
Implementing generalized deep-copy
in MPI

Joss Whittle1,*, Rita Borgo2,* and Mark W. Jones1,*
1 Department of Computer Science, Swansea University, Swansea, United Kingdom
2 Informatics Department, King’s College London, London, United Kingdom

* These authors contributed equally to this work.

ABSTRACT
In this paper, we introduce a framework for implementing deep copy on top of MPI.

The process is initiated by passing just the root object of the dynamic data structure.

Our framework takes care of all pointer traversal, communication, copying and

reconstruction on receiving nodes. The benefit of our approach is that MPI users can

deep copy complex dynamic data structures without the need to write bespoke

communication or serialize/deserialize methods for each object. These methods

can present a challenging implementation problem that can quickly become

unwieldy to maintain when working with complex structured data. This paper

demonstrates our generic implementation, which encapsulates both approaches.

We analyze the approach with a variety of structures (trees, graphs (including

complete graphs) and rings) and demonstrate that it performs comparably to

hand written implementations, using a vastly simplified programming interface.

We make the source code available completely as a convenient header file.

Subjects Computer Networks and Communications, Distributed and Parallel Computing,

Programming Languages

Keywords MPI extension library, Deep copy, Serialization, Marshalling, Dynamic data structures,

Deserialization, Unmarshalling

INTRODUCTION
Message passing is an established communication paradigm for both synchronous and

asynchronous communication in distributed or parallel systems. Using MPI with object

orientation is not always an easy task, while control on memory locality and data

distribution represent extremely valuable features, dealing with the ever growing and

sophisticated features of OO languages can be cumbersome.

This problem is particularly challenging for data structures employing abstractions

(e.g., inheritance and polymorphism) and pointer indirection, since transferring these

data structures between disjoint hosts requires deep copy semantics. For user defined

objects MPI adopts shallow copy semantics, whereby default copy constructors and

assignment operators perform shallow copies of the object leaving memory allocation,

copy, and de-allocation to be the responsibility of the programmer, not the

implementation. A similar policy is applied to MPI objects, represented as handles to

opaque data that cannot be directly copied. Copy constructors and assignment operators

in user defined objects that contain an MPI handle must either ensure to invoke the

appropriate MPI function to copy the opaque data (deep copy) or use a reference

counting scheme that will provide references to the handle (reference counted shallow

How to cite this article Whittle et al. (2016), Implementing generalized deep-copy in MPI. PeerJ Comput. Sci. 2:e95; DOI 10.7717/

peerj-cs.95

Submitted 6 July 2016
Accepted 4 October 2016
Published 21 November 2016

Corresponding author
Mark W. Jones,

m.w.jones@swansea.ac.uk

Academic editor
Srikumar Venugopal

Additional Information and
Declarations can be found on
page 57

DOI 10.7717/peerj-cs.95

Copyright
2016 Whittle et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.95
http://dx.doi.org/10.7717/peerj-cs.95
mailto:m.�w.�jones@�swansea.�ac.�uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.95
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

copy). Shallow copy is acceptable for shared-memory programming models where it is

always legal to dereference a pointer with the underlying assumption that the target

of member pointers will be shared among all copies. Users often require deep copy

semantics, as illustrated in Fig. 1, where every object in a data structure is transferred.

Deep copy requires recursively traversing pointer members in a data structure,

transferring all disjoint memory locations, and translating the pointers to refer to the

appropriate device location also referred to as object serialization or marshalling,

commonly used for sending complex data structures across networks or writing

to disk. MPI has basic support for describing the layout of user defined data

types and sending user-defined objects between processes (Message Passing Interface

Forum, 2014).

The directives we propose provide a mechanism to shape and abstract deep copy

semantics for MPI programs written in C++. Along with elegantly solving the deep

copy problem, this mechanism also reduces the level of difficulty for the programmer

who only needs to express the dependencies of an object type, rather than explicitly

programming how and when to move the memory behind pointers.

As a motivating example, we show that comparable performance can be achieved

when using a simple and generic algorithm to implement deep copy compared to hand

coded native MPI implementations. The main contributions of this work are:

� We introduce the MPI Extension Library (MEL), a C++ header-only wrapper

around the MPI standard which aims to give a simplified programming interface with

Figure 1 An example of a structure that requires deep copy semantics. Arrows represent pointer

traversals to disjoint regions of memory.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 2/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

consistent type-safety and compile time error handling, along with providing efficient

implementations of higher level parallel constructs such as deep copy.

� As a part of MEL, we provide generic implementations of deep copy semantics that

can be easily applied to existing code to enable complex structured data to be deep

copied transparently as either a send, receive, broadcast, or file access operation with

minimal programmer intervention. The latter can also be used for the purpose of

check-pointing when writing fault tolerant MPI code.

RELATED WORK
Message passing as a style of parallel programming enables easy abstraction and code

composition of complex inter-process communications. Existing MPI interfacing

libraries (McCandless, Squyres & Lumsdaine, 1996; Huang et al., 2006; Boost-Community,

2015) by default rely on the underlying standard shallow copy principle, where data

contains no dependencies of memory outside the region directly being copied; and

that where dependencies do exist that they are explicitly resolved by the programmer

using subsequent shallow copies. However, this simplified model of communication

comes at the cost of having to structure computations that require inter-process

communication using low-level building blocks, which often leads to complex and

verbose implementations (Friedley et al., 2013). Similar systems, such as the generic

message passing framework (Lee & Lumsdaine, 2003) resolve pointers to objects, but

do not follow dynamic pointers (data structure traversal) to copy complete complex

dynamic structures possibly containing cycles.

MPI works on the principle that nothing is shared between processes unless it is

explicitly transported by the programmer. These semantics simplify reasoning about the

program’s state (Hoefler & Snir, 2011) and avoid complex problems that are often

encountered in shared-memory programming models (Lee, 2006) where automatic

memory synchronization becomes a significant bottleneck.

Autolink and Automap (Goujon et al., 1998) work together to provide similar

functionality. Automap creates objects at the receiver. Autolink tags pointers to

determine whether they have been visited or not during traversal. The user must

place directives in their code and carry out an additional compilation step to create

intermediate files for further compilation. Extended MPICC (Renault, 2007) is a

C library that converts user-defined data types to MPI data types, and also requires

an additional compilation. It can automate the process, but also in some cases

requires user input to direct the process. Tansey & Tilevich (2008) also demonstrate

a method to derive MPI data types and capture user interaction via a GUI to direct

the marshalling process.

Autoserial Library (GNA, 2008) gives a C++ interface for performing serialization to

file as binary or XML; or to a raw network socket as binary data. Their library also

offers a set of convenience functions for buffering data to a contiguous array with MPI

communications to move the data. Their method makes extensive use of pre-processor

macros to generate boilerplate code needed for deep traversal of objects. For MPI, this

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 3/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

library only handles the use case of fully buffered deep copy in the context of MPI_Send

and MPI_Recv communications.

OpenACC (Beyer, Oehmke & Sandoval, 2014) tackles the deep copy problem in the

context of transferring structured data from host machines to on node hardware such

as GPUs and Accelerators. Their approach is based on a compiler implemented #pragma

notation similar to OpenMP while our method is implemented as a header only

template library.

TPO++ (Grundmann, Ritt & Rosenstiel, 2000) requires serialize and deserialize

functions to be defined. The paper highlights good design goals which we also follow in

this work.

Compared to the above approaches, we place much lighter requirements on the

user and do not require additional signposting (usually implemented as preprocessor

macros wrapped around variable declarations) that other methods require. We do

not require an additional compilation step or GUI compared to the above as will be

demonstrated in the following sections. We also provide an analysis of our approach.

We explicitly demonstrate and analyze our approach on a wide variety of complex

dynamic data structures. Our analysis shows that our approach has low time and memory

overhead and also requires less user direction to achieve deep copy. It provides this extra

functionality at no loss of performance over hand coded approaches. We avoid the in

place serialize that some approaches utilize, resulting in our approach having a low

memory overhead. We also evaluate our methods in comparison to Boost Serialization

Library (Cogswell, 2005) and demonstrate that Boost introduces a performance

penalty which our method avoids. Boost also requires more intervention from the

user/programmer to achieve the same capability. Therefore, the main benefit of our

approach over others is that it is a true deep copy approach where the user only has to pass

in the root object/node of the data structure.

In CHARM++ (Kale & Krishnan, 1993;Miller, 2015) messages are by default passed by

value, however CHARM++ provides support for deep copy via definition of serialization

methods for non-contiguous data structures. It is a user task to define the proper

serialization methods including the explicit definition of memory movement and copy

operations. If the serialization methods are implemented correctly for a user-defined

type, a deep copy will be made of the data being serialized. CHARM++ distinguishes

between shared-memory and distributed-memory scenarios, where shared-memory

data within a node can be directly passed by pointer. The programmer must explicitly

specify the policy to be adopted by indicating if the data should be conditionally packed

or not. Conditionally packed data are put into a message only when the data leaves

the node. In an MPI environment processes within the same node do not share a common

address space making such an optimization unavailable.

Generally the more desirable solution is to avoid deep copy operations to maintain

efficiency in message transmission. This is straightforward to achieve by converting user-

defined types with pointer members to equivalent user-defined types with statically-sized

arrays. This approach of restructuring and packing a data structure is often used by

shared-memory programming paradigms where structures with pointers are manually

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 4/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

packed and unpacked across the device boundary to reduce transfer costs for data

structures used on the device.

When memory isolation (e.g., avoid cross boundary references) is not a requirement

other approaches might be possible. For operations executed within sequential or

shared memory multi-core processors, hardware can be used more efficiently by avoiding

deep copy operations and rely instead on pointer exchange. This requires messages to

have an ownership transfer semantics with calls to send (pass) ownership of memory

regions, instead of their contents, between processes (Friedley et al., 2013). In the

context of the present work, we do not focus on ownership passing but on the traditional

approach of refactoring code. MEL provides an efficient and intuitive alternative to

implementing object packing by hand. Porting an object type to use MEL deep copy only

requires adding a member function to the type containing directives that describe the

dependencies of the type. In this case, the additional effort to rewrite data structures to

allow communication using the standard MPI shallow copy principles is much larger,

making refactoring an application to avoid deep copy an undesirable solution.

Deep copy semantics are not only relevant when dealing with inter-process

communication. When recovering from process or node failure in fault tolerant MPI,

applications often incur problems very similar to the ones dealt by deep copy operations.

Fault tolerance plays an important role in high performance computing applications

(Herault & Robert, 2015) and significant research has focused on its development in

MPI (Gropp & Lusk, 2004; Vishnu et al., 2010; Bouteiller, 2015). While the library itself

does not provide explicit fault-tolerance support, MPI can provide a standard and well-

structured context for writing programs that exhibit significant degrees of fault tolerant

behavior. Several approaches have been investigated in literature to achieve fault tolerance

in MPI (Gropp & Lusk, 2004; Laguna et al., 2014), with check-pointing being one of

the most commonly used compared to more sophisticated approaches involving direct

manipulation of the MPI standard to support fault tolerance (Fagg, Bukovsky & Dongarra,

2001; Fagg & Dongarra, 2004), or modifying semantics of standard MPI functions to

provide resilience to program faults.

In check-pointing, a process will periodically cache its work to disk so that in the event

of a crash or node failure, a newly spawned process can load back the last saved state

of the failed process and continue the work from there. When the data a process is

dependent on is deep in structure, the implementation challenges associated with

reading and writing the data to disk are the same ones encountered when handling the

communication of such types. MEL provides support for fault-tolerance by leveraging

deep copy semantics to transparently target file reads and writes in the same manner it

handles the sending and receiving of inter-process communications.

WHEN TO USE DEEP COPY
It is important that programmers be aware of the dangers of shallow-copying deep

types without also resolving any dependencies of that type. For example, if an object

contains a pointer and is copied by its memory footprint to another MPI process the value

of the contained pointer on the receiver is now dangling and accessing the pointed to

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 5/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

memory erroneous. Listing 1 shows an example of performing such an MPI shallow-copy

when a deep copy was needed.

Listing 1 User example–error from not resolving the data dependencies of an object when copying

with MPI.

1 struct SomeStruct {

2 int *ptr = nullptr, len = 0;

3 };

4

5 //---//

6 // On sending process

7 SomeStruct myVar;

8

9 // Allocate sub array

10 myVar.len = 10;

11 MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.

ptr));

12

13 // Populate sub array with values...

14

15 MPI_Send(&myVar, sizeof(SomeStruct), MPI_BYTE, dst_rank, tag,

comm);

16

17 //---//

18 // On receiving process

19 SomeStruct myVar;

20 MPI_Recv(&myVar, sizeof(SomeStruct), MPI_BYTE, src_rank, tag,

comm);

21

22 // Error! myVar.ptr is now a dangling reference to the memory of the

sending process!

While accessing the pointed to memory is invalid, if we declare as a rule that if a pointer

is not allocated it will be assigned to nullptr (and we strictly adhere to this rule), we can

use the value of the dangling pointer to determine if an allocation needs to be made and

data received on the receiving process. Listing 2 gives a corrected example of Listing 1, by

deep copying a struct containing a pointer safely using native MPI commands.

Listing 2 User example–hand coded deep copy using a dangling pointer from the sending process

to determine if data needs to be received.

1 struct SomeStruct {

2 int *ptr = nullptr, len = 0;

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 6/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

3 };

4

5 //---//

6 // On sending process

7 SomeStruct myVar;

8

9 // Allocate sub array

10 myVar.len = 10;

11 MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.

ptr));

12

13 // Populate sub array with values...

14

15 // Send the footprint of the struct, allowing the receiver to check

16 //if ptr == nullptr or len == 0

17 MPI_Send(&myVar, sizeof(SomeStruct), MPI_BYTE, dst_rank, tag,

comm);

18

19 // Resolve the dependency of the struct

20 if (myVar.ptr != nullptr && myVar.len > 0) {

21 MPI_Send(myVar.ptr, myVar.len, MPI_INT, dst_rank, tag, comm);

22 }

23

24 //---//

25 // On receiving process

26 SomeStruct myVar;

27

28 // Receive the footprint of the struct so we can check if the array

29 // needs receiving

30 MPI_Recv(&myVar, sizeof(SomeStruct), MPI_BYTE, src_rank, tag, comm);

31

32 // Resolve the dependency of the struct

33 if (myVar.ptr != nullptr && myVar.len > 0) {

34 MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.

ptr));

35

36 MPI_Recv(myVar.ptr, myVar.len, MPI_INT, src_rank, tag, comm);

37 }

If an object which implements its own memory management through copy/move

constructors and assignment operators, such as std::vector, is used, heap corruption can

occur in a manner that can be difficult to debug. An example of this is shown in Listing 3.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 7/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

If a std::vector is copied by footprint its internal pointer, just like the raw pointer

previously, is no longer valid. The vector class works on the assumption that its internal

pointer is always valid, and that it needs to be de-allocated or re-allocated if any of

the assignment, resize, or destructor functions are called. If the vector goes out of scope

and its destructor is called the incurring segfault will often not be caught correctly by a

debugger and the error will be reported “nearby,” leaving the programmer to hunt

down the true source of the error. Short of using the C++ placement-new operator to

force the vector to be recreated without calling its destructor there is no way of “safely”

recovering in this situation.

Listing 3 User example–the dangers of copying deep types by their footprint in memory without

fixing them properly on the receiving processes.

1 struct SomeStruct {

2 std::vector<int> someVec;

3 };

4

5 //---//

6 // On sending process

7 SomeStruct myVar;

8

9 // push_back into myVar.someVec a few times...

10

11 MPI_Send(&myVar, sizeof(SomeStruct), MPI_BYTE, dst_rank, tag,

comm);

12

13 // Resolve the dependency of the struct

14 if (myVar.someVec.size() > 0) {

15 MPI_Send(&(myVar.someVec[0]), myVar.someVec.size(), MPI_INT,

dst_rank, tag, comm);

16 }

17

18 //---//

19 // On receiving process

20 SomeStruct myVar;

21 MPI_Recv(&myVar, sizeof(SomeStruct), MPI_BYTE, src_rank, tag,

comm);

22

23 // If myVar goes out of scope we segfault!

24 //myVar.someVec.clear(); // Segfault!

25 //myVar.someVec.resize(10); // Segfault!

26 //myVar.someVec.reserve(10); // Segfault!

27 //myVar.someVec = std::vector<int>();// Segfault!

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 8/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

28 // etc...

29

30 // It is safe to access .size() of the vector even if its internal

31 // pointer is invalid, we can use this to create a new vector in

32 // place, and to determine if we need to receive data.

33

34 // Force a new vector to be constructed at the memory address of the

35 // existing one without calling the existing vector's destructor.

36 new (&(myVar.someVec)) std::vector<int>(myVar.someVec.size());

37

38 // Resolve the dependency of the struct

39 if (myVar.someVec.size() > 0) {

40 MPI_Recv(&(myVar.someVec[0]), myVar.someVec.size(), MPI_INT,

src_rank, tag, comm);

41 }

Buffered vs. non-buffered
So far we have discussed methods for deep copying object types by recursively

traversing the data-structure and performing discrete message operations to resolve

each dependency. While often small there is a performance cost associated with

beginning and ending a communication between processes, and this cost is

exacerbated when communication occurs between processes on different physical

nodes connected by a network interface. In many cases it is beneficial to pack a

deep structure into a contiguous buffer on the sending process and to transport it

as a single communication, the buffer can then be received and unpacked to

reconstruct the target data structure. Listing 4 demonstrates a variant on Listing 2

where data is packed into a buffer before being transported and unpacked on the

receiving process.

While buffered deep copy enables greater performance when communicating

large structures made up of many small objects between processes, this speed comes

at the cost of increased code complexity and limitations on the size of data that

can be transferred. In the scenario where the data to be deep copied occupies more

than half of the available system memory buffering into a contiguous buffer is no

longer applicable as there is no remaining space in memory to allocate the buffer.

Additionally, for programs that make many small allocations and de-allocations

during normal execution system memory can become fragmented, leading to a

situation where there is more than enough available memory to allocate the buffer but

it is split up in many small pieces meaning no one contiguous allocation can be made.

In these scenarios there is no alternative but to perform a non-buffered deep copy to

move the data.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 9/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Listing 4 User example–hand coded buffered deep copy using a dangling pointer from the sending

process to determine if data needs to be unpacked.

1 struct SomeStruct {

2 int *ptr = nullptr, len = 0;

3 };

4

5 //---//

6 // On sending process

7 SomeStruct myVar;

8

9 // Allocate sub array

10 myVar.len = 10;

11 MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.

ptr));

12

13 // Calculate buffer size and allocate space

14 int buffer_size = sizeof(SomeStruct);

15 if (myVar.ptr != nullptr && myVar.len > 0) {

16 buffer_size += (sizeof(int) * myVar.len);

17 }

18

19 char *buffer, *pos;

20 MPI_Alloc_mem(buffer_size, MPI_INFO_NULL, &buffer);

21 pos = buffer;

22

23 // Pack the struct itself to move non-deep members

24 memcpy(pos, &myVar, sizeof(SomeStruct));

25 pos += sizeof(SomeStruct);

26

27 // Pack the array of the struct

28 if (myVar.ptr != nullptr && myVar.len > 0) {

29 memcpy(pos, myVar.ptr, sizeof(int) * myVar.len);

30 pos += sizeof(int) * myVar.len;

31 }

32

33 // Send the buffer

34 MPI_Send(buffer, buffer_size, MPI_BYTE, dst_rank, tag, comm);

35

36 // Free the buffer

37 MPI_Free_mem(buffer);

38

39 //---//

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 10/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

40 // On receiving process

41 SomeStruct myVar;

42

43 // Calculate buffer size and allocate space

44 MPI_Status status;

45 MPI_Probe(src_rank, tag, comm, &status);

46

47 int buffer_size;

48 MPI_Get_count(&status, MPI_BYTE, &buffer_size);

49

50 char *buffer, *pos;

51 MPI_Alloc_mem(buffer_size, MPI_INFO_NULL, &buffer);

52 pos = buffer;

53

54 // Receive the buffer

55 MPI_Recv(buffer, buffer_size, MPI_BYTE, src_rank, tag, comm);

56

57

58 // Unpack the struct itself to move non-deep members

59 memcpy(&myVar, pos, sizeof(SomeStruct));

60 pos += sizeof(SomeStruct);

61

62 // Unpack the array of the struct

63 if (myVar.ptr != nullptr && myVar.len > 0) {

64 MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.

ptr));

65

66 memcpy(myVar.ptr, pos, sizeof(int) * myVar.len);

67 pos += sizeof(int) * myVar.len;

68 }

69

70 // Free the buffer

71 MPI_Free_mem(buffer);

Buffering may also perform worse than non-buffered methods when the data to be

deep copied consists of a small number of large objects, such as a struct containing

several pointers to large buffers. In this case it may be detrimental to force the

local copying of the large buffers into a single message only to unpack them on

the receiving process when it would have been faster to transport them separately

while taking the hit on the overheads associated with setting up multiple

communications.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 11/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

MEL–THE MPI EXTENSION LIBRARY
MEL is a C++11, header-only library, being developed with the goal of creating a

lightweight and robust framework for building parallel applications on top of MPI.

MEL is designed to introduce no (or minimal) overheads while drastically reducing code

complexity. It allows for a greater range of common MPI errors to be caught at compile-

time rather than during program execution when it can be far more difficult to debug.

A good example of this is type safety in the MPI standard. The standard does not

dictate how many of the object types should be implemented leaving these details to the

implementation vendor. For instance, in Intel MPI 5.1 MPI_Comm objects and many other

types are implemented as integer handles, typedef int MPI_Comm, to opaque data that

are managed by the MPI run-time. A drawback with this approach is it causes compile

time type-checking of function parameters to not flag erroneous combinations of

variables. The common signature MPI_Send(void*, int, MPI_Datatype, int, int,

MPI_Comm) is actually seen by the compiler as MPI_Send(void*, int, int, int, int,

int), allowing any ordering of the last five variables to be compiled as valid MPI code,

while potentially causing catastrophic failure at run-time. In contrast, Open MPI 1.10.2

implements these types as structs which are inherently type-safe. With MEL we aim to:

� Remain true to the underlying design of MPI, by keeping to an imperative function

interface that does not fundamentally change the way in which the programmer

interacts with the MPI run-time.

� To provide a type-safe, consistent, and unified function syntax that allows distributions

of MPI from all vendors to behave in a common and predictable way at both compile-

time and run-time.

� To be soluble, allowing the compiler to remove the abstractions MEL provides to

achieve the same performance as native MPI code.

� To be memory efficient by minimizing the use of intermediate buffers whenever

possible.

� To make use of modern C++ language features and advanced template meta

programming to both ensure correctness at compile-time and to generate boiler-plate

values that programmers have to provide themselves with native MPI code.

� To give higher-level functionality that is not available from the MPI standard such as

deep copy Semantics (our focus in this paper).

MEL deep copy
Our algorithm is implemented in four parts, a top-level interface of functions for

initiating deep copy as send/receive, broadcast, or file-IO operation; a transport API

of functions that describe how data is to be moved within a deep copy operation, a set

of transport methods that describe generically how to move a region of memory; and a

hash-map interface for tracking which parts of the data structure have already been

traversed. Figure 2 shows the architecture of our algorithm.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 12/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

In order to ensure correct memory management for deep structures the user must

adhere to:

� Unallocated pointers are initialized to nullptr.

� Dynamic Memory must be allocated using MPI_Alloc_mem and freed using

MPI_Free_mem, or the equivalent MEL calls:

1 T* MEL::MemAlloc<T>(int len)

2 T* MEL::MemAlloc(int len, T &value)

3 void MEL::MemFree(T *ptr)

4 T* MEL::MemConstruct<T>(Args &&...args)

5 void MEL::MemDestruct(T *ptr, int len = 1)

� Pointers refer to distinct allocations. E.g. It is erroneous to have an allocation of the

form char *ptr = new char[100] in one object, and to then have a weak-pointer into

the array in subsequent objects: char *mySubPtr = &ptr[50]. In these situations, it is

best to store integer offsets into the array, rather than the pointer address itself.

Top-Level interface
The top-level interface for our algorithm (Listing 5) consists of functions for initiating

a deep copy as a send, receive, broadcast, or file access operation on a templated pointer

(T*), a pointer-length pair (T*, len), an object reference (T&), or an STL container

(std::vector<T>&, std::list<T>&). In the case of receiving methods (Recv, Bcast,

and FileRead) the len parameter can either be passed by reference so that it can be

modified to reflect the number of elements that were actually received, or captured from

an integer literal or constant variable to provide a run-time assertion whether the correct

number of elements were received. All methods are blocking and do not return until

the entire data-structure has been transferred.

Buffered variants of the top-level interface initiate a local deep copy to a contiguous

buffer on the sender, this buffer is then sent as a single transport to the receiving processes

where it can be unpacked. By decreasing the number of MPI communications or file

Figure 2 MEL deep copy architecture.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 13/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

accesses needed to transfer a deep structure significant reductions in latency can be

achieved, at the cost of added memory overhead from packing and unpacking data before

and after transport. In general, large structures of small objects (i.e. a tree with many

nodes that are small in memory) benefit most from buffering while smaller structures of

large objects (i.e. a struct containing large arrays) tend to benefit from non-buffered

transport.

Another motivating reason for providing a non-buffered mechanism for deep copy is

the scenario where the deep structure occupies more than half of the available system

memory. In such cases it is not possible to make a single contiguous allocation large

enough to pack the structured data. An example of where this can happen is the use of

MPI to distribute work to banks of Intel Xeon Phi Coprocessors which are exposed to

the host system via a virtual network interface. While such hardware provides a large

number of physical processor cores (60) on card memory is reduced (8–16 GB). On larger

systems with more available memory this is less likely to occur although the use of

non-buffered methods may still be desirable for the reasons outlined above; and in any

case, achieving low memory overhead is good practice.

Detecting objects that require deep copy
Determining whether a given object is “deep” or not is performed at compile time using

C++ template meta-programming to detect the presence of a member function of the form

template<typename MSG> void DeepCopy(MSG &msg)

that describes how to resolve the dependencies of a given object type. The template

parameter MSG is a shorthand for MEL::Deep::Message<TRANSPORT_METHOD, HASH_MAP>

where TRANSPORT_METHOD and HASH_MAP are types satisfying the constraints described in

sections Transport Method and Hashing Shared Pointers, respectively. A detailed example

of the method used to detect the presence of a matching member function is given in

section Detecting the Deep Copy Function using Template Meta-Programming.

The use of template meta-programming in C++ allows for the complete set of possible

copy operations needed to transport a structure to be known at compile time, allowing

the compiler to make optimizations that might otherwise not be possible if inheritance

and virtual function calls were used. Template programming also opens up the future

possibility of using more advanced C++ type_traits such as std::is_pod<T>

(is-plain-old-data) and other similar type traits to help make informed decisions about

how best to move types automatically at compile time.

Listing 5 MEL implementation–MEL deep copy top-level interface.

1 // Calculate buffer size needed to pack an object or array of objects.

2 int MEL::Deep::BufferSize(T &obj)

3 int MEL::Deep::BufferSize(T *&ptr)

4 int MEL::Deep::BufferSize(T *&ptr, const int len)

5 int MEL::Deep::BufferSize(STL &container)

6 // ^ STL can (currently) be std::vector, std::list

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 14/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

7

8 // MPI_Send

9 void MEL::Deep::Send(T &obj, const int dst, const int tag, const

MEL::Comm &comm)

10 void MEL::Deep::Send(T *&ptr, ...)

11 void MEL::Deep::Send(T *&ptr, const int len, ...)

12 void MEL::Deep::Send(STL &container, ...)

13

14 // MPI_Recv

15 void MEL::Deep::Recv(T &obj, const int src, const int tag, const

MEL::Comm &comm)

16 void MEL::Deep::Recv(T *&ptr, ...)

17 void MEL::Deep::Recv(T *&ptr, int const &len, ...)

18 // ^ len matches int literals and constants - runtime assertion

19 // on number of received elements

20 void MEL::Deep::Recv(T *&ptr, int &len, ...)

21 // ^ len matches int variables by reference - gets set to the

22 // number of received elements

23 void MEL::Deep::Recv(STL &container, ...)

24

25 // MPI_Broadcast

26 void MEL::Deep::Bcast(T &obj, const int root, const MEL::Comm

&comm)

27 void MEL::Deep::Bcast(T *&ptr, ...)

28 void MEL::Deep::Bcast(T *&ptr, int const &len, ...)

29 // ^ len matches int literals and constants - runtime assertion on

30 // number of received elements

31 void MEL::Deep::Bcast(T *&ptr, int &len, ...)

32 // ^ len matches int by reference - set on receivers to the number

33 // of received elements

34 void MEL::Deep::Bcast(STL &container, ...)

35

36 // STL File Streams

37 void MEL::Deep::FileWrite(T &obj, std::ofstream &file)

38 void MEL::Deep::FileRead(T &obj, std::ifstream &file)

39

40 // MPI_File

41 void MEL::Deep::FileWrite(T &obj, MEL::File &file)

42 void MEL::Deep::FileRead(T &obj, MEL::File &file)

43

44 // Overloads for buffered methods follow the same pattern

45 void MEL::Deep::BufferedSend(T &obj, ...)

46 void MEL::Deep::BufferedSend(T &obj, ..., const int bufferSize)

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 15/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

47 // ^ Source process can specify the buffer size to allocate for

48 // packing the structure

49

50 void MEL::Deep::BufferedRecv(T &obj, ...)

51 // ^ Buffer size on the recieving processes is determined from the

52 // sender

53

54 void MEL::Deep::BufferedBcast(T &obj, ...)

55 void MEL::Deep::BufferedBcast(T &obj, ..., const int bufferSize)

56 // ^ Buffer size only used on sender, ignored on receiving

57 // processes

58

59 void MEL::Deep::BufferedFileWrite(T &obj, ...)

60 void MEL::Deep::BufferedFileWrite(T &obj, ..., const int

bufferSize)

61

62 void MEL::Deep::BufferedFileRead(T &obj, ...)

Because we use the same function for sending/receiving, buffered/non-buffered, and

for point-to-point/collective/ or file access communications we make use of a utility type,

Message, that tracks which operation is being performed and where data is coming from

or going to. The message object is created internally when one of the top-level functions is

called and remains unmodified throughout the deep copy.

Message Transport-API
The deep copy function declares to our algorithm how data dependencies of a type need

to be resolved in order to correctly rebuild a data structure on the receiving process. To

keep the definition of this function simple the Message object exposes a small API of

functions (Listing 6) that abstract the details of how data is sent and received between

processes.

Listing 6 MEL implementation–message transport-API.

1 // Transfer a deep object. Only needed for deep types!

2 // Non-deep members are transported automatically

3 void Message::packVar(T &obj)

4

5 // Transfer a deep/non-deep pointer to len objects

6 void Message::packPtr(T *&ptr, int len = 1)

7

8 // Transfer a deep/non-deep pointer to len objects where the

9 // pointer may also be referenced in

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 16/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

10 // other parts of the deep structure. (i.e. A graph structure

11 // where multiple nodes point to a shared neighbour)

12 void Message::packSharedPtr(T *&ptr, int len = 1)

13

14 // Transfer a std::vector of deep/non-deep objects.

15 void Message::packSTL(std::vector<T> &vec)

16 // Or a std::list (doubly linked list).

17 void Message::packSTL(std::list<T> &lst)

18

19 // Or use the shorthand operators

20 Message& Message::operator&(T &obj) // <- Calls packVar which is

21 // only defined for deep types

22 Message& Message::operator&(std::vector<T> &vec)

23 Message& Message::operator&(std::list<T> &lst)

24

25 // Only used in Top Level interface functions, these variants differ

26 // only from their standard counterparts (above) in that they do not

27 // assume the parent object has been transported as for the root

28 // object there is no parent.

29 void Message::packRootVar(T &obj)

30 void Message::packRootPtr(T *&ptr, int len = 1)

31 void Message::packRootSTL(std::vector<T> &vec)

32 void Message::packRootSTL(std::list<T> &lst)

Listing 7 gives an example usage of the Message transport API to move a complex

data-structure. All of the functions provided work transparently with both deep and non-

deep types, with the exception of Message::packVar which is intended only for the

transport of deep types as non-deep member variables will be transported automatically.

By comparison, Boost Serialization Library requires that all types except for language

defined base types (i.e. int, bool, double) provide serialization functions regardless of

whether they contain deep members, and that all member variables within the type

(including non-deep members) are explicitly registered with the archive object.

Listing 7 MEL implementation–registering dependencies using the transport-API.

1 struct SomeDeepStruct {

2 // Non-deep members will be copied automatically.

3 int a, b, c, len;

4 SomeFlatStruct d;

5

6 // Deep members must be declared in the Deep-copy function

7 AnotherDeepStruct e, f, g;

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 17/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

8 char *myArray = nullptr;

9 GraphNode *mySharedPointer = nullptr;

10 std::vector<int> v;

11 std::vector<AnotherDeepStruct> w;

12

13 template<typename MSG>

14 void DeepCopy(MSG &msg) {

15 // Pack a deep object by reference.

16 msg.packVar(e);

17 // A lighter syntax for non-pointer members.

18 msg & f & g;

19

20 // Transfer a char array of len elements.

21 msg.packPtr(myArray, len);

22 // Transfer a shared pointer that may also be used

23 // elsewhere in the structure.

24 msg.packSharedPtr(mySharedPointer);

25

26 // Transfer a std::vector.

27 msg.packSTL(v);

28 // We can also transfer a std::vector or std::list

29 // using & syntax.

30 msg & w;

31

32 // In fact, we can simply replace all of the above

33 // code (in this function) with:

34 msg & e & f & g & v & w;

35 msg.packPtr(myArray, len);

36 msg.packSharedPtr(mySharedPointer);

37 }

38 };

An example copy
In essence, the deep copy algorithm works by both sending and receiving processes

entering a message loop or handshake with one another where they both expect to keep

sending and receiving data until the entire structure has been transferred. The sending

process determines how much data is to be sent, and this information is conveyed to

the receiving processes transparently in such a way that when a receiving process

determines there is nothing left to receive the sending process has returned.

Listing 8 shows an example of using the deep copy function to move an array of non-

deep objects. Because the type, int, does not provide a member function for deep copy

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 18/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

the footprint of the array is sent in a single MPI message. On the receiving process

memory is allocated into the pointer provided and the data is received.

Listing 8 User example–MEL deep copy of non-deep type.

1 // On sending process

2 int len = 10;

3 int *ptr = MEL::MemAlloc<int>(len);

4

5 // Fill ptr with some values... ptr = [0..len)

6 for (int i = 0; i < len; ++i) ptr[i] = i;

7

8 MEL::Deep::Send(ptr, len, dst_rank, tag, comm);

9

10 //---//

11 // On receiving process

12 int len;

13 int *ptr = nullptr;

14 MEL::Deep::Recv(ptr, len, src_rank, tag, comm);

15 // len = 10 and ptr now equals an address to len integers

16 // ptr = [0..len)

An example of moving an array of structs containing pointers to dynamically allocated

memory is given in Listing 9. In order to correctly reconstruct the data on receiving

processes a deep copy function has been implemented which tells the algorithm to copy a

char array containing len elements. Because the type has a deep copy function the

receiving processes will allocate the memory for the array of structs and copy the footprint

of the array as a single contiguous chunk resulting in non-deep member variables being

transferred automatically. The receiving process makes the necessary allocations to receive

its dependencies. Both sending and receiving processes will then loop over each element

in their array and call the objects deep copy function to resolve its data dependencies.

If the struct contained variables which themselves required a deep copy the algorithm

would recurse on them until all dependencies are resolved. In this simple case, however,

the struct contains a char array which does not require a deep copy and as such the

sub-array is transferred by allocating the needed memory and copying the entire sub-array

as one contiguous chunk, as in Listing 8.

Listing 9 User example–MEL deep copy of deep type.

1 struct SomeStruct {

2 int len;

3 char *array = nullptr;

4

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 19/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

5 template<typename MSG> void DeepCopy(MSG &msg) {

6 msg.packPtr(array, len);

7 }

8 };

9

10 //---//

11 // On sending process allocate array and subarrays

12 int len = 5;

13 SomeStruct *ptr = MEL::MemAlloc<SomeStruct>(len);

14

15 for (int i = 0; i < len; ++i) {

16 // Allocate sub array

17 ptr[i].len = i + 1;

18 ptr[i].array = MEL::MemAlloc<char>(ptr[i].len);

19

20 // Fill ptr[i].ptr with some values... ptr_i = [0..len)

21 for (int j = 0; j < ptr[i].len; ++j) ptr[i].array[j] = j;

22 }

23

24 MEL::Deep::Send(ptr, len, dst_rank, tag, comm);

25

26 //---//

27 // On receiving process

28 int len;

29 SomeStruct *ptr = nullptr;

30 MEL::Deep::Recv(ptr, len, src_rank, tag, comm);

31 // len = 5 and ptr equals an address to an array of 5 structures

32 // each having their respective lengths and subarrays

33 // ptr = [0..5) : { [0..1), [0..2), [0..3), [0..4), [0..5) }

Transport method

The Message object represents how our algorithm traverses the deep structure and

ensures that both sending and receiving processes independently come to the same

conclusion on what order objects are traversed in with minimal communication. This

traversal order is independent of, and identical for all deep copy operations. Because of

this we template the Message object on a type that represents the specific nature of

the data transportation we want to perform (i.e. Message<TransportSend> to

perform deep copy as an MPI_Send communication), allowing the same traversal scheme

to be reused.

As a part of our implementation we provide transport methods for a wide variety of

data movement scenarios:

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 20/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

TransportSend Performs each transport call as a discrete MPI_Send

communication.

TransportRecv Performs each transport call as a discrete MPI_Recv

communication.

TransportBcastRoot Performs each transport call as a discrete MPI_Bcast com-

munication, as a sender.

TransportBcast Performs each transport call as a discrete MPI_Bcast com-

munication, as a receiver.

TransportFileWrite Performs each transport call as a discrete MPI_FileWrite

operation.

TransportFileRead Performs each transport call as a discrete MPI_FileRead

operation.

TransportSTLFileWrite Performs each transport call as a discrete std::ofstream::

write.
TransportSTLFileRead Performs each transport call as a discrete std::ifstream::

read.
TransportBufferWrite Performs each transport call as a discrete std::memcpy to a

contiguous memory buffer.

TransportBufferRead Performs each transport call as a discrete std::memcpy from a

contiguous memory buffer.

NoTransport This transport method acts as a sender but does not move any

data. This method is used to implement the top-level interface

functions for MEL::Deep::BufferSizewhich counts howmany

bytes need to bemovedwithout performing any transportation.

Adding additional transport methods is as simple as implementing a class with a

public-member function of the form

template<typename T> inline void transport(T *&ptr, const int len)

that describes how to move a region of memory, and a public-static-member variable

static constexpr bool SOURCE which tells the compiler whether or not this is a

sending or a receiving transport method. This boolean is important as it tells the Message

object whether or not it needs to make allocations as it traverses the deep structure. The

transport method should also store any state variables need to maintain the transport over

the duration of the deep copy. Such state variables may be but are not limited to an MPI

communicator and process rank, a file handle, or a pointer to an array used for buffering.

Hashing shared pointers
When considering large structured data containing duplicate pointers the method used to

trackwhich parts of the structure have already been transported can have a significant impact

on the traversal time. A hash-map is a natural choice for representing an unordered map

between two pointers as it is efficient for random access lookups and insertions.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 21/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

As with the transport method, the Message object is also templated on the hash-map

to use for pointer tracking, namely Message<TRANSPORT_METHOD, HASH_MAP = MEL::

Deep::PointerHashMap>. This allows for the user to provide an adapter to their own

implementation of a hash-map specifically optimized for pointers or to provide an

adapter type to a third-party hash-map implementation.

To use a custom hash-map with any of the top-level functions simply override the

default template parameter when initiating a deep copy operation. E.g. MEL::Deep::

Send<int, MyCustomHashMap>(ptr, len, dst, tag, comm); where MyCustomHashMap

exposes public-member functions of the form:

template<typename T> inline bool find(T* oldPtr, T* &ptr)

template<typename T> inline void insert(T* oldPtr, T* ptr)

These functions are templated on the pointer type, T*, so that user provided hash-map

adapters are able to use this extra type information to optimize hashing if needed.

External deep copy functions
So far we have discussed the use of deep copy functions and the transport API in cases

where the deep copy function was a local member function of the type being considered.

In some use cases, a structure may be defined in headers or libraries that cannot be

modified easily (or at all). In such cases, we still would like to be able to define the

deep copy semantics for the type without directly modifying its implementation. To

enable this, we provide an overload of all the functions in the transport API and top-level

interface that take an additional template parameter that is a handle to a global-free-

function of the form

template<typename MSG> inline void MyTypeDeepCopy(MyType &obj, MSG

&msg)

that takes by reference an instance of the object to transport and a Message object to

perform the deep copy.

Listing 10, shows the usage of external free deep copy functions with types needing deep

copy. StructB contains an internal member function for performing deep copy, while

StructA does not. Passing an instance of StructA to the top-level interface will result in

incorrect results as its dependencies will not be resolved. By implementing a global-free-

function that defines the deep copy requirements of StructA, we can then tell the top-level

interface to explicitly use that function to resolve external dependencies of the type. If we

provide an external free function for StructB which already has an internal deep copy

function, the internal function is ignored and the free function explicitly given is used.

Listing 10 User example–using external global-free-functions for deep copy.

1 struct StructA {

2 std::vector<int> arr;

3 };

4

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 22/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

5 struct StructB {

6 std::list<int> lst;

7

8 // Internal - Local member deep-copy function

9 template<typename MSG> void DeepCopy(MSG &msg) {

10 msg & lst;

11 }

12 };

13

14 // External - Global free deep-copy function

15 template<typename MSG> void StructA_DeepCopy(StructA &obj, MSG

&msg) {

16 msg & obj.arr;

17 }

18

19 // External - Global free deep-copy function

20 template<typename MSG> void StructB_DeepCopy(StructB &obj, MSG

&msg) {

21 msg & obj.lst;

22 }

23

24 // Example usage:

25 StructA sA;

26

27 MEL::Deep::Send(sA, dst, tag, comm);

28 // ^ Error! StructA contains a std::vector but does not

29 // have a deep-copy function

30

31 MEL::Deep::Send<StructA, MEL::Deep::PointerHashMap,

StructA_DeepCopy>(sA, dst, tag, comm);

32 // ^ Correct. Uses external free function to perform the deep-copy

33

34

35 StructB sB;

36

37 MEL::Deep::Send(sB, dst, tag, comm);

38 // ^ Correct. Uses internal member function to perform the deep-copy

39

40 MEL::Deep::Send<StructB, MEL::Deep::PointerHashMap,

StructB_DeepCopy>(sB, dst, tag, comm);

41 // ^ Correct. Uses external free function (overrides

42 // internal function) to perform the deep-copy

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 23/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

The same rules apply for providing external free functions to the transport API. Listing 11,

shows an example of this, where once again StructA is a deep type that does not provide an

internal deep copy function. StructC is also deep and contains a std::list of StructA.

If the deep copy function of StructC simply calls the ampersand operator or Message::

packSTL function (Listing 11, lines 15, 16) to transport the std::list then the instances of

StructAwill be transported incorrectly as a non-deep type. In the same manner as with

the top-level interface the free function to use to deep copy StructA is given explicitly to

Message::packSTL so that it can correctly resolve the dependencies of the deep structure.

Listing 11 User example–using external global-free-functions for deep copy with the Transport-API.

1 struct StructA {

2 std::vector<int> arr;

3 };

4

5 // External - Global free deep-copy function

6 template<typename MSG> void StructA_DeepCopy(StructA &obj, MSG

&msg) {

7 msg & obj.arr;

8 }

9

10 struct StructC {

11 std::list<StructA> lst;

12

13 // Internal - Local member deep-copy function

14 template<typename MSG> void DeepCopy(MSG &msg) {

15 //msg & lst; // <- Error - StructA has no internal

16 // deep-copy function

17 //msg.packSTL(lst); // <- Error

18 msg.packSTL<StructA, StructA_DeepCopy>(lst); // <- Correct

19 }

20 };

21

22 // Example usage:

23 StructC sC;

24 MEL::Deep::Send(sC, dst, tag, comm);

25 // ^ Correct. Uses internal member function of StructC and the

26 // external free function StructA_DeepCopy for StructA.

The option to use external deep copy functions gives our method flexibility when we

need to add deep copy semantics to code that cannot be directly, or easily modified.

However, this does not mean it will always be applicable as it requires intimate and low-

level knowledge of the object’s internal implementation and methods of allocation.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 24/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

MEL IMPLEMENTATION DETAILS
In the following section we provide a detailed discussion of the implementation of the

MEL deep copy algorithm.

Detecting the deep copy function using template meta-programming
To detect whether the type under consideration contains a deep copy function we

make use of SFINAE (Substitution Failure Is Not An Error) to create a compile-time

boolean test for the existence of a member function with the desired signature.

We encapsulate the usage of this method into a templated shorthand that uses

std::enable_if to give us a clean and concise method for providing function

overloads for deep and non-deep types.

Listing 12, shows an implementation of the technique used to conditionally detect

member functions of template types at compile time. The overloads of void someFunc

(T &obj) for when T is or is not a type with a deep copy function allows us specialize our

implementation for deep types while allowing them to share identical function signatures.

Listing 12 MEL implementation–detecting the deep copy function.

1 template<typename T>

2 struct HasDeepCopyMethod {

3 // This pseudo-type does not exist unless type U has a member

4 // function of the desired form:

5 // template<typename MSG> void DeepCopy(MSG &msg)

6 template<typename U, void(U::*)(MEL::Deep::Message

<NoTransport>&)> struct SFINAE {};

7

8 // If this succeeds Test<T> will be a function that returns char

9 template<typename U> static char Test(SFINAE<U, &U::DeepCopy>*);

10 // Otherwise Test<T> will return an int

11 template<typename U> static int Test(...);

12

13 // We can now test if type T has the desired member function by

14 // seeing if the result is the size of a char or an int.

15 static const bool value = sizeof(Test<T>(0)) == sizeof(char);

16 };

17

18 // Shorthands for when implementing functions

19 template<typename T, typename R = void>

20 using enable_if_deep = typename std::enable_if<

HasDeepCopyMethod<T>::value, R>::type;

21 template<typename T, typename R = void>

22 using enable_if_not_deep = typename std::enable_if

<!(HasDeepCopyMethod<T>::value), R>::type;

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 25/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

23

24 // Example usage in function definitions

25 template<typename T> enable_if_deep<T> someFunc(T &obj) {

26 std::cout << "Called with deep type!" << std::endl;

27 }

28

29 template<typename T> enable_if_not_deep<T> someFunc(T &obj) {

30 std::cout << "Called with non-deep type!" << std::endl;

31 }

32

33 // A deep type

34 struct StructA {

35 template<typename MSG> void DeepCopy(MSG &msg) {}

36 };

37

38 StructA sA;

39 someFunc(sA); // Called with deep type!

40

41 int i;

42 someFunc(i); // Called with non-deep type!

Transport-API implementation
Next we describe the implementation of the transport API which specifies the traversal

order our algorithm uses when performing deep copy.

Message::packVar
The Message::packVar function will call the deep copy function of the given variable to

resolve its dependencies. This function works on the assumption that local member

variables of the object have already been transported when the parent object was traversed.

It is for this reason that Message::packVar is only defined for deep types, as a non-deep

type will have been transported automatically with the parent. In all of the following

listings for the implementations of the transport API the overloads for non-deep types

have been omitted for space.

Listing 13 MEL implementation–Message::packVar.

1 // Transport a deep object

2 template<typename D>

3 inline enable_if_deep<D> Message::packVar(D &obj) {

4 // Assumes that the footprint of obj has already been transported

5 obj.DeepCopy(*this); // *this == the Message object

6 }

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 26/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Message::packPtr
When transporting dynamically allocated memory special care must be taken to correctly

allocate memory on the receiving processes. Listing 14 shows the implementation

of Message::packPtr for deep types. This function offloads its work to the

transportAlloc helper function of the Message object. On receiving process,

transportAlloc will make an allocation of len elements of the given type before

receiving the data. On the sending process, transportAlloc is identical to transport

and simply moves the requested data. For a deep type, Message::packPtr will then

loop over all the received elements and call their deep copy functions to resolve any

dependencies.

Listing 14 MEL implementation–Message::packPtr.

1 // Transport a deep pointer to len objects

2 template<typename D>

3 inline enable_if_deep<D> Message::packPtr(D *&ptr, int len = 1) {

4 // On sender - If (len > 0) and (ptr != nullptr) send the memory

5 //

6 // On receiver - If (len > 0) and (ptr != nullptr) then overwrite

7 // the dangling ptr with a new allocation of len elements and

8 // receive the memory

9 transportAlloc(ptr, len);

10

11 // Followed by the recursion for deep types

12 if (ptr != nullptr) {

13 for (int i = 0; i < len; ++i) ptr[i].DeepCopy(*this);

14 }

15 }

Message::packSharedPtr
In complex structured data there is often a requirement for data to be self referencing.

That is, one part of the deep structure may be pointed to from multiple other points

within the structure. In these situations, a naı̈ve deep copy algorithm would traverse the

shared object within the structure multiple times allocating a unique copy of it with

each visit. If the shared object is deep itself and points to one of its ancestors within

the structure, then the deep copy algorithm will become stuck in an infinite cycle within

the data, allocating new memory with each loop. To avoid this and to allow complex

self-referential data to be transported, we provide the Message::packSharedPtr

function shown in Listing 15. This method checks the given pointer against a hash-map

of type (pointer / pointer) to determine if the pointed to memory has already been

transported.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 27/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Listing 15 MEL implementation–Message::packSharedPtr.

1 // Transport a deep shared pointer to len objects

2 template<typename D>

3 inline enable_if_deep<D> Message::packSharedPtr(D *&ptr, int len = 1) {

4 // Save the original pointer in case we modify it

5 D *oldPtr = ptr;

6

7 // Is the given pointer already in the hash-map?

8 // If so, set ptr equal to the pointer stored in the hash-map and

9 // return

10 if (pointerMap.find(oldPtr, ptr)) return;

11

12 // Same as for packPtr

13 transportAlloc(ptr, len);

14

15 // Insert the (newly allocated, on receiver) ptr into the hashmap

16 // with the original dangling pointer (from the sender) as the key

17 pointerMap.insert(oldPtr, ptr);

18

19 // Followed by the recursion for deep types

20 if (ptr != nullptr) {

21 for (int i = 0; i < len; ++i) ptr[i].DeepCopy(*this);

22 }

23 }

During deep copy, the first time a shared pointer is passed to Message::

packSharedPtr on both the sending and receiving processes, it is transported in the

same manner as in Message::packPtr by calling transportAlloc. On the sending

process, the pointer is then inserted into the hash-map so it can be ignored if it is visited

again. On the receiving processes, the call to transportAlloc will have caused the

dangling pointer from the sender to have been overwritten with the newly allocated

pointer. This new pointer is inserted into the hash-map with the original (dangling)

pointer as the key, so that next time the receiver is asked to transport the same dangling

pointer it can simply lookup and return the existing allocation.

When a shared pointer that has already been visited is passed to Message::

packSharedPtr and it is found within the hash-map then sending process can simply

return as no memory needs to be transported; the receiving process uses the dangling

pointer passed to it to retrieve the valid pointer that was previously allocated and

transported the last time the shared pointer was visited. All interaction with the hash-map

is performed through the pointerMap.find and pointerMap.insert functions of

the Message object. These functions are further discussed in Section Hash-map

implementation.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 28/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

A nice property of this scheme is that the hash-map is never communicated and is

constructed independently on both the sending and receiving processes. This means that

for non-buffered communications the sender and receiver can traverse the structure in

parallel (lock-step), and for buffered communications or buffered/non-buffered file-

access the processes can traverse the structure independently.

Message::packSTL
As part of the transport API, we provide helper functions for moving common C++ STL

containers. Listing 16 shows the implementation of Message::packSTL for C++ std::

vector’s of both deep and non-deep types. This is very similar to the implementation of

Message::packPtr discussed previously with the slight difference that instead of making

a new allocation on the receiving processes via transportAlloc we instead repair the

internal pointer of the given std::vector by calling the placement-new operator to

recreate the vector in place (as discussed in Listing 3). The implementations of Message::

packSTL for other STL containers is conducted in the same way and is omitted here.

Listing 16 MEL implementation–Message::packSTL for std::vector.

1 // Transport a std::vector of deep types

2 template<typename D>

3 inline enable_if_deep<D> packSTL(std::vector<D> &obj) {

4 // std::vector::size() is safe to access even if the internal

5 // pointer is invalid

6 int len = obj.size();

7 // If this is a recieving process then we need to repair the

8 // dangling internal pointer

9 if (!TRANSPORT_METHOD::SOURCE) {

10 // std::vector forces construction of elements

11 new (&obj) std::vector<D>(len, D());

12 // we need to call the destructor explicitly in case any

13 //resources were acquired upon default construction of each

14 // element.

15 for (int i = 0; i < len; ++i) (&obj[i])->~D();

16 }

17

18 D *p = &obj[0];

19 if (len > 0) transport(p, len);

20

21 // Followed by the recursion for deep types

22 for (int i = 0; i < len; ++i) {

23 obj[i].DeepCopy(*this);

24 }

25 }

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 29/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Message::packRootVar, Message::packRootPtr, &
Message::packRootSTL

Finally, we provide a set of functions to simplify the implementation of the top-

level interface. Recall that Message::packVar is only defined for deep types and

assumes that the object’s footprint is always transported with the parent object.

This is not the case for the top-level functions as no parent has been transported; in

this case we must explicitly transport the object footprint regardless of whether it is

deep or not.

A similar scenario occurs for pointers passed to the top-level interface. In order to

avoid duplicating all of the top-level functions to account for whether the root pointer is

shared we always insert it into the hash-map as this is a small constant overhead that does

not affect performance. Recall from the implementation of Message::packSharedPtr

that on the receiving processes the dangling pointer from the sender is used as the key into

the hash-map. Because of this, for the root pointer we must explicitly transport the

address-value of the pointer from the sender to the receiving processes so they can insert it

into their hash-maps.

Finally, when considering STL containers passed to the top-level interface, receiving

processes cannot query .size() of the container as its footprint was not previously

transported. Instead, we explicitly transport the size of the container and call .resize()

on the receiving processes.

Listing 17 MEL implementation–Message::packRootVar, Message::packRootPtr, & Message::

packRootSTL.

1 // Transport the footprint of a non-deep object

2 template<typename T>

3 inline enable_if_not_deep<T> Message::packRootVar(T &obj) {

4 transport(obj); // Transport the footprint

5 }

6

7 // Transport the footprint of a deep object and call its

8 // DeepCopy function

9 template<typename D>

10 inline enable_if_deep<D> Message::packRootVar(D &obj) {

11 transport(obj); // Transport the footprint

12 obj.DeepCopy(*this); // Recurse on the deep structure

13 }

14

15 // Transport a root pointer to len deep objects

16 template<typename D>

17 inline enable_if_deep<D> Message::packRootPtr(D *&ptr, int len = 1) {

18 // Explicitly transport the pointer value for the root node

19 // so the it can be hashed correctly on recieving processes

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 30/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

20 size_t addr = (size_t) ptr;

21 transport(addr);

22 ptr = (D*) addr;

23

24 // Same as packSharedPtr, except we don't need to check the pointer

25 D *oldPtr = ptr;

26 transportAlloc(ptr, len);

27 pointerMap.insert(oldPtr, ptr);

28

29 // Followed by the recursion for deep types

30 if (ptr != nullptr) {

31 for (int i = 0; i < len; ++i) ptr[i].DeepCopy(*this);

32 }

33 }

34

35 // Transport a root stl container to len deep objects

36 template<typename D>

37 inline enable_if_deep<D> packRootSTL(std::vector<D> &obj) {

38 // Explicitly transport the length of the container

39 int len;

40 if (TRANSPORT_METHOD::SOURCE) {

41 len = obj.size(); transport(len);

42 }

43 else {

44 transport(len); obj.resize(len, D());

45 for (int i = 0; i < len; ++i) (&obj[i])->~D();

46 }

47

48 D *p = &obj[0];

49 if (len > 0) transport(p, len);

50

51 // Followed by the recursion for deep types

52 for (int i = 0; i < len; ++i) {

53 obj[i].DeepCopy(*this);

54 }

55 }

Transport method implementation & usage
A transport method is a class which provides a single public-member function of the form

template<typename T> inline void transport(T *&ptr, const int len)

which defines how to move len objects of type T from a given pointer ptr. Listing 18

shows the implementation of the TransportSend transport method, which defines

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 31/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

how to move data using a discrete MPI_Send for each transport. An instance of a

transport method carries any state needed to represent the data movement over the

duration of the deep copy. In the case of TransportSend the state needed to

represent the transfer are the MPI rank of the destination process, a tag to use for the

communication, and the MPI communicator over which the data will be transferred.

For other transport methods the state may be a file handle, or a pointer to an

array used for buffering.

Listing 18 MEL implementation–transport method for Message.

1 class TransportSend {

2 private:

3 // Members - Store any state or resources needed to maintain

4 // this transport method

5 const int pid, tag;

6 const MEL::Comm comm;

7

8 public:

9 // A transport method is either a source or a destination

10 // This is known at compile time

11 static constexpr bool SOURCE = true;

12

13 TransportSend(const int _pid, const int _tag, const MEL::Comm

&_comm)

14 : pid(_pid), tag(_tag), comm(_comm) {}

15

16 // Transport function describes how to move data, in this case by

17 // performing an MPI_Send

18 template<typename T>

19 inline void transport(T *&ptr, const int len) {

20 MEL::Send(ptr, len, pid, tag, comm);

21 }

22 };

Listing 19 shows the implementation of one of the top-level interface functions for

performing deep copy as an MPI_Send operation. A Message<TransportSend>

object is instantiated, and the parameters from the function are transparently

forwarded to the instance of the transport method within the Message object using

std::forward<Args>(args). After creating the message object the pointer to the

deep structure can be transported by calling Message::packRootPtr from the

transport API.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 32/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Listing 19 MEL implementation–usage of a transport method in the top-level interface.

1 template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>

2 inline enable_if_pointer<P> Send(P &ptr, const int dst, const int

tag, const Comm &comm) {

3 // Arguments to the Message constructor are std::forward'd to the

4 // TransportSend constructor

5 Message<TransportSend, HASH_MAP> msg(dst, tag, comm);

6

7 // Transport the deep-structure

8 msg.packRootPtr(ptr);

9 }

When performing a buffered deep copy the data is first packed into a contiguous buffer

on the sending process before being transported as a single operation to the receiving

processes where the data can then be expanded back into the deep structure. Listing 20

shows the implementation of BufferedSend and BufferedRecv which make use of the

TransportBufferWrite and TransportBufferRead transport methods.

Listing 20 MEL implementation–usage of a buffered transport method in the top-level interface.

1 template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>

2 inline enable_if_pointer<P> BufferedSend(P &ptr, const int dst,

3 const int tag,

4 const Comm &comm) {

5 // Compute the buffer size for the deep structure and transport it

6 MEL::Deep::BufferedSend(ptr, dst, tag, comm, MEL::Deep::

BufferSize(ptr));

7 }

8

9 template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>

10 inline enable_if_pointer<P> BufferedSend(P &ptr, const int dst,

11 const int tag,

12 const Comm &comm,

13 const int bufferSize) {

14 // Allocate the buffer for packing

15 char *buffer = MEL::MemAlloc<char>(bufferSize);

16

17 // Deep-copy into the buffer

18 Message<TransportBufferWrite,HASH_MAP>msg(buffer,bufferSize);

19 msg.packRootPtr(ptr);

20

21 // Send the buffer in one message. Uses Message<TransportSend>

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 33/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

22 // bufferSize represents an upperbound on how much data there

23 // is to transport,

24 // msg.getOffset() gives us how much data was actually packed into

25 // the buffer

26 MEL::Deep::Send(buffer, msg.getOffset(), dst, tag, comm);

27

28 // Clean up the buffer

29 MEL::MemFree(buffer);

30 }

31

32 template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>

33 inline enable_if_pointer<P> BufferedRecv(P &ptr, const int src,

34 const int tag,

35 const Comm &comm) {

36 // Recieve the packed buffer in one message. Uses

37 // Message<TransportRecv>

38 int bufferSize;

39 char *buffer = nullptr;

40 MEL::Deep::Recv(buffer, bufferSize, src, tag, comm);

41 //bufferSizeonthereceivingprocessesisequaltomsg.getOffset()

42 // on the sending process

43

44 // Deep-copy out of the buffer

45 Message<TransportBufferRead, HASH_MAP> msg(buffer, bufferSize);

46 msg.packRootPtr(ptr);

47

48 // Clean up the buffer

49 MEL::MemFree(buffer);

50 }

The last parameter to buffered transport methods on sending processes is an integer

value representing the byte size of the contiguous buffer to use for packing the deep

structure. If this value is omitted an overloaded version of the function computes the

upper-bound of the buffer size needed by calling MEL::Deep::BufferSize before

forwarding its parameters to the main function overload.

Note that on the sending process for a buffered transport that msg.getOffset() is used

as the length parameter when transporting the buffer (Listing 20, line 19) and not the

bufferSize parameter. This means that if the sender blindly requests a large buffer

because it does not know the size of the deep structure exactly, but only a part of the buffer

is filled, only the used part of the buffer will be transported to the receiving processes.

In the scenario where the buffer size given was not large enough to complete the deep

copy, a run-time assertion occurs.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 34/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Hash-Map implementation
The Message object is templated on a hash-map type that exposes public-member

functions of the form:

template<typename T> inline bool find(T* oldPtr, T* &ptr)

template<typename T> inline void insert(T* oldPtr, T* ptr)

This allows the user to provide an implementation of a hashing scheme optimized for

pointers or to provide an adapter to a third-party hash-map implementation. One of the

goals of MEL is to be portable and to not introduce external dependencies on the users

code; because of this, our default hash-map implementation (Listing 21) is simply a

wrapper around a std::unordered_map container between two void pointers.

Listing 21 MEL implementation–default hash-map interface for MEL::Deep::Message.

1 class PointerHashMap {

2 private:

3 // Hashmaps for storing pointers to types of any size

4 std::unordered_map<void*, void*> pointerMap;

5

6 public:

7 // Pointer hashmap public interface

8

9 // Returns true if oldPtr is found in the hash-map and sets ptr

10 // equal to the stored value

11 // Otherwise returns false and ptr is unaltered

12 template<typename T>

13 inline bool find(T* oldPtr, T* &ptr) {

14 // Is oldPtr already in the hashmap?

15 const auto it = pointerMap.find((void*) oldPtr);

16

17 if (it != pointerMap.end()) {

18 // If so set ptr equal to the value stored in the hashmap

19 ptr = (T*) it->second;

20 return true;

21 }

22 return false;

23 }

24

25 // Insert ptr into the hashmap using oldptr as the key

26 template<typename T>

27 inline void insert(T* oldPtr, T* ptr) {

28 pointerMap.insert(std::make_pair((void*)oldPtr,(void*)ptr));

29 }

30 };

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 35/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

BENCHMARKS
For benchmarking we used the Swansea branch of the HPCWales compute cluster. Nodes

contain two Intel Xeon E5-2670 processors for a total of 16 physical cores with 64GB’s of

RAM per-node, connected with Infiniband 40 Gbps networking. Benchmarks were run

using Intel MPI 4.1 and compiling under Intel ICPC 13.0.1.

Case study: ray-tracing scene structure
To evaluate the performance of our algorithms relative to the equivalent hand coded MPI

implementations and to other libraries that offer deep copy semantics such as Boost

Serialization Library (Cogswell, 2005), we used the example of deep copying a large

binary-tree structure between processes in the context of a distributed ray-tracer. A 3D

scene (Fig. 3) is loaded on one process, consisting of triangular meshes, cameras,

materials, and a bounding volume hierarchy to help accelerate ray-triangle intersection

tests.

For each experiment, a scene was loaded containing increasing numbers of the classic

Utah Teapot mesh. The scene structure was then communicated using the various

algorithms and the performance measured by comparing the times spent between

MPI_Barrier’s before and after the communication.

Broadcast–MPI vs. MEL
For this example, just 4 lines of code calling the transport API were added to the

BVH TreeNode and Scene structs (see appendix Scene Object containing MEL

Deep Copy Methods) to enable both buffered and non-buffered deep copy using our

algorithm.

By comparison, the hand coded MPI non-buffered (see appendix Hand coded Non-

Buffered Bcast of Scene Object) method took 34 lines of code, and 70 lines of code for the

MPI buffered (see appendix Hand Coded Buffered Bcast of Scene Object) algorithm (not

including comments, formatting, or trailing brackets), where pointers, allocations, and

object construction had to be managed manually by the programmer. Also, these

implementations only handled the case of Bcast operations, while the MEL version

works transparently with all operations.

Despite its generic interface and minimal syntax, our algorithm performs almost

identically with hand coded MPI implementations in fewer lines of code and a fraction of

the code complexity. Relevant code for this example is given in appendix Experiment 1:

Broadcasting a Large Tree Structure.

Figure 4A shows the resulting times from broadcasting increasingly larger scenes

with each algorithm, between 256 nodes on HPC Wales. We can see that the buffered

methods that only send a small constant number of messages between processes are faster

than non-buffered methods despite the added overheads from packing and unpacking the

data. The scalability of our algorithm with respect to the number of MPI processes

involved in the communication is only bounded by the scalability of the transport method

itself. In the case of a broadcast operation, Fig. 4B shows that varying the number

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 36/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

processes is of the same complexity as the underlying MPI_Bcast communication

(logarithmic).

File Write/Read–MEL vs. Boost
When fault tolerance is a concern one method for recovering from a failed process is

to periodically cache the current state of what is being worked on to disk so that in the

event of a failure the data can be reloaded on a new process (potentially on a different

node) and the work continued from the point at which it was last saved. When the data

needed to store the state of a process is deep we incur the same problems that arise during

deep copy. MEL implements file read and write operations for both buffered and non-

buffered file access, utilizing the same user defined deep copy functions needed for the

broadcast, send, and receive methods. For this experiment we also compared our

performance to the Boost Serialization Library which is designed for saving and restoring

structured data from file.

Figure 5 shows the results of using MEL to write/read a large tree structure to or from

file. Unlike with MPI communications where MEL’s buffered methods performed

considerably faster than non-buffered variants due to the overheads from starting and

ending network communications; with file access non-buffered reads perform almost

identically to buffered methods. This is due to std::fstream’s use of an internal buffer to

optimize file access, meaning that cost of starting and ending write/read operations is

negligible compared to the cost of traversing the deep structure. While Boost Serialize also

uses C++ streams their method of traversing the deep structure incurs significant

overheads leading to poor and differing performance when reading and writing data.

Finally, non-buffered writes perform slightly poorer then buffered writes due to file

system having to allocate additional blocks as the file grows.

Figure 3 Utah teapot mesh used for benchmarks.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 37/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Case study: graphs with cycles
In the previous example the implementation of TreeNode was simplified by the

observation that tree nodes were only pointed to from a single parent. However, in

many applications multiple objects may share a common child. To show how MEL copes

with structures containing pointers to shared dependents we used the example of

communicating generic directed graph structures constructed in various connectivities

(see Fig. 6A–6D). Relevant code for this example can be found in appendix Experiment 2:

Communicating Generic Directed Graph structures.

Fully connected graphs
Figure 7 shows the results for communicating fully connected graph structures of

increasing size in terms of broadcast (Fig. 7A) and writing a checkpoint to file (Fig. 7B).

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Teapots (994 triangles each)

0

1

2

3

4

5

6

7

8

T
im

e
(S

ec
on

ds
)

Ray Tracing Scene Object

Single Node File-IO to Local SSD

MEL Write
MEL Buffered Write
MEL Read
MEL Buffered Read
Boost Write
Boost Read

Figure 5 Time comparison of MEL to Boost Serialization Library for File Read/Write on a single

node, to a within node Solid State Drive.

A B

Figure 4 Time comparison of algorithms broadcasting large tree structures between processes

within node and on separate nodes. MEL requires the addition of four simple lines of code which

greatly accelerate programming time and vastly reduces the chance of user induced bugs.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 38/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

In this example, n independent graph nodes will be traversed, each containing a list of

pointers to all n nodes; during deep copy the hash-map will be queried n2 times and will

grow to contain n entries. Compared to the previous broadcast example for the ray tracing

case study (Section Broadcast–MPI vs. MEL) where buffered communication showed

better performance, with fully connected graphs we see the opposite effect. Non-buffered

communication is consistently faster when the number of shared dependents is high.

Internally, shared pointers are tracked using a hash table to ensure that only distinct

pointers are transported and duplicates linked correctly. Because of the overheads

attached to insert and find operations on the hash table, when the number of shared

dependents is high the overhead from sending separate communications for each object

in the structure is small compared to that of accessing the hash table. This has the effect of

making the overhead from buffering the structure into a contiguous array for transport a

bottleneck for deep copy.

A similar trend is observed for file access, where non-buffered access is more efficient

than buffered. In this example we also compare MEL to Boost Serialization library.

Here shared pointer usage introduces significant overheads for Boost that our method

avoids leading to significantly improved performance.

Figure 6 Graph connectivities for {20, 21, 22, 23, 24, : : : } nodes.

A B

Figure 7 Time comparison for broadcast and file-IO operations on fully connected graph structures.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 39/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Random graph
Next we look at graphs with random connectivities. Figure 8 shows the results of

communicating randomly generated graphs of different sizes for broadcasting (Fig. 8A)

and writing a checkpoint to file (Fig. 8B). With this example, n independent graph nodes

will be traversed, each containing a list of pointers to a random number of nodes (at least

one); during deep copy the hash-map will be queried between n and n2 times and will

grow to contain n entries. Again, we see that when the number of shared dependents

within the structure is large non-buffered communication performs consistently better

than for buffered. We also see slightly better performance than with the fully connected

graphs, showing that time complexity scales linearly with the number of graph edges. For

file access the same trends emerge, where our method performs considerably faster than

Boost Serialization.

Ring graph
A ring graph can be modeled a doubly-linked list where the last element is connected

back to the first element in the structure. For this example, n independent graph nodes

will be traversed, each containing a list of two pointers to previous and next nodes; during

deep copy the hash-map will be queried 2n times and will grow to contain n entries.

Figure 9 shows the results of communicating large ring structures for broadcasting

(Fig. 9A) and writing a checkpoint to file (Fig. 9B). Because the number of shared edges is

small we initially see that buffered communication is faster than non-buffered as with

Section Broadcast–MPI vs. MEL. As the number of graph nodes in the structure passes

2,400, the amount of time needed to buffer the structure becomes larger than the

overhead associated with starting and stopping separate MPI communications making

non-buffered method more efficient for larger structures. For file access, we still see that

our methods perform consistently faster than Boost’s even when the number of shared

dependents is low.

Binary tree
Finally, we look at the example of constructing a binary tree shaped graph where there are

no shared dependents. The generic container does not know this, and still must use

A B

Figure 8 Time comparison for broadcast and file-IO operations on randomly connected graph

structures.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 40/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Message::packSharedPtr to transport child nodes, meaning it still incurs overheads

of pointer lookup. In this example, n independent graph nodes will be traversed, each

containing a list of one or two pointers to descending child nodes; during deep copy

the hash-map will be queried n times and will grow to contain n entries. Figure 10 shows

the results of communicating binary trees of different sizes in terms of broadcast (Fig. 10A)

and writing a checkpoint to file (Fig. 10B). Similarly to communicating ring graphs,

buffered network communication is significantly faster non-buffered methods until the

structure becomes large enough that buffering becomes the main bottleneck.

For file access the opposite is true, with non-buffered file access being slightly faster

than buffered. We attribute this to std::fstream’s use of internal buffering, which

renders the overheads from our fully buffered method unnecessary in this use case.

CONCLUSIONS AND FUTURE WORK
In this paper we have presented our implementation of deep copy semantics that

encapsulates both buffered and non-buffered methods for dealing with complex

structured data in the context of MPI inter-process communication and file access. Users

may choose shared versions for when data structures contain cycles or faster non-shared

variants for when they do not. We have shown that a generic implementation of such

semantics can achieve like for like performance with hand crafted implementations while

A B

Figure 9 Time comparison for broadcast and file-IO operations on ring graph structures.

A B

Figure 10 Time comparison for broadcast and file-IO operations on binary tree graph structures.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 41/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

dramatically reducing code complexity and decreasing the chance for programmer error.

We also demonstrate the method to be faster than utilizing Boost Serialization Library.

MEL non-buffered methods provide a generic, low memory overhead, high performance

(equal to hand crafted) solution to the deep copy problem.

In the future we intend to include the implementation of a non-blocking top-level

interface for asynchronous deep copy, additional transport methods for communicating

deep structured data to CUDA and OpenCL based accelerators, and a hash-map

implementation highly optimized for pointers.

The algorithms discussed in this paper are implemented as part of the MEL, which

is currently in development with the goal of creating a light weight, header only C++

wrapper around the C-style functions exposed by the MPI-3 standard, with backwards

compatibility for systems where only MPI-2 is available. We plan to keep MEL in active

development and hope that the research community will join us as we continue to

grow the features and capabilities encompassed within the project.

MEL is Open-Source and available on Github under the MIT license at: https://github.

com/CS-Swansea/MEL.

APPENDICES
Experiment 1: broadcasting a large tree structure
Full code for this example is available at https://github.com/CS-Swansea/MEL/ under

example-code/RayTracingDeepCopy.cpp.

Listing 22 Deep copy of ray tracing scene object.

1 //---//

2 // Example Usage: //

3 // mpirun -n [number of processes] ./RayTracingDeepCopy [mesh path]

[method index] //

4 // mpirun -n 8 ./RayTracingDeepCopy "Teapot.obj" 0 //

5 //---//

6 int main(int argc, char *argv[]) {

7 MEL::Init(argc, argv); // Setup

8

9 // Who are we?

10 MEL::Comm comm = MEL::Comm::WORLD;

11 const int rank = MEL::CommRank(comm),

12 size = MEL::CommSize(comm);

13

14 // Check param count

15 if (argc != 3) {

16 if (rank == 0) std::cout << "Wrong number of parameters..."<<

std::endl;

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 42/59

https://github.com/CS-Swansea/MEL
https://github.com/CS-Swansea/MEL
https://github.com/CS-Swansea/MEL/
http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

17 MEL::Exit(-1);

18 // ^^ Equivalent of calling MPI_Finalize() followed by

19 // std::exit(-1)

20 }

21

22 // Which model should we load and which algorithm should we use?

23 const std::string meshPath = std::string(argv[1]);

24 const int method = std::stoi(argv[2]);

25

26 // Load the scene on the root process

27 Scene *scene = nullptr;

28 if (rank == 0) {

29 std::cout << "Loading scene..." << std::endl;

30 scene = loadScene(meshPath);

31 }

32

33 MEL::Barrier(comm);

34 auto startTime = MEL::Wtime();// Start the clock!

35

36 // Broadcast the Scene structure with the selected method

37 switch (method) {

38 case 0:

39 MEL::Deep::Bcast(scene, 0, comm); // Call MEL::Deep method.

40 break;

41 case 1:

42 MEL::Deep::BufferedBcast(scene, 0, comm);

// Call MEL::Deep method.

43 break;

44 case 2:

45 MPI_NonBufferedBcast_Scene(scene, 0, (MPI_Comm) comm);

// Hand written below

46 break;

47 case 3:

48 MPI_BufferedBcast_Scene(scene, 0, (MPI_Comm) comm);

// Hand written below

49 break;

50 default:

51 if (rank == 0) std::cout << "Invalid method index..." << std::

endl;

52 MEL::Exit(-1);

53 }

54

55 MEL::Barrier(comm);

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 43/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

56 auto endTime = MEL::Wtime(); // Stop the clock!

57

58 if (rank == 0) {

59 std::cout << "Broadcast Scene in " << (endTime - startTime)

60 << " seconds..." << std::endl;

61 }

62

63 // All processes now have a Scene pointer that points to an

64 // equivalent data-structure

65

66 //---//

67 // Now we can do some ray-tracing using the scene object! //

68 //---//

69

70 // Clean up

71 MEL::MemDestruct(scene);

72 // ^^ Equivalent to explicitly calling the destructor followed by

73 // MPI_Free_mem.

74 // scene->~Scene();

75 // MPI_Free_mem(scene);

76

77 MEL::Finalize(); // Tear down

78 return 0;

79 }

Scene object containing MEL deep copy methods

Listing 23 Ray tracing scene object.

1 //--//

2 // Structure representing a node in the BVH Tree //

3 //---//

4 struct TreeNode {

5 int startElem, endElem; // Start and End indices

into vector of triangles

6 Vec v0, v1; // Vec is non-deep struct

7 TreeNode *leftChild, *rightChild; // TreeNode is deep struct

8

9 TreeNode() : TreeNode(0, 0) {}

10 TreeNode(const int _s, const int _e) : startElem(_s), endElem(_e),

11 leftChild(nullptr),

12 rightChild(nullptr),

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 44/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

13 v0{ INF, INF, INF },

14 v1{ -INF, -INF, -INF } {}

15

16 // Ensure TreeNode can't be used incorrectly

17 TreeNode(const TreeNode &old) = delete;

// Remove CopyConstructor

18 inline TreeNode& operator=(const TreeNode &old) = delete;

// Remove CopyAssignment

19 TreeNode(TreeNode &&old) = delete;

// Remove MoveConstructor

20 inline TreeNode& operator=(TreeNode &&old) = delete;

// Remove MoveAssignment

21

22 ∼TreeNode() {

23 MEL::MemDestruct(leftChild);

24 MEL::MemDestruct(rightChild);

25 }

26

27 // Implementation of Ray-TreeNode (Ray-AABB) intersection

28 // omitted for this example

29 bool intersect(const Ray &rayInv, double &tmin, const

double dist) const;

30

31 template<typename MSG>

32 inline void DeepCopy(MSG &msg) {

33 msg.packPtr(leftChild);

34 msg.packPtr(rightChild);

35 }

36 };

37

38 //---//

39 // Structure representing a scene object to be rendered //

40 //---//

41 struct Scene {

42 Camera camera; // Camera is non-deep struct

43 std::vector<Material> materials; // Material is non-deep struct

44 std::vector<Triangle> mesh; // Triangle is non-deep struct

45 TreeNode *rootNode; // TreeNode is deep struct

46

47 Scene() : rootNode(nullptr) {}

48

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 45/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

49 // Ensure Scene can't be used incorrectly

50 Scene(const Scene &old) = delete; // Remove

CopyConstructor

51 inline Scene& operator=(const Scene &old) = delete; // Remove

CopyAssignment

52

53 // Move Constructor

54 Scene(Scene &&old) : mesh(std::move(old.mesh)),

55 materials (std::move(old.materials)),

56 camera(old.camera),rootNode(old.rootNode){

57 old.mesh.clear();

58 old.materials.clear();

59 old.rootNode = nullptr;

60 }

61

62 // Move Assignment Operator

63 inline Scene& operator=(Scene &&old) {

64 mesh = std::move(old.mesh);

65 materials = std::move(old.materials);

66 rootNode = old.rootNode;

67 camera = old.camera;

68 old.mesh.clear();

69 old.materials.clear();

70 old.rootNode = nullptr;

71 return *this;

72 }

73

74 ∼Scene() {
75 MEL::MemDestruct(rootNode);

76 }

77

78 // Implementation of Ray-Scene intersection omitted for this example

79 bool intersect(const Ray &ray, Intersection &isect) const;

80

81 template<typename MSG>

82 inline void DeepCopy(MSG &msg) {

83 msg & mesh & materials;

84 msg.packPtr(rootNode);

85 }

86 };

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 46/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Hand coded non-buffered Bcast of scene object

Listing 24 Hand coded non-buffered Bcast of ray tracing scene object.

1 inline void MPI_NonBufferedBcast_Scene(Scene *&scene, const int

root, const MPI_Comm comm) {

2 int rank;

3 MPI_Comm_rank(comm, &rank);

4

5 // Receiving nodes allocate space for scene

6 if (rank != root) {

7 MPI_Alloc_mem(sizeof(Scene), MPI_INFO_NULL, &scene);

8 new (scene) Scene();

9 }

10

11 // Bcast the camera struct

12 MPI_Bcast(&(scene->camera), sizeof(Camera), MPI_CHAR, root,

comm);

13

14 // Bcast the vector sizes

15 int sizes[2];

16 if (rank == root) {

17 sizes[0] = (int) scene->mesh.size();

18 sizes[1] = (int) scene->materials.size();

19 }

20 MPI_Bcast(sizes, 2, MPI_INT, root, comm);

21

22 // ′Allocate′ space for vectors

23 if (rank != root) {

24 scene->mesh.resize(sizes[0]);

25 scene->materials.resize(sizes[1]);

26 }

27

28 // Bcast the vectors

29 MPI_Bcast(&(scene->mesh[0]), sizeof(Triangle) * sizes[0],

MPI_CHAR, root, comm);

30 MPI_Bcast(&(scene->materials[0]), sizeof(Material) * sizes[1],

MPI_CHAR, root, comm);

31

32 // Receiving nodes allocate space for rootNode

33 if (rank != root) {

34 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

&(scene->rootNode));

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 47/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

35 new (scene->rootNode) TreeNode();

36 }

37

38 // While the stack is not empty there is work to be done

39 std::stack<TreeNode*> treeStack;

40 treeStack.push(scene->rootNode);

41 while (!treeStack.empty()) {

42 // Get the current node to traverse

43 TreeNode *currentNode = treeStack.top();

44 treeStack.pop();

45

46 // Bcast the current node's values

47 MPI_Bcast((currentNode), sizeof(TreeNode), MPI_CHAR,

root, comm);

48

49 // Do we need to send/receive children?

50 bool hasChildren = (currentNode->leftChild != nullptr);

51

52 if (hasChildren) {

53 // Allocate space for child nodes on receiving process

54 if (rank != root) {

55 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

&(currentNode->leftChild));

56 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

&(currentNode->rightChild));

57 new (currentNode->leftChild) TreeNode();

58 new (currentNode->rightChild) TreeNode();

59 }

60

61 // Push children onto the stack so they get processed

62 treeStack.push(currentNode->leftChild);

63 treeStack.push(currentNode->rightChild);

64 }

65 }

66 }

Hand coded buffered Bcast of scene object

Listing 25 Hand coded buffered Bcast of ray tracing scene object.

1 inline void MPI_BufferedBcast_Scene(Scene *&scene, const int root,

const MPI_Comm comm) {

2 int rank;

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 48/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

3 MPI_Comm_rank(comm, &rank);

4

5 // Receiving nodes allocate space for scene

6 if (rank != root) {

7 MPI_Alloc_mem(sizeof(Scene), MPI_INFO_NULL, &scene);

8 new (scene) Scene();

9 }

10

11 // Calculate the byte size of the tree on root process

12 int packed_size = 0;

13 if (rank == root) {

14 packed_size += sizeof(Camera);

15 packed_size += sizeof(int) + ((int) scene->mesh.size()

* sizeof(Triangle));

16 packed_size += sizeof(int) + ((int) scene->materials.size()

* sizeof(Material));

17

18 // While the stack is not empty there is work to be done

19 std::stack<TreeNode*> treeStack;

20 treeStack.push(scene->rootNode);

21 while (!treeStack.empty()) {

22 // Get the current node to traverse

23 TreeNode *currentNode = treeStack.top();

24 treeStack.pop();

25

26 packed_size += sizeof(TreeNode);

27

28 // Do we need to send children?

29 bool hasChildren = (currentNode->leftChild != nullptr);

30

31 if (hasChildren) {

32 // Push children onto the stack so they get processed

33 treeStack.push(currentNode->leftChild);

34 treeStack.push(currentNode->rightChild);

35 }

36 }

37 }

38

39 // Share the buffer size to all processes

40 MPI_Bcast(&packed_size, 1, MPI_INT, root, comm);

41

42 // Allocate the buffer

43 int position = 0;

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 49/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

44 char *buffer;

45 MPI_Alloc_mem(packed_size, MPI_INFO_NULL, &(buffer));

46

47 // If root then we pack the structure into the buffer

48 if (rank == root) {

49 // Pack the camera struct

50 MPI_Pack(&(scene->camera), sizeof(Camera), MPI_CHAR,

buffer, packed_size, &position, comm);

51

52 int mesh_size = scene->mesh.size(),

53 materials_size = scene->materials.size();

54

55 // Pack the mesh vector

56 MPI_Pack(&(mesh_size), 1, MPI_INT, buffer, packed_size,

&position, comm);

57 MPI_Pack(&(scene->mesh[0]), mesh_size * sizeof(Triangle),

58 MPI_CHAR, buffer, packed_size, &position, comm);

59

60 // Pack the materials vector

61 MPI_Pack(&(materials_size), 1, MPI_INT, buffer,

packed_size, &position, comm);

62 MPI_Pack(&(scene->materials[0]), materials_size

* sizeof(Material),

63 MPI_CHAR, buffer, packed_size, &position, comm);

64

65 // While the stack is not empty there is work to be done

66 std::stack<TreeNode*> treeStack;

67 treeStack.push(scene->rootNode);

68 while (!treeStack.empty()) {

69 // Get the current node to traverse

70 TreeNode *currentNode = treeStack.top();

71 treeStack.pop();

72

73 // Pack the current node

74 MPI_Pack(currentNode, sizeof(TreeNode),

75 MPI_CHAR,buffer,packed_size,&position,comm);

76

77 // Do we need to send children?

78 bool hasChildren = (currentNode->leftChild != nullptr);

79

80 if (hasChildren) {

81 // Push children onto the stack so they get processed

82 treeStack.push(currentNode->leftChild);

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 50/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

83 treeStack.push(currentNode->rightChild);

84 }

85 }

86

87 // Send the buffer

88 MPI_Bcast(buffer, packed_size, MPI_CHAR, root, comm);

89 }

90

91 // If not root then we unpack the structure from the buffer

92 else {

93 // Receive the packed buffer

94 MPI_Bcast(buffer, packed_size, MPI_CHAR, root, comm);

95

96 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

&(scene->rootNode));

97 new (scene->rootNode) TreeNode();

98

99 // Unpack the camera struct

100 int mesh_size, materials_size;

101 MPI_Unpack(buffer, packed_size, &position,

&(scene->camera),

102 sizeof(Camera), MPI_CHAR, comm);

103

104 // Unpack mesh vector

105 MPI_Unpack(buffer, packed_size, &position, &(mesh_size),

1, MPI_INT, comm);

106 scene->mesh.resize(mesh_size);

107 MPI_Unpack(buffer, packed_size, &position, &(scene->mesh

[0]),

108 mesh_size * sizeof(Triangle), MPI_CHAR, comm);

109

110 // Unpack materials vector

111 MPI_Unpack(buffer, packed_size, &position,

&(materials_size), 1, MPI_INT, comm);

112 scene->materials.resize(materials_size);

113 MPI_Unpack(buffer, packed_size, &position,

&(scene->materials[0]),

114 materials_size*sizeof(Material),MPI_CHAR,comm);

115

116 // While the stack is not empty there is work to be done

117 std::stack<TreeNode*> treeStack;

118 treeStack.push(scene->rootNode);

119 while (!treeStack.empty()) {

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 51/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

120 // Get the current node to traverse

121 TreeNode *currentNode = treeStack.top();

122 treeStack.pop();

123

124 // Unpack the current node

125 MPI_Unpack(buffer, packed_size, &position, currentNode,

126 sizeof(TreeNode), MPI_CHAR, comm);

127

128 // Do we need to receive children?

129 bool hasChildren = (currentNode->leftChild != nullptr);

130

131 if (hasChildren) {

132 // Allocate space for child nodes on receiving process

133 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

&(currentNode->leftChild));

134 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

&(currentNode->rightChild));

135 new (currentNode->leftChild) TreeNode();

136 new (currentNode->rightChild) TreeNode();

137

138 // Push children onto the stack so they get processed

139 treeStack.push(currentNode->leftChild);

140 treeStack.push(currentNode->rightChild);

141 }

142 }

143 }

144

145 // Clean up

146 MPI_Free_mem(buffer);

147 }

Experiment 2: communicating generic directed graph structures

Listing 26 Functions for constructing directed graphs in different shapes.

1 //--//

2 // Example Usage: //

3 // mpirun -n [num of procs] ./GraphCycles [graph nodes: 0 <= n]

[graph type: 0 <= t <= 3] //

4 // mpirun -n 8 ./GraphCycles 11 0 //

5 //--//

6 int main(int argc, char *argv[]) {

7 MEL::Init(argc, argv);

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 52/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

8

9 MEL::Comm comm = MEL::Comm::WORLD;

10 const int rank = MEL::CommRank(comm),

11 size = MEL::CommSize(comm);

12

13 if (argc != 3) {

14 if (rank == 0)

15 std::cout << "Wrong number of parameters..." << std::endl;

16 MEL::Exit(-1);

17 }

18

19 const int numNodes = 1 << std::stoi(argv[1]), // 2^n nodes

20 graphType = std::stoi(argv[2]);

21

22 DiGraphNode<int> *graph = nullptr;

23 if (rank == 0) {

24 switch (graphType) {

25 case 0:

26 graph = MakeBTreeGraph(numNodes);

27 break;

28 case 1:

29 graph = MakeRingGraph(numNodes);

30 break;

31 case 2:

32 graph = MakeRandomGraph(numNodes);

33 break;

34 case 3:

35 graph = MakeFullyConnectedGraph(numNodes);

36 break;

37 }

38 }

39

40 MEL::Barrier(comm);

41 auto startTime = MEL::Wtime(); // Start the clock!

42

43 // Deep copy the graph to all nodes

44 MEL::Deep::Bcast(graph, 0, comm);

45

46 MEL::Barrier(comm);

47 auto endTime = MEL::Wtime(); // Stop the clock!

48

49 if (rank == 0) {

50 std::cout << "Broadcast Graph in " << (endTime - startTime)

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 53/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

51 << " seconds..." << std::endl;

52 }

53

54 // File name for output

55 std::stringstream sstr;

56 sstr << "rank=" << rank << " type=" << graphType << " nodes="

<< numNodes << ".graph";

57

58 // Save the output to disk from each node

59 std::ofstream graphFile(sstr.str(), std::ios::out |

std::ios::binary);

60 if (graphFile.is_open()) {

61 MEL::Deep::FileWrite(graph, graphFile);

62 graphFile.close();

63 }

64

65 DestructGraph(graph);

66

67 MEL::Finalize();

68 return 0;

69 }

Factory functions for building directed graphs in different shaped structures

Listing 27 Functions for constructing directed graphs in different shapes.

1 inline DiGraphNode<int>* MakeBTreeGraph(const int numNodes) {

2 /// BTree Graph

3 std::vector<DiGraphNode<int>*> nodes(numNodes);

4 for (int i = 0; i < numNodes; ++i) {

5 nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);

6 }

7

8 if (numNodes > 1) nodes[0]->edges.push_back(nodes[1]);

9

10 for (int i = 1; i < numNodes; ++i) {

11 const int j = ((i - 1) * 2) + 2;

12 nodes[i]->edges.reserve(2);

13 if (j < numNodes) nodes[i]->edges.push_back(nodes[j]);

14 if ((j + 1) < numNodes) nodes[i]->edges.push_back(nodes

[j + 1]);

15 }

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 54/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

16 return nodes[0];

17 }

18

19 inline DiGraphNode<int>* MakeRingGraph(const int numNodes) {

20 /// Ring Graph

21 std::vector<DiGraphNode<int>*> nodes(numNodes);

22 for (int i = 0; i < numNodes; ++i) {

23 nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);

24 }

25

26 for (int i = 0; i < numNodes; ++i) {

27 nodes[i]->edges.reserve(2);

28 nodes[i]->edges.push_back(nodes[(i + 1) % numNodes]);

29 nodes[i]->edges.push_back(nodes[(i == 0) ? (numNodes - 1) :

(i - 1)]);

30 }

31 return nodes[0];

32 }

33

34 inline DiGraphNode<int>* MakeRandomGraph(const int numNodes) {

35 srand(1234567);

36

37 /// Random Graph

38 std::vector<DiGraphNode<int>*> nodes(numNodes);

39 for (int i = 0; i < numNodes; ++i) {

40 nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);

41 }

42

43 for (int i = 0; i < numNodes; ++i) {

44 const int numEdges = rand() % numNodes;

45 nodes[i]->edges.reserve(numEdges);

46 nodes[i]->edges.push_back(nodes[(i + 1) % numNodes]);

47 for (int j = 1; j < numEdges; ++j) {

48 nodes[i]->edges.push_back(nodes[rand() % numNodes]);

49 }

50 }

51 return nodes[0];

52 }

53

54 inlineDiGraphNode<int>*MakeFullyConnectedGraph(constintnumNodes){

55 /// Fully Connected Graph

56 std::vector<DiGraphNode<int>*> nodes(numNodes);

57 for (int i = 0; i < numNodes; ++i) {

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 55/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

58 nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);

59 }

60

61 for (int i = 0; i < numNodes; ++i) {

62 nodes[i]->edges.reserve(numNodes);

63 for (int j = 0; j < numNodes; ++j) {

64 nodes[i]->edges.push_back(nodes[j]);

65 }

66 }

67

68 return nodes[0];

69 }

Generic implementation of directed graph container

Listing 28 Generic implementation of directed graph container for deep copy.

1 template<typename T>

2 struct DiGraphNode {

3 T value;

4 std::vector<DiGraphNode<T>*> edges;

5

6 DiGraphNode() {};

7 explicit DiGraphNode(const T &_value) : value(_value) {};

8

9 template<typename MSG>

10 inline void DeepCopy(MSG &msg) {

11 msg & edges;

12 for (auto &e : edges) msg.packSharedPtr(e);

13 }

14 };

15

16 inline void VisitGraph(DiGraphNode<int> *&root,

17 std::function<void(DiGraphNode<int>

*&node)> func) {

18

19 std::unordered_set<DiGraphNode<int>*> pointerMap;

20 std::stack<DiGraphNode<int>*> stack;

21

22 stack.push(root);

23 while (!stack.empty()) {

24 DiGraphNode<int> *node = stack.top();

25 stack.pop();

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 56/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

26

27 // If node has not been visited

28 if (pointerMap.find(node) == pointerMap.end()) {

29 pointerMap.insert(node);

30 for (auto e : node->edges) stack.push(e);

31 func(node);

32 }

33 }

34 }

35

36 inline void DestructGraph(DiGraphNode<int> *&root) {

37 VisitGraph(root, [](DiGraphNode<int> *&node) -> void {

38 MEL::MemDestruct(node);

39 });

40 }

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Joss Whittle is funded by an EPSRC PhD studentship. The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

EPSRC PhD studentship.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Joss Whittle conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, performed the computation work.

� Rita Borgo conceived and designed the experiments, analyzed the data,

contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts

of the paper.

� Mark W. Jones conceived and designed the experiments, analyzed the data,

contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of

the paper.

Data Deposition
The following information was supplied regarding data availability:

Source code available at: https://github.com/CS-Swansea/MEL.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 57/59

https://github.com/CS-Swansea/MEL
http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

REFERENCES
Beyer J, Oehmke D, Sandoval J. 2014. Transferring userdefined types in OpenACC. In: Proceedings

Cray User Group (CUG’14). Lugano: Cray User Group.

Boost-Community. 2015. Boost C++ libraries. Version 1.62. Available at http://boost.org (accessed

7 November 2016).

Bouteiller A. 2015. Fault-tolerant MPI. In: Herault T, Robert Y, eds. Fault-Tolerance Techniques

for High-Performance Computing, Chapter 3. Heidelberg, New York, Dordrecht, London:

Springer Publishing Company, Incorporated, 145–228.

Cogswell J. 2005. Adding an easy file save and file load mechanism to your C++ program.

InformIT. Available at http://www.boost.org/doc/libs/release/libs/serialization/ (accessed

7 November 2016).

Fagg GE, Bukovsky A, Dongarra JJ. 2001. Harness and fault tolerant MPI. Parallel Computing

27(11):1479–1495 DOI 10.1016/S0167-8191(01)00100-4.

Fagg GE, Dongarra JJ. 2004. Building and using a fault-tolerant MPI implementation.

International Journal of High Performance Computing Applications 18(3):353–361

DOI 10.1177/1094342004046052.

Friedley A, Hoefler T, Bronevetsky G, Lumsdaine A. 2013. Ownership passing: efficient

distributed memory programming on multi-core systems. In: Proceedings of the 18th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, Shenzen, China.

New York: ACM, 177–186.

GNA. 2008. Autoserial library. Available at http://home.gna.org/autoserial/mpi.html.

Goujon DS, Michel M, Peeters J, Devaney JE. 1998. Automap and autolink tools for

communicating complex and dynamic data-structures using MPI. In: Panda DK, Stunkel CB,

eds. Network-Based Parallel Computing Communication, Architecture, and Applications

CANPC ’98. Berlin, Heidelberg: Springer, 98–109.

Gropp W, Lusk E. 2004. Fault tolerance in message passing interface programs. International

Journal of High Performance Computing Applications 18(3):363–372

DOI 10.1177/1094342004046045.

Grundmann T, Ritt M, Rosenstiel W. 2000. TPO++: an object-oriented message-passing

library in C++. In: Proceedings of the 2000 international conference on parallel processing.

Piscataway: IEEE, 43–50.

Herault T, Robert Y. 2015. Fault-Tolerance Techniques for High-Performance Computing.

First edition. Switzerland: Springer International Publishing, 3–85.

Hoefler T, Snir M. 2011. Writing parallel libraries with MPI–common practice. In: Proceedings

of the 18th MPI Users’ Group Meeting. Vol. 6960. Berlin, Heidelberg: Springer, 345–355.

Huang C, Zheng G, Kalé L, Kumar S. 2006. Performance evaluation of adaptive MPI.

In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’06. New York: ACM, 12–21.

Kale LV, Krishnan S. 1993. CHARM++: a portable concurrent object oriented system based on

C++. In: Proceedings of the Eighth Annual Conference on Object-oriented Programming Systems,

Languages, and Applications, OOPSLA ’93. New York: ACM, 91–108.

Laguna I, Richards DF, Gamblin T, Schulz M, de Supinski BR. 2014. Evaluating user-level

fault tolerance for MPI applications. In: Proceedings of the 21st European MPI Users’ Group

Meeting, EuroMPI/ASIA ’14. New York: ACM, 57–62.

Lee EA. 2006. The problem with threads. Computer 39(5):33–42 DOI 10.1109/MC.2006.180.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 58/59

http://boost.org
http://www.boost.org/doc/libs/release/libs/serialization/
http://dx.doi.org/10.1016/S0167-8191(01)00100-4
http://dx.doi.org/10.1177/1094342004046052
http://home.gna.org/autoserial/mpi.html
http://dx.doi.org/10.1177/1094342004046045
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

Lee L-Q, Lumsdaine A. 2003. The generic message passing framework. In: Parallel and Distributed

Processing Symposium, 2003. Proceedings. International. Piscataway: IEEE.

McCandless BC, Squyres JM, Lumsdaine A. 1996. Object oriented MPI (OOMPI): a class library

for the message passing interface. In: MPI Developer’s Conference, 1996. Piscataway: IEEE,

87–94.

Message Passing Interface Forum. 2014. MPI: a message-passing interface standard version 3.1.

Technical report. Stuttgart, DE: High Performance Computing Center Stuttgart (HLRS).

Miller P. 2015. Productive parallel programming with CHARM++. In: Proceedings of the

Symposium on High Performance Computing HPC ’15. San Diego: Society for Computer

Simulation International, 241–242.

Renault É. 2007. Extended MPICC to generate MPI derived datatypes from C datatypes

automatically. In: Cappello F, Herault T, Dongarra J, eds. Recent Advances in Parallel

Virtual Machine and Message Passing Interface: 14th European PVM/MPI User’s Group Meeting.

Berlin, Heidelberg: Springer, 307–314.

Tansey W, Tilevich E. 2008. Efficient automated marshaling of C++ data structures for MPI

applications. In: IEEE International Symposium on Parallel and Distributed Processing, 2008.

IPDPS 2008. Piscataway: IEEE, 1–12.

Vishnu A, Dam HV, de Jong W, Balaji P, Song S. 2010. Fault-tolerant communication runtime

support for data-centric programming models. In: 2010 International Conference on High

Performance Computing, HiPC 2010, Dona Paula, Goa, India, December 19–22, 2010.

Piscataway: IEEE, 1–9.

Whittle et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.95 59/59

http://dx.doi.org/10.7717/peerj-cs.95
https://peerj.com/computer-science/

	Implementing generalized deep-copy in MPI
	Introduction
	Related Work
	When to Use Deep Copy
	MEL–The MPI Extension Library
	MEL Implementation Details
	Benchmarks
	Conclusions and Future Work
	Appendices
	References

