craniofacial sinuses. Clinical Cases in Mineral and Bone Metabolism 2011 8 45–49. 59 Uno T, Kawai K, Kunii N, Fukumoto S, Shibahara J, Motoi T & Saito N. Osteomalacia caused by skull base tumors: report of 2 cases. Neurosurgery 2011 69 E239–E244; discussion E244. (https://doi. org/10.1227/NEU.0b013e31821867f7) 60 Andreupoulou P, Dumitrescu CE, Kelly MH, Brillante BA, Peck CMC, Wodajo FM, Chang R & Collins MT. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. Journal of Bone and Mineral Research 2011 6 1295–1302. 61 Bergwitz C, Collins MT, Kamath RS & Rosenberg AE. Case 33–2011: a 56-year-old man with hypophosphatemia. New England Journal of Medicine 2011 365 1625–1635. (https://doi.org/10.1056/ NEJMcpc1104567) 62 Monappa V, Naik AM, Mathew M, Rao L, Rao SK, Ramachandra L & Padmapriya J. Phosphaturic mesenchymal tumour of the mandible – the useful criteria for a diagnosis on fine needle aspiration cytology. Cytopathology 2014 25 54–56. (https://doi.org/10.1111/ cyt.12030) 63 Chokyu I, Ishibashi K, Goto T & Ohata K. Oncogenic osteomalacia associated with mesenchymal tumor in the middle cranial fossa: a case report. Journal of Medical Case Reports 2012 6 181. (https://doi. org/10.1186/1752-1947-6-181) 64 Chiam P, Tan HC, Bee YM & Chandran M. Oncogenic osteomalacia – hypophosphatemic spectrum from benignancy to malignancy. Bone 2013 53 182–187. (https://doi.org/10.1016/j.bone.2012.11.040) 65 Cho S, Do NY, Yu SW & Choi JY. Nasal hemangiopericytoma causing oncogenic osteomalacia. Clinical and Experimental Otolaryngology 2012 3 173–176. 66 Burnand H, Samuels A, Hagan I, Sawant N & Mutimer J. Bilateral subtrochanteric fractures in tumor-induced osteomalacia caused by a nasal hemangiopericytoma. Hip International 2012 22 227–229. (https://doi.org/10.5301/HIP.2012.9235) 67 Brandwein-Gensler M & Siegal GP. Striking pathology gold: a singular experience with daily reverberations: sinonasal hemangiopericytoma (glomangiopericytoma) and oncogenic osteomalacia. Head and Neck Pathology 2012 6 64–74. (https://doi.org/10.1007/s12105-012-0337-8) 68 Munoz J, Ortega RM, Celzo F & Donthireddy V. Tumour-induced osteomalacia. BMJ Case Reports 2012 2012 bcr0320125975. (https:// doi.org/10.1136/bcr.03.2012.5975) 69 Chang CV, Conde SJ, Luvizotto RAM, Nunes VS, Bonates MC, Felicio AC, Lindsey SC, Moraes FH, Tagliarini JV, Mazeto GMFS, et al. Oncogenic osteomalacia: loss of hypophosphatemia might be the key to avoid misdiagnosis. Arquivos Brasileiros de Endocrinologia e Metabologia 2012 56 570–573. (https://doi.org/10.1590/S0004- 27302012000800018) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://doi.org/10.1016/j.ijom.2007.03.005 https://doi.org/10.1016/j.ijom.2007.03.005 https://doi.org/10.1016/j.tripleo.2005.12.027 https://doi.org/10.1016/j.anl.2008.01.003 https://doi.org/10.1016/j.anl.2008.01.003 https://doi.org/10.1002/art.23278 https://doi.org/10.1002/art.23278 https://doi.org/10.1016/j.ejim.2008.01.011 https://doi.org/10.1016/j.joms.2008.01.007 https://doi.org/10.1016/j.joms.2008.01.007 https://doi.org/10.1016/j.tripleo.2009.07.005 https://doi.org/10.1016/j.tripleo.2009.07.005 https://doi.org/10.1017/S0022215109004927 https://doi.org/10.1017/S0022215109992313 https://doi.org/10.1017/S0022215109992313 https://doi.org/10.4183/aeb.2009.537 https://doi.org/10.1038/ki.2008.355 https://doi.org/10.1038/ki.2008.355 https://doi.org/10.1002/hed.21355 https://doi.org/10.1097/PAS.0b013e3181d594fa https://doi.org/10.1016/j.ijom.2010.04.039 https://doi.org/10.1016/j.ijom.2010.04.039 https://doi.org/10.1016/j.tripleo.2009.10.052 https://doi.org/10.1016/j.tripleo.2009.10.052 https://doi.org/10.4103/0377-4929.64317 https://doi.org/10.4103/0377-4929.64317 https://doi.org/10.1002/hed.21562 https://doi.org/10.1002/hed.21562 https://doi.org/10.1055/s-0035-1562852 https://doi.org/10.1055/s-0035-1562852 https://doi.org/10.1159/000307468 https://doi.org/10.3171/2010.11.SPINE09750 https://doi.org/10.1007/s00296-011-2018-4 https://doi.org/10.1227/NEU.0b013e31821867f7 https://doi.org/10.1227/NEU.0b013e31821867f7 https://doi.org/10.1056/NEJMcpc1104567 https://doi.org/10.1056/NEJMcpc1104567 https://doi.org/10.1111/cyt.12030 https://doi.org/10.1111/cyt.12030 https://doi.org/10.1186/1752-1947-6-181 https://doi.org/10.1186/1752-1947-6-181 https://doi.org/10.1016/j.bone.2012.11.040 https://doi.org/10.5301/HIP.2012.9235 https://doi.org/10.1007/s12105-012-0337-8 https://doi.org/10.1136/bcr.03.2012.5975 https://doi.org/10.1136/bcr.03.2012.5975 https://doi.org/10.1590/S0004-27302012000800018 https://doi.org/10.1590/S0004-27302012000800018 https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1351 PB–24 8:10 70 Jiang Y, Xia WB, Xing XP, Silva BC, Li M, Wang O, Zhang HB, Li F, Jing HL, Zhong DR, et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. Journal of Bone and Mineral Research 2012 27 1967–1975. (https://doi.org/10.1002/ jbmr.1642) 71 Fatani HA, Sunbuli M, Lai SY & Bell D. Phosphaturic mesenchymal tumor: a report of 6 patients treated at a single institution and comparison with reported series. Annals of Diagnostic Pathology 2013 17 319–321. (https://doi.org/10.1016/j.anndiagpath.2012.06.005) 72 Mathis DA, Stehel EJ, Beshay JE, Mickey BE, Folpe AL & Raisanen J. Intracranial phosphaturic mesenchymal tumors: report of 2 cases. Journal of Neurosurgery 2013 118 903–907. (https://doi. org/10.3171/2012.12.JNS12598) 73 Tarasova VD, Trepp-Carrasco AG, Thompson R, Recker RR, Chong WH, Collins MT & Armas LA. Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy. Journal of Clinical Endocrinology and Metabolism 2013 98 4267–4272. (https://doi.org/10.1210/jc.2013-2528) 74 Papierska L, Ćwikła JB, Misiorowski W, Rabijewski M, Sikora K & Wanyura H. Unusual case of phosphaturic mesenchymal tumor. Polskie Archiwum Medycyny Wewnetrznej 2013 123 255–256. (https:// doi.org/10.20452/pamw.1738) 75 Lee GG, Dhong HJ, Park YS & Ko YH. Sinonasal glomangiopericytoma causing oncogenic osteomalacia. Clinical and Experimental Otorhinolaryngology 2014 7 145–148. (https://doi. org/10.3342/ceo.2014.7.2.145) 76 Allevi F, Rabbiosi D, Mandala M & Colletti G. Mesenchymal phosphaturic tumour: early detection of recurrence. BMJ Case Reports 2014 2014 bcr2013202827. (https://doi.org/10.1136/bcr-2013- 202827) 77 Annamalai AK, Sampathkumar K, Kane S, Shetty NS, Kulkarni S, Rangarajan V, Purandare N, Pai PS, Mahuvakar AD, Shanthi R, et al. Needles in the haystack – synchronous multifocal tumor-induced osteomalacia. Journal of Clinical Endocrinology and Metabolism 2016 101 390–393. (https://doi.org/10.1210/jc.2015-3854) 78 Okamiya T, Takahashi K, Kamada H, Hirato J, Motoi T, Fukumoto S & Chikamatsu K. Oncogenic osteomalacia caused by an occult paranasal sinus tumor. Auris, Nasus, Larynx 2015 42 167–169. (https://doi.org/10.1016/j.anl.2014.10.001) 79 Mok Y, Lee JC, Lum JHY & Petersson F. From epistaxis to bone pain – report of two cases illustrating the clinicopathological spectrum of phosphaturic mesenchymal tumor with fibroblast growth factor receptor 1 immunohistochemical and cytogenetic analyses. Histopathology 2016 68 925–930. (https://doi.org/10.1111/ his.12872) 80 Fernandez-Cooke E, Cruz-Rojo J, Gallego C, Romance AI, Mosqueda- Pena R, Almaden Y & del Pozo JS. Tumor-induced rickets in a child with a central giant cell granuloma: a case report. Pediatrics 2015 135 e1518–e1523. (https://doi.org/10.1542/peds.2014-2218) 81 Fathalla H, Cusimano M, Di leva A, Karamchandani J, Fung R & Kovacs K. Osteomalacia-inducing tumors of the brain: a case report, review and a hypothesis. World Neurosurgery 2015 84 189.e1–189.e5. (https://doi.org/10.1016/j.wneu.2015.02.030) 82 Ray S, Chakraborty PP, Biswas K, Ghosh S, Mukhopadhyay S & Chowdhury S. A case of oncogenic osteomalacia due to occult nasal sinus tumor. Clinical Cases in Mineral and Bone Metabolism 2015 12 65–68. (https://doi.org/10.11138/ccmbm/2015.12.1.065) 83 Qari H, Hamao-Sakamoto A, Fuselier C, Cheng YSL, Kessler H & Wright J. Phosphaturic mesenchymal tumor: 2 new oral cases and review of 53 cases in the head and neck. Head and Neck Pathology 2016 10 192–200. (https://doi.org/10.1007/s12105- 015-0668-3) 84 Wasserman JK, Purgina B, Lai CK, Gravel D, Mahaffey A, Bell D & Chiosea SI. Phosphaturic mesenchymal tumor involving the head and neck: a report of five cases with FGFR1 fluorescence in situ hybridization analysis. Head and Neck Pathology 2016 10 279–285. (https://doi.org/10.1007/s12105-015-0678-1) 85 Mani MK & Panigrahi MK. Unusual calvarial tumour-oncogenic osteomalacia. British Journal of Neurosurgery 2017 31 495–496. (https://doi.org/10.3109/02688697.2016.1161165) 86 Yu WJ, He JW, Fu WZ, Wang C & Zhang ZL. Reports of 17 Chinese patients with tumor-induced osteomalacia. Journal of Bone and Mineral Metabolism 2017 35 298–307. (https://doi.org/10.1007/ s00774-016-0756-9) 87 Takashi Y, Kinoshita Y, Ito N, Taguchi M, Takahashi M, Egami N, Tajima S, Nangaku M & Fukumoto S. Tumor-induced osteomalacia caused by a parotid tumor. Internal Medicine 2017 56 535–539. (https://doi.org/10.2169/internalmedicine.56.7565) 88 Gresham MS, Shen S, Zhang YJ & Gallagher K. Anterior skull base glomangioma-induced osteomalacia. Journal of Neurological Surgery Reports 2017 78 e9–e11. (https://doi. org/10.1055/s-0036-1597599) 89 Agaimy A, Michal M, Chiosea S, Petersson F, Hadravsky L, Kristiansen G, Horch RE, Schmolders J, Hartmann A, Haller F, et al. Phosphaturic mesenchymal tumors: clinicopathologic, immunohistochemical and molecular analysis of 22 cases expanding their morphologic and immunophenotypic spectrum. American Journal of Surgical Pathology 2017 41 1371–1380. (https://doi. org/10.1097/PAS.0000000000000890) 90 Lee JY, Park HS, Han S, Lim JK, Hong N, Park SI & Rhee Y. Localization of oncogenic osteomalacia by systemic venous sampling of fibroblast growth factor 23. Yonsei Medical Journal 2017 58 981–987. (https://doi.org/10.3349/ymj.2017.58.5.981) 91 Schober HC, Kneitz C, Fieber F, Hesse K & Schroeder H. Selective blood sampling for FGF-23 in tumor-induced osteomalacia. Endocrinology, Diabetes and Metabolism Case Reports 2017 2017 1. (https://doi.org/10.1530/EDM-17-0006) 92 Zuo QY, Wang H, Li W, Niu XH, Huang YH, Chen J, You YH, Liu BY, Cui AM & Deng W. Treatment and outcomes of tumor- induced osteomalacia associated with phosphaturic mesenchymal tumors: retrospective review of 12 patients. BMC Musculoskeletal Disorders 2017 18 403. (https://doi.org/10.1186/s12891-017- 1756-1) 93 Hana T, Tanaka S, Nakatomi H, Shojima M, Fukumoto S, Ikemura M & Saito N. Definitive surgical treatment of osteomalacia induced by skull base tumor and determination of the half-life of serum fibroblast growth factor 23. Endocrine Journal 2017 64 1033–1039. (https://doi.org/10.1507/endocrj.EJ17-0177) 94 Chanukya GV, Mengade M, Goud J, Rao IS & Jain A. Tumor- induced osteomalacia: a Sherlock Holmes approach to diagnosis and management. Annals of Maxillofacial Surgery 2017 7 143–147. (https://doi.org/10.4103/ams.ams_123_16) 95 Gonzalez G, Baudrand R, Sepulveda MF, Vucetich N, Guarda FJ, Villanueva P, Contreras O, Villa A, Salech F, Toro L, et al. Tumor- induced osteomalacia: experience from a South American academic centre. Osteoporosis International 2017 28 2187–2193. (https://doi. org/10.1007/s00198-017-4007-2) 96 Singh D, Chopra A, Ravina M, Kongara S, Bhatia E, Kumar N, Gupta S, Yadav S, Dabadghao P, Yadav R, et al. Oncogenic osteomalacia: role of Ga-68 DOTANOC PET/CT scan in identifying the culprit lesion and its management. British Journal of Radiology 2017 90 20160811. (https://doi.org/10.1259/bjr.20160811) 97 Pelletier K, Troyanov S, Guite JF, Sainte-Marie LG, Roberge D & Lessard M. Localization of ectopic fibroblast growth factor 23 production in tumor-induced osteomalacia using selective venous samplings. Clinical Nephrology 2017 87 107–110. (https://doi. org/10.5414/CN108981) 98 Mumford E, Marks J, Wagner T, Gallimore A, Gane S & Walsh SB. Oncogenic osteomalacia: diagnosis, localisation, and cure. Lancet Oncology 2018 19 e365. (https://doi.org/10.1016/S1470- 2045(18)30276-6) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://doi.org/10.1002/jbmr.1642 https://doi.org/10.1002/jbmr.1642 https://doi.org/10.1016/j.anndiagpath.2012.06.005 https://doi.org/10.3171/2012.12.JNS12598 https://doi.org/10.3171/2012.12.JNS12598 https://doi.org/10.1210/jc.2013-2528 https://doi.org/10.20452/pamw.1738 https://doi.org/10.20452/pamw.1738 https://doi.org/10.3342/ceo.2014.7.2.145 https://doi.org/10.3342/ceo.2014.7.2.145 https://doi.org/10.1136/bcr-2013-202827 https://doi.org/10.1136/bcr-2013-202827 https://doi.org/10.1210/jc.2015-3854 https://doi.org/10.1016/j.anl.2014.10.001 https://doi.org/10.1111/his.12872 https://doi.org/10.1111/his.12872 https://doi.org/10.1542/peds.2014-2218 https://doi.org/10.1016/j.wneu.2015.02.030 https://doi.org/10.11138/ccmbm/2015.12.1.065 https://doi.org/10.1007/s12105-015-0668-3 https://doi.org/10.1007/s12105-015-0668-3 https://doi.org/10.1007/s12105-015-0678-1 https://doi.org/10.3109/02688697.2016.1161165 https://doi.org/10.1007/s00774-016-0756-9 https://doi.org/10.1007/s00774-016-0756-9 https://doi.org/10.2169/internalmedicine.56.7565 https://doi.org/10.1055/s-0036-1597599 https://doi.org/10.1055/s-0036-1597599 https://doi.org/10.1097/PAS.0000000000000890 https://doi.org/10.1097/PAS.0000000000000890 https://doi.org/10.3349/ymj.2017.58.5.981 https://doi.org/10.1530/EDM-17-0006 https://doi.org/10.1186/s12891-017-1756-1 https://doi.org/10.1186/s12891-017-1756-1 https://doi.org/10.1507/endocrj.EJ17-0177 https://doi.org/10.4103/ams.ams_123_16 https://doi.org/10.1007/s00198-017-4007-2 https://doi.org/10.1007/s00198-017-4007-2 https://doi.org/10.1259/bjr.20160811 https://doi.org/10.5414/CN108981 https://doi.org/10.5414/CN108981 https://doi.org/10.1016/S1470-2045(18)30276-6 https://doi.org/10.1016/S1470-2045(18)30276-6 https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 13528:10 99 Villepelet A, Casiraghi O, Temam S & Moya-Plana A. Ethmoid tumor and oncogenic osteomalacia: case report and review of the literature. European Annals of Otorhinolaryngology, Head and Neck Diseases 2018 135 365–369. (https://doi.org/10.1016/j. anorl.2018.07.001) 100 Pelo S, Gasparini G, Garagiola U, D’Amato G, Saponaro G, Doneddu P, Todaro M & Moro A. Phosphaturic mesenchymal tumor, an unusual localization in head and neck. Journal of Surgical Case Reports 2018 2018 rjy091. (https://doi.org/10.1093/jscr/rjy091) 101 He Q, Xu Z, Zhang B, Hu W & Zhang X. Tumor-induced osteomalacia caused by a parotid basal cell adenoma detected by 68Ga-DOTANOC PET/CT. Clinical Nuclear Medicine 2018 43 e198–e199. (https://doi.org/10.1097/RLU.0000000000002076) 102 Wu H, Bui MM, Zhou L, Li D, Zhang H & Zhong D. Phosphaturic mesenchymal tumor with an admixture of epithelial and mesenchymal elements in the jaws: clinicopathological and immunohistochemical analysis of 22 cases with literature review. Modern Pathology 2019 32 189–204. (https://doi.org/10.1038/s41379- 018-0100-0) 103 Ding J, Hu G, Wang L, Li F & Huo L. Increased activity due to fractures does not significantly affect the accuracy of 68Ga-DOTATATE PET/CT in the detection of culprit tumor in the evaluation of tumor-induced osteomalacia. Clinical Nuclear Medicine 2018 43 880–886. (https://doi.org/10.1097/ RLU.0000000000002290) 104 Mishra T, Desouza MA, Patel K & Mazumdar GA. Phosphaturic mesenchymal tumors involving skull bones: report of two rare cases. Asian Journal of Neurosurgery 2019 14 253–255. (https://doi. org/10.4103/ajns.AJNS_176_17) 105 Li J, Huang Y, Yang F, Zhang Q, Chen D & Wang Q. Sinonasal hemangiopericytoma caused hypophosphatemic osteomalacia: a case report. Medicine 2018 97 e13849. (https://doi.org/10.1097/ MD.0000000000013849) 106 Acharya RP, Won AM, Moon BS, Flint JH, Roubaud MS, Williams MD, Hessel AC, Murphy Jr WA, Chambers MS & Gagel RF. Tumor‐induced hypophosphatemic osteomalacia caused by a mesenchymal tumor of the mandible managed by a segmental mandibulectomy and microvascular reconstruction with a free fibula flap. Head and Neck 2019 41 E93–E98. (https://doi.org/10.1002/hed.25657) 107 Kurien R, Rupa V & Thomas M. Varied presentation of sinonasal phosphaturic mesenchymal tumour: report of a case series with follow-up. European Archives of Oto-Rhino-Laryngology 2019 276 1677–1684. (https://doi.org/10.1007/s00405-019-05341-8) 108 Paul J, Cherian KE, Kapoor N & Paul TV. Treating osteoporosis: a near miss in an unusual case of FGF-23 mediated bone loss. BMJ Case Reports 2019 12 e228375. (https://doi.org/10.1136/bcr-2018- 228375) 109 Pal R, Bhadada SK, Singhare A, Bhansali A, Kamalanathan S, Chadha M, Chauhan P, Sood A, Dhiman V, Sharma DC, et al. Tumor-induced osteomalacia: experience from three tertiary care centers in India. Endocrine Connections 2019 8 266–276. (https://doi. org/10.1530/EC-18-0552) 110 Jadhav S, Kasaliwal R, Lele V, Rangarajan V, Chandra P, Shah H, Malhotra G, Jagtap VS, Budyal S, Lila AR, et al. Functional imaging in primary tumour-induced osteomalacia: relative performance of FDG PET/CT vs somatostatin receptor-based functional scans: a series of nine patients. Clinical Endocrinology 2014 81 31–37. (https://doi. org/10.1111/cen.12426) 111 Agrawal K, Bhadada S, Mittal BR, Shukla J, Sood A, Bhattacharya A & Bhansali A. Comparison of 18F-FDG and 68Ga DOTATATE PET/ CT in localization of tumor causing oncogenic osteomalacia. Clinical Nuclear Medicine 2015 40 e6–e10. (https://doi.org/10.1097/ RLU.0000000000000460) 112 El-Maouche D, Sadowski SM, Papadakis GZ, Guthrie L, Cottle- Delisle C, Merkel R, Millo C, Chen CC, Kebebew E & Collins MT. 68Ga-DOTATATE for tumor localization in tumor-induced osteomalacia. Journal of Clinical Endocrinology and Metabolism 2016 101 3575–3581. (https://doi.org/10.1210/jc.2016-2052) 113 Basu S & Fargose P. 177Lu-DOTATATE PRRT in recurrent skull- base phosphaturic mesenchymal tumor causing osteomalacia: a potential application of PRRT beyond neuroendocrine tumors. Journal of Nuclear Medicine Technology 2016 44 248–250. (https://doi. org/10.2967/jnmt.116.177873) 114 Kane SV, Kakkar A, Oza N, Sridhar E & Pai PS. Phosphaturic mesenchymal tumor of the nasal cavity and paranasal sinuses: a clinical curiosity presenting a diagnostic challenge. Auris, Nasus, Larynx 2018 45 377–383. (https://doi.org/10.1016/j. anl.2017.05.006) 115 Feng J, Jiang Y, Wang O, Li M, Xing X, Huo L, Li F, Yu W, Zhong DR, Jin J, et al. The diagnostic dilemma of tumor induced osteomalacia: a retrospective analysis of 144 cases. Endocrine Journal 2017 64 675–683. (https://doi.org/10.1507/endocrj.EJ16-0587) 116 Khosravi A, Cutler CM, Kelly MH, Chang R, Royal RE, Sherry RM, Wodajo FM, Fedarko NS & Collins MT. Determination of the elimination half-life of fibroblast growth factor-23. Journal of Clinical Endocrinology and Metabolism 2007 92 2374–2377. (https://doi. org/10.1210/jc.2006-2865) 117 Takeuchi Y, Suzuki H, Ogura S, Imai R, Yamazaki Y, Yamashita T, Miyamoto Y, Okazaki H, Nakamura K, Nakahara K, et al. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. Journal of Clinical Endocrinology and Metabolism 2004 89 3979–3982. (https://doi. org/10.1210/jc.2004-0406) 118 Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH & Collins MT. Tumour-induced osteomalacia. Nature Reviews Disease Primers 2017 3 17044. (https://doi.org/10.1038/nrdp.2017.44) 119 Reubi JC, Waser B, Schaer JC & Laissue JA. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. European Journal of Nuclear Medicine 2001 28 836–846. (https://doi. org/10.1007/s002590100541) 120 de Beur SMJ, Streeten EA, Civelek AC, McCarthy EF, Uribe L, Marx SJ, Onobrakpeya O, Raisz LG, Watts NB, Sharon M, et al. Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 2002 359 761–763. (https://doi.org/10.1016/S0140- 6736(02)07846-7) 121 Kimizuka T, Ozaki Y & Sumi Y. Usefulness of 201 Tl and 99m Tc MIBI scintigraphy in a case of oncogenic osteomalacia. Annals of Nuclear Medicine 2004 18 63–67. (https://doi.org/10.1007/BF02985616) 122 Dupond JL, Mahammedi H, Prie D, Collin F, Gil H, Blagosklonov O, Ricbourg B, Meaux-Ruault N & Kantelip B. Oncogenic osteomalacia: diagnostic importance of fibroblast growth factor 23 and F-18 fluorodeoxyglucose PET/CT scan for the diagnosis and follow-up in one case. Bone 2005 36 375–378. (https://doi.org/10.1016/j. bone.2005.01.001) 123 Breer S, Brunkhorst T, Beil FT, Peldschus K, Heiland M, Klutmann S, Barvencik F, Zustin J, Gratz KF & Amling M. 68Ga DOTATATE PET/ CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT. Bone 2014 64 222–227. (https://doi.org/10.1016/j.bone.2014.04.016) 124 Zhang J, Zhu Z, Zhong D, Dang Y, Xing H, Du Y, Jing H, Qiao Z, Xing X, Zhuang H, et al. 68Ga DOTATATE PET/CT is an accurate imaging modality in the detection of culprit tumors causing osteomalacia. Clinical Nuclear Medicine 2015 40 642–646. (https:// doi.org/10.1097/RLU.0000000000000854) 125 Seufert J, Ebert K, Müller J, Eulert J, Hendrich C, Werner E, Schütze N, Schulz G, Kenn W, Richtmann H, et al. Octreotide therapy for tumor- induced osteomalacia. New England Journal of Medicine 2001 345 1883–1888. (https://doi.org/10.1056/NEJMoa010839) 126 Ovejero D, El‐Maouche D, Brillante BA, Khosravi A, Gafni RI & Collins MT. Octreotide is ineffective in treating tumor‐induced osteomalacia: results of a short‐term therapy. Journal of Bone and This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://doi.org/10.1016/j.anorl.2018.07.001 https://doi.org/10.1016/j.anorl.2018.07.001 https://doi.org/10.1093/jscr/rjy091 https://doi.org/10.1097/RLU.0000000000002076 https://doi.org/10.1038/s41379-018-0100-0 https://doi.org/10.1038/s41379-018-0100-0 https://doi.org/10.1097/RLU.0000000000002290 https://doi.org/10.1097/RLU.0000000000002290 https://doi.org/10.4103/ajns.AJNS_176_17 https://doi.org/10.4103/ajns.AJNS_176_17 https://doi.org/10.1097/MD.0000000000013849 https://doi.org/10.1097/MD.0000000000013849 https://doi.org/10.1002/hed.25657 https://doi.org/10.1007/s00405-019-05341-8 https://doi.org/10.1136/bcr-2018-228375 https://doi.org/10.1136/bcr-2018-228375 https://doi.org/10.1530/EC-18-0552 https://doi.org/10.1530/EC-18-0552 https://doi.org/10.1111/cen.12426 https://doi.org/10.1111/cen.12426 https://doi.org/10.1097/RLU.0000000000000460 https://doi.org/10.1097/RLU.0000000000000460 https://doi.org/10.1210/jc.2016-2052 https://doi.org/10.2967/jnmt.116.177873 https://doi.org/10.2967/jnmt.116.177873 https://doi.org/10.1016/j.anl.2017.05.006 https://doi.org/10.1016/j.anl.2017.05.006 https://doi.org/10.1507/endocrj.EJ16-0587 https://doi.org/10.1210/jc.2006-2865 https://doi.org/10.1210/jc.2006-2865 https://doi.org/10.1210/jc.2004-0406 https://doi.org/10.1210/jc.2004-0406 https://doi.org/10.1038/nrdp.2017.44 https://doi.org/10.1007/s002590100541 https://doi.org/10.1007/s002590100541 https://doi.org/10.1016/S0140-6736(02)07846-7 https://doi.org/10.1016/S0140-6736(02)07846-7 https://doi.org/10.1007/BF02985616 https://doi.org/10.1016/j.bone.2005.01.001 https://doi.org/10.1016/j.bone.2005.01.001 https://doi.org/10.1016/j.bone.2014.04.016 https://doi.org/10.1097/RLU.0000000000000854 https://doi.org/10.1097/RLU.0000000000000854 https://doi.org/10.1056/NEJMoa010839 https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com R Shah et al. Case series of head neck TIO and review 1353 PB–24 8:10 Mineral Research 2017 32 1667–1671. (https://doi.org/10.1002/ jbmr.3162) 127 Geller JL, Khosravi A, Kelly MH, Riminucci M, Adams JS & Collins MT. Cinacalcet in the management of tumor‐induced osteomalacia. Journal of Bone and Mineral Research 2007 22 931–937. (https://doi.org/10.1359/jbmr.070304) 128 Cives M & Strosberg J. Radionuclide therapy for neuroendocrine tumors. Current Oncology Reports 2017 19 9. (https://doi.org/10.1007/ s11912-017-0567-8) 129 Weidner N. Review and update: oncogenic osteomalacia- rickets. Ultrastructural Pathology 1991 15 317–333. (https://doi. org/10.3109/01913129109016242) Received in final form 15 August 2019 Accepted 9 September 2019 Accepted Preprint published online 9 September 2019 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com © 2019 The authors Published by Bioscientifica Ltd Downloaded from Bioscientifica.com at 04/06/2021 04:58:19PM via free access https://doi.org/10.1002/jbmr.3162 https://doi.org/10.1002/jbmr.3162 https://doi.org/10.1359/jbmr.070304 https://doi.org/10.1007/s11912-017-0567-8 https://doi.org/10.1007/s11912-017-0567-8 https://doi.org/10.3109/01913129109016242 https://doi.org/10.3109/01913129109016242 https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1530/EC-19-0341 https://ec.bioscientifica.com Abstract Introduction Materials and methods Cohort 1 Cohort 1 Cohort 1 Cohort 2 Cohort 2 Cohort 2 Statistical analysis Results Cohort 1 Cohort 1 Cohort 1 Cohort 2 Cohort 2 Cohort 2 Discussion Cohort 1 Cohort 1 Cohort 1 Cohort 2 Cohort 2 Cohort 2 Epidemiology Biochemical profile Location of tumor Localization imaging Treatment Primary modality Persistent/recurrent disease Metastases Histopathology Study limitations Summary Declaration of interest Funding References