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ABSTRACT
Background. Artificial neural networks (ANNs) are a robust class of machine learning
models and are a frequent choice for solving classification problems. However, deter-
mining the structure of the ANNs is not trivial as a large number of weights (connection
links) may lead to overfitting the training data. Although several ANN pruning
algorithms have been proposed for the simplification of ANNs, these algorithms are not
able to efficiently copewith intricate ANN structures required for complex classification
problems.
Methods. We developed DANNP, a web-based tool, that implements parallelized
versions of several ANN pruning algorithms. The DANNP tool uses a modified version
of the Fast Compressed Neural Network software implemented in C++ to considerably
enhance the running time of the ANNpruning algorithmswe implemented. In addition
to the performance evaluation of the pruned ANNs, we systematically compared the
set of features that remained in the pruned ANNwith those obtained by different state-
of-the-art feature selection (FS) methods.
Results. Although the ANN pruning algorithms are not entirely parallelizable, DANNP
was able to speed up the ANN pruning up to eight times on a 32-core machine,
compared to the serial implementations. To assess the impact of the ANN pruning by
DANNP tool, we used 16 datasets fromdifferent domains. In eight out of the 16 datasets,
DANNP significantly reduced the number of weights by 70%–99%, while maintaining
a competitive or better model performance compared to the unpruned ANN. Finally,
we used a naïve Bayes classifier derived with the features selected as a byproduct of the
ANN pruning and demonstrated that its accuracy is comparable to those obtained by
the classifiers trained with the features selected by several state-of-the-art FS methods.
The FS ranking methodology proposed in this study allows the users to identify the
most discriminant features of the problem at hand. To the best of our knowledge,
DANNP (publicly available at www.cbrc.kaust.edu.sa/dannp) is the only available
and on-line accessible tool that provides multiple parallelized ANN pruning options.
Datasets and DANNP code can be obtained at www.cbrc.kaust.edu.sa/dannp/data.php
and https://doi.org/10.5281/zenodo.1001086.
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INTRODUCTION
Artificial neural networks (ANNs) can arbitrarily well approximate non-linear target
functions (Bishop, 2006). An extensive empirical study (Fernandez-Delgado, Cernadas &
Barro, 2014) demonstrated that a voting ensemble of ANNs achieved the best average
performance over the UCI machine learning repository on two-class classification
problems. The ANNs have been extensively used for solving different classification
problems, see, for example, (Almeida, 2002; Ashoor et al., 2011; Bajic et al., 2002; Bajic
et al., 2004; Bajic & Werner, 2005; Basheer & Hajmeer, 2000; Dias, Antunes & Mota, 2004;
Gan, Chen & Huang, 2016; Gardnera & Dorlinga, 1998; Hatzigeorgiou, 2002; Hernández-
Serna & Jiménez-Segura, 2014; Jayne, Iliadis & Mladenov, 2016; Kalkatawi et al., 2013;
Li et al., 2015; Magana-Mora et al., 2013; Magana-Mora & Bajic, 2017; Magana-Mora,
Kalkatawi & Bajic, 2017; Meireles, Almeida & Simoes, 2003; Wang et al., 2017). The ANNs
are universal approximators, given a sufficiently rich model architecture and weights
(Hornik, Stinchcombe & White, 1989), and may consist of multiple hidden layers. However,
the multilayer ANN representation rapidly increases model complexity due to the large
number of tunable weights. Moreover, the high number of weights may amplify irrelevant
characteristics or noise that may be present in the training data and lead to a poor model
generalization for unseen data. This problem is referred to as overfitting of the training
data, and different methods have been proposed to address this undesirable effect. These
methods may be broadly divided into three groups: (1) ANN regularization (Ng, 2004;
Nowlan & Hinton, 1992), (2) early stopping (Prechelt, 2012), and (3) ANNpruning (Burden
& Winkler, 2009; Reed, 1993; Srivastava et al., 2014; Wan et al., 2013). Here, we focus on
the ANN pruning as it not only simplifies the model structure but also results in fewer
computations and smaller storage requirements for the pruned network. In addition, as a
side benefit, the ANN pruning may keep the most useful features and rank their relevance
based on their predictive capabilities. Although there are different robust methods for
performing feature selection (FS) and feature ranking, selection of the FS method and the
parameters is not trivial. Refer to Soufan et al. (2015b) for more details on FS.

ANN pruning algorithms may be divided into two categories. The simplest, magnitude-
based pruning (MP) methods consist of removing weights with the lowest magnitudes.
After a certain number of weights are deleted, the ANN is retrained. While this approach
may work for some problems, removing weights with the smallest magnitudes does not
always produce the smallest increase of the error function (Hassibi, Stork & Wolff, 1993).
More sophisticated, the second category of pruning algorithms measures the sensitivity of
the second-order information of the error function with respect to the weights. As a result,
the weight that least increases the error function is removed (Hassibi, Stork & Wolff, 1993;
Karnin, 1990;Mozer & Smolensky, 1989). These approaches usually result in more accurate
models as they take advantage of the Hessian matrix (referred to as H matrix, hereafter)
to account for the additional curvature information of the error function (Hassibi, Stork &
Wolff, 1993). In this category of pruning algorithms, optimal brain damage (OBD) (LeCun
et al., 1989) uses the second-order derivative of the error function relative to the network
weights. The OBD avoids the complexity of computing theH matrix by assuming diagonal
H -matrix. Nevertheless, this assumption is not true in many cases leading to the removal of
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the wrong weights (Hassibi, Stork & Wolff, 1993), and therefore, affects the accuracy of the
resulting models. In contrast to OBD, the optimal brain surgeon (OBS) algorithm (Hassibi,
Stork & Wolff, 1993) does not assume a diagonal H matrix. Additionally, OBS provides an
approximation of the inverse H matrix (H- inverse) and is shown to produce more robust
models than MP and OBD algorithms (Hassibi, Stork & Wolff, 1993). Refer to Article S1
for further details about these methods.

However, the pruning of ANNs is a computationally expensive task that often limits its
application to real-life problems where datasets may contain a large number of samples
and data features. Therefore, speeding up the pruning process is essential for many
practical applications. Although pruning algorithms of the OBS types are not entirely
parallelizable, certain computationally intensive parts are, which lead to a significant
speedup on multicore processors. For the reasons mentioned above, this study aims
to develop a user-friendly tool with several implemented parallelized ANN pruning
algorithms able to cope with complex or medium size data. For this, we developed DANNP
tool, which implements several parallelized variants of ANN pruning algorithms. We
demonstrated the efficiency and utility of the implemented algorithms in the DANNP tool
on several small to medium size benchmark datasets. Moreover, as a useful by-product
of the ANN pruning, the pruning process selects the most useful data features for the
problem in hand. The application of the FS methods to find a subset of features to
train a classification model is often used to derive simpler and faster models. Although
in many cases the reduced number of features may result in improved performance,
the feature subset is not always capable of describing the data accurately and may
frequently result in models with inferior performance. In this study, we demonstrate
that the selected features result in similar or improved classification performance
in comparison with several state-of-the-art FS methods on the considered datasets.

MATERIALS AND METHODS
In this section, we first define the Hessian-based pruning algorithm and the implemented
modifications for the parallelization of the code, followed by the details on the FS methods.
Finally, we describe the datasets and model evaluation procedure to assess the performance
of the DANNP tool.

Hessian-based pruning formulation and DANNP parallelization
TheOBS uses the second-order information of the error function andmeasures the saliency
of the ANNweights. The algorithm evaluates the saliency by the effect on the error function
when the ANN weight vector w is perturbed. Therefore, the algorithm aims to determine
the weights that cause the least increase of the error function E. The error function may be
approximated by a Taylor series as follows (Hassibi, Stork & Wolff, 1993):

E(w) ∼= E(w+1w)= E(w)+E ′(w) 1w+
1
2
E
′′

(w) 1w2
+···

1E = E(w+1w )−E(w)= E ′(w) 1w+
1
2
E
′′

(w) 1w2
+···

1E = E ′(w) 1w+
1
2
1wT H 1w+··· (1)
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where E ′(w) is the first-order derivative of E with respect to w (the gradients vector); H is
the H matrix determined as H = ∂2E/∂w2, i.e., as the second-order derivative of E with
respect to w. The approximation of the H -inverse is obtained via an iterative procedure as
follows (Hassibi, Stork & Wolff, 1993):

(Hm+1)−1= (Hm)−1−
(Hm)−1 ·gm+11w ·g

[m+1]T
1w · (Hm)−1

p+g [m+1]
T

1w · (Hm)−1 ·g [m+1]1w

(2)

where
(
H 0)−1

=α−1I , I is the identity matrix and α is a small scalar; gm+11w is the gradient
vector from the backpropagation calculations in iteration m+1, where m denotes the
number of iterations; p is a scalar that represents the number of training samples. The H
matrix is of size v2, where v is the total number of weights in the network.

The code optimization and parallelization of the pruning methods implemented in
the DANNP tool are achieved by (1) implementation of a faster version of the algorithm
for the approximation of the H -inverse, and (2) reducing the number of evaluations of
the H -inverse approximation. To address the faster algorithm for approximation of the
H -inverse, we modified the implementation of the calculation of the H -inverse using,
where applicable, optimized BLAS routines (Blackford et al., 2002) and modified the code
to reduce the overhead by computing repeated terms only once. However, since the
approximation of the H -inverse is based on an iterative process (Eq. (2)), this inherent
limitation hinders full parallel scaling. Algorithm 1 describes the implementation of the
parallel version of Eq. (2) based on the BLAS routines. To address the reduction of the
number of evaluations of theH -inverse approximation, we implemented multiple-weights
OBS (MWOBS-parallel), which removes multiple weights in each pruning iteration while
using the optimization described in Algorithm 1. In contrast to OBS where the H -inverse
has to be computed for removing a single weight, in MWOBS-parallel this computation
is performed only once for removing n weights, where the number of n weights is set to
1% of the weights in the initial ANN. This approach significantly reduces the running time
and frequently achieves comparable or better performance relative to the serial OBS or the
fully connected ANNs.

ANN model
The ANNmodels were derived by using a modified version of the Fast Compressed Neural
Network software (Klima, 2015). This software is a modular and fast C++ implementation
of ANN algorithms. We modified the software to use optimized BLAS to replace the serial
approximation of the H -inverse update routines (using Eq. (2)).

In this study, we considered ANN with a single layer as it has been demonstrated that
one hidden layer, with a sufficient number of nodes and a sigmoid activation function,
is enough to learn complex data patterns (Cybenko, 1989; Hornik, Stinchcombe & White,
1989). However, our solutions apply to multilayer ANN architecture. Moreover, the
resilient backpropagation algorithm (Riedmiller, 1994) was used to train the ANN as it
frequently achieves faster convergence over the conventional backpropagation algorithm.
Finally, we considered a different number of nodes in the hidden layer for comparing the
pruning effects of different algorithms. The total number of weights correlates with the
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Algorithm 1Hessian Inverse Approximation

1: Compute H−1 by approximation
2: Initiate H−10 =α

−1I
3: For each training samplem
4: For each output unit k
5: Update H−1 by using Eq. (2)
6: Compute Hgwx1=H−1 ∗g
7: Compute the denominator scalar d = p+gT ∗Hgwx1
8: Compute the numerator and update using Optimized BLAS routines

H−1m+1=H−1m − (Hgwx1⊗ (Hgwx1)
T/d)

9: End For
10: End For
Note: operators ∗ and⊗ refer to the matrix vector product and the outer product of two vectors, respectively.

ANN complexity and is calculated as follows:

NumWeights=NumInputs×NumHNodes+NumHNodes×NumClasses (3)

where NumInputs, NumHNodes, and NumClasses refer to the number of input features,
the number of nodes in the hidden layer, and the number of classes in the classification
problem, respectively.

ANN pruning solutions implemented in DANNP tool
The DANNP tool implements the parallel versions of three OBS-based approaches to ANN
pruning using the approximation of the H -inverse. These generate simpler structures and
improve the model generalization with the least sacrifice in accuracy, compared to MP and
OBD. The implemented algorithms are OBS-parallel, MWOBS-parallel, and unit-based
OBS (UOBS-parallel), which are described in the following subsections. However, we
also provide the simple MP algorithm for the sake of comparison. We did not compare
against OBD algorithm as it has been shown that assuming a diagonal H matrix leads to
the removal of wrong weights and produces inferior models (Hassibi, Stork & Wolff, 1993).
In our implementation, pruning algorithms continue to remove weights as long as the
increase in the training mean-squared error (MSE) is below 1% or stops when it reaches
the pre-specified number of iterations.

OBS-parallel
The OBS algorithm aims to find the weight that when eliminated, it causes overall the least
increase in the error function 1Ei calculated according to

1Ei=
1
2

w2
i[

H−1
]
i

(4)

where w i refers to the i-th weight that is to be removed.
In this algorithm, the calculation of the H -inverse is required to remove a single weight

per pruning iteration (Fig. 1A). Finally, the remaining weights in the network are updated
to account for the removed weight (see Article S1 for further details).
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Figure 1 Pruning variants of OBS. (A) OBS algorithm: a single weight (dashed line) is removed per
pruning iteration. (B) MWOBS algorithm: multiple weights (dashed lines) are removed per pruning itera-
tion. (C) UOBS algorithm: a node and its incoming/outgoing weights are removed in a pruning iteration.

Full-size DOI: 10.7717/peerjcs.137/fig-1

MWOBS-parallel
In contrast toOBS, theMWOBS algorithmmay removemultiple weights in a single pruning
iteration (Fig. 1B). To achieve this, the error increase1Ei is evaluated individually for every
weight in the network by using Eq. (4). Weights are then sorted according to the increase
of the associated errors and the n weights with the smallest error increase are selected for
pruning, where n is set to 1% of the weighs in the initial ANN. This simplification is made
to avoid evaluating every combination of weights as described in the general formulation
of pruning n weights using OBS in Stahlberger & Riedmiller (1997).

UOBS-parallel
The UOBS variant described in Stahlberger & Riedmiller (1997) defines a heuristic that
leads to removal of all outgoing weights of a particular node, thus reducing the overall
number of considered nodes in the network (Fig. 1C). We implemented this variant for
the purpose of completeness, and integrated the optimized parallel approximation of the
H -inverse in this approach, as indicated in Algorithm 1.

Feature selection through ANN pruning and comparison settings
Due to the simplification of the ANN structure through pruning, it is possible that some
of the input data features are not used in the pruned ANN. This amounts to the FS in the
wrapper setting. Figure 1B shows an example of a pruned ANN where input feature x2 is
discarded (having no connecting weights from the input to the hidden layer). We ranked,
in descending order, the remaining features (x1 and x3, from the example) by considering,
for each input feature, the sum of the absolute values of all outgoing weights.

Similar to the comprehensive analysis of FS methods performed in Soufan et al. (2015b),
we analyzed the pruning effects of the MWOBS-parallel variant on the features and
compared it with the state-of-the-art methods for FS. We considered seven different FS
methods from the FEAST MATLAB toolbox (Brown et al., 2012), namely, conditional
mutual information maximization (CMIM) (Fleuret, 2004), correlation-based FS (Hall,
1999), joint mutual information (JMI) (Yang & Moody, 1999), maximum relevance
minimum redundancy (mRMR) (Peng, Long & Ding, 2005), RELIEF (Kira & Rendell,
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Table 1 Datasets summary.

Datasets Number of
features

Number of
samples

Number of
classes

Breast cancer (BC) 9 682 2
Heart disease (HD) 13 297 2
Wisconsin diag. breast cancer (WDBC) 30 569 2
Promoters prediction (PP) 57 106 2
Cardiac arrhythmia (CA) 277 442 2
Synthetic madelon (SM) 500 2,000 2
Prostate cancer (PC) 2,135 102 2
TF-TF combination (TFTF) 1,062 674 2
AID886 compounds (AID) 918 10,471 2
Default credit cards (DCC) 24 12,000 2
Epileptic seizure recognition (ESR) 178 11,500 2
LSVT voice rehabilitation (LSVT) 310 127 2
Urban land cover (ULC) 147 168 9
Sensorless drive diagnosis (SDD) 48 48,487 11
Human activity recognition (HAR) 561 10,299 6
MNIST digits (MD) 748 59,999 10

1992), T -test (Guyon & Elisseeff, 2003), and receiver operating characteristic curve (ROC)
(Guyon & Elisseeff, 2003). Refer to Article S2 for more details on the FS methods.

We used MWOBS-parallel for determining the feature subsets, as it can cope with
complex datasets and ANN structures requiring short running times. Since the selected
features are the result of the ANN pruning, using an ANN to assess the performance of
the feature subset may produce biased results. Thus, we used a naïve Bayes classifier to
produce unbiased results with the so selected features.

Datasets
We measured the performance of the implemented ANN pruning algorithms, on 15
datasets from different domains and one synthetic dataset, all with a different number of
features and number of samples. The selected datasets reflect some of the data properties
present in real applications, i.e., small or medium size datasets represented by both small
and large number of features. From these datasets, seven are taken from the UCI machine
learning repository (Lichman, 2013), and nine are obtained from recent studies (Anguita et
al., 2013; Johnson & Xie, 2013; Schmeier, Jankovic & Bajic, 2011; Singh et al., 2002; Soufan
et al., 2015a; Tsanas et al., 2014; Wang et al., 2016; Yeh & Lien, 2009). Table 1 shows the
summary information for these datasets.

Data processing and model evaluation
Feature values for all considered datasets were normalized to have values within the range
of [−1, 1]. We used the k-fold cross-validation technique to estimate the performance of
ANNs. k-fold cross-validation requires dividing the whole dataset into k subsets of similar
size. We train the ANN model on k−1 subsets and test it on the remaining subset. The
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Table 2 Statistical performance measures. TP , TN , FP and FN denote true positive, true negative, false
positive and false negative predictions, respectively. For MSE,m is the number of samples, y is the ANN
output value, and ti is the target value for the i-th sample.

Statistical measure Equation

Accuracy TP+TN
TP+TN+FP+FN

Sensitivity TP
TP+FN

Specificity TN
TN+FP

GM
√
Sensitivity×Specificity

MSE 1
m

∑m
i=1(y− ti)

2

procedure repeats for each of the subsets and performance achieved is given as the average
across all subsets. In this study, we used k= 10.

We used several statistical measures to evaluate the k-fold cross-validation performance.
These metrics are accuracy, sensitivity, specificity, geometric mean (GM), and mean
squared error (MSE). Table 2 defines the considered statistical performance metrics. In
addition to these measures, Table S2 shows the results using Cohen’s kappa coefficient,
recall, precision and F1 score. To evaluate the utility of the features obtained from the ANN
pruning, we compared the accuracy of a naïve Bayes classifier generated with these selected
features to the accuracy of naïve Bayes classifiers generated with features selected by seven
other FS methods.

RESULTS AND DISCUSSION
Here, we discuss in more details the speedup results obtained by the optimized parallel
OBS variants, the accuracy resulting from ANN pruning and the effects on input features
and weights. Finally, we present and discuss the results of the comprehensive comparisons
for several state-of-the-art methods for FS, with FS and ranking based on ANN pruning.
Three variants of the OBS pruning method using code parallelization are implemented in
DANNP: (1) OBS-parallel, which eliminates only one weight per iteration; (2) MWOBS-
parallel, which is an OBS variant that eliminates multiple weights per pruning iteration;
and (3) unit-based OBS (UOBS-parallel), which eliminates a whole node (unit) and their
connecting weights per iteration. For the sake of comparison, we also include the simple
MP method.

Running time speedup
The speedup metric was used to quantify the running time reduction that we were able to
achieve by parallelizing the calculation of the approximation of theH -inverse. The speedup
is measured as follows:

Speedup=
Serial Execution Time
Parallel Execution Time

. (5)

The performance gain obtained by parallelization is dictated by Amdahl’s law, which
states that the optimization of the code is limited by the execution time of the code
that cannot be parallelized (Amdahl, 1967). Specifically, for ANNs pruning, the most
computationally demanding portion of the program is the calculation of the H -inverse.
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Figure 2 Speedup comparisons of OBS against OBS-parallel andMWOBS-parallel. (A–D) Speedup
comparison for datasets where the OBS algorithm was completed within 48 h. The y-axis shows the log2 of
the speedup calculated from Eq. (5). The x-axis shows the number of nodes in the ANN.

Full-size DOI: 10.7717/peerjcs.137/fig-2

Therefore, we optimized the approximation of the H -inverse as described in Algorithm
1. Although MWOBS-parallel was able to cope with the datasets that are described by
a relatively large number of samples and input features (i.e., CA, SM, PC, TFTF, AID,
ESR, LSVT, ULC, HAR, DCC, SDD, and MD), the serial implementation of the OBS was
not able to produce an output in an acceptable amount of time (<48 h). Therefore, Figs.
2A–2D show the speedup improvements of OBS-parallel and MWOBS-parallel over the
non-parallel OBS in four datasets (BC, HD, WDCB, and PP). Table S1 shows the running
time for the OBS-parallel, MWOBS-parallel, and UOBS-parallel for the remaining 12
datasets in which the OBS was unable to complete the execution within 48 h.

Results in Fig. 2 and Table S1 show that OBS-parallel consistently reduced the running
time compared to the standard OBS in the 16 considered datasets. The MWOBS-parallel
achieved slower running times in the BC dataset with a small number of nodes in the
hidden layer. This may be due to the possible time required to rank the weights based on
the error increase (see the Methods section). However, this overhead is marginal and may
be ignored when increasing the number of weights in the ANN (by increasing the number
of nodes in the hidden layer or for datasets with more input features). The significant
enhancements in the running time are noticeable for WDBC and PP datasets containing
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Table 3 Execution time comparison between the pruning variants and NNSYSIDMATLAB toolbox.
Execution time is measured in minutes. These comparison results should be taken cautiously since the
DANNP and NNSYSID are written in different languages and run under different environments.

Dataset OBS-parallel MWOBS-parallel UOBS-parallel MP NNSYSID No. of
weights

BC 0.0015 0.0014 0.0015 0.0008 0.509 111
HD 0.0024 0.0022 0.0011 0.0006 0.532 151
WDBC 0.0041 0.0025 0.0049 0.0014 4.682 321
PP 0.0130 0.0084 0.0454 0.0001 4.256 591
CA 0.3186 0.2632 3.1448 0.0049 >24 h 2,791
SM 6.3967 2.1337 69.5910 0.0332 >24 h 5,021
PC 763.596 424.894 >24 h 0.0181 >24 h 21,371
TFTF 25.6599 12.5185 213.0404 0.0174 >24 h 10,641
AID 17.6707 11.6155 61.1201 0.3885 >24 h 9,201
ULC 0.7904 0.1643 2.1006 0.0015 91.583 1,579
SDD 3.8972 1.5572 1.7080 0.2247 >24 h 611
MD 98.4303 10.9182 179.1087 2.1471 >24 h 7,960
HAR 44.4636 5.0967 312.4713 0.2015 >24 h 5,686
ESR 1.4119 0.5829 0.5537 0.0871 >24 h 1,801
LSVT 1.7044 0.7471 6.2507 0.0004 >24 h 3,121
DCC 0.1215 0.1185 0.0476 0.0238 90.161 261

samples described by 30 and 57 input features, respectively. For instance, in an ANNmodel
with 60 nodes in the hidden layer for PP dataset (containing 3,540 weights, from Eq. (3)),
the OBS-parallel algorithm runs ∼5.3 times faster than the serial OBS implementation.
The main advantage of MWOBS-parallel algorithms is that it requires fewer evaluations
of the H -inverse and when coupled with a parallel approximation of the H -inverse, more
speedup is achieved.

Furthermore, we compared the performance of the pruning variants implemented in
DANNP against the OBS implementation in NNSYSIDMATLAB toolbox (Norgaard, Ravn
& Poulsen, 2002). The NNSYSID is a toolbox for the identification of nonlinear dynamic
systems with ANNs, often used as a benchmark, which implements several algorithms
for ANN training and pruning. The fair comparison between the DANNP and NNSYSID
tools is not possible since NNSYSID runs under MATLAB R2017b environment. Still, to
get an insight about how much time is needed for the same tasks with these two tools,
the NNSYSID and the pruning variants implemented in DANNP were run under the
same conditions. These include the same data partitioning, activation functions, hidden
units, training algorithms, and tolerance level. Data were partitioned into 15% testing,
15% validation, and 70% training. Table 3 shows the execution time comparison between
DANNP and NNSYSID toolbox. For datasets with more features and samples, NNSYSID
fails to scale for datasets with a larger number of features. These results show the running
time improvement obtained by our implementation to approximate the H -inverse.

So far, we have only analyzed the running time of the implemented ANN pruning
algorithms. Next, we discuss in details the effects of the pruning algorithms in the ANN
training error, cross-validation performance and on the FS resulting from the pruning.
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Effects of different pruning algorithms on the ANN training error
Apart from the running time, the main difference in the ANN pruning algorithms is the
selection of the weights to be removed during a pruning iteration. To investigate the
effects of the different ANN pruning algorithms on the network, we evaluated the training
performance through pruning steps until all weights are removed. The aim is to derive
the simplest ANN structure (smaller number of weights) without increasing the MSE
on the training data. Figures 3A–3J and Fig. S1 show the effects of the different pruning
algorithms on the MSE. From these results, we observed that different pruning algorithms
(including MP) were able to retain very few network weights without increasing the MSE
for some datasets (i.e., PC and PP). However, the MP algorithm produced the highest
MSE compared to the other algorithms for the remaining datasets. This is because the MP
algorithm does not account for the effects of the removed weights on the network error (as
mentioned in the ‘Introduction’) and thus, tends to remove the incorrect weights, which
may significantly increase the error. Conversely, MWOBS-parallel consistently achieved
the minimum increase in the MSE compared to the other pruning algorithms in all of the
considered datasets.

The application of OBS-parallel and UOBS-parallel algorithms is computationally
prohibitive for ANNs with a large number of weights (i.e., for datasets with a higher
number of input features or ANN with a larger number of nodes in the hidden layer). As
such, Figs. 3A–3E show the error curves for all pruning algorithms for smaller datasets
(BC, HD, WDBC, PP, and CA) and Figs. 3F–3J and Fig. S1 show the error curves only
for MP and MWOBS-parallel algorithms for the remaining 11 datasets (PC, ESR, LSVT,
ULC, HAR, SM, TFTF, AID, DCC, SDD, and MD). From these results, we can generally
conclude that in order to achieve the greatest reduction of the number of weights, while
maintaining the lowest MSE for ANN during the training, the MWOBS-parallel appears to
consistently perform better than the other algorithms while being able to cope with more
complex ANN structures and datasets.

Estimates of model performance and pruning tradeoff
Less complex models are preferred over more complex as this may avoid overfitting the
training data, helps increasing model interpretability, and helps reducing computation
operations. In ANN specifically, we analyze the effects of ANN pruning on the cross-
validation performance (see the Methods section). Figure 4 shows the GM in the cross-
validation and the number of weights in the prunedANNs. Notably, the pruning advantages
may be seen in PC dataset, which originally requires a very complex ANN structure as
the samples are described by 2,135 input features. For PC dataset, the resulting ANN
from the MWOBS-parallel retained ∼400 weights as opposed to 42,740 weights in the
unpruned ANN (a reduction of 99% of the weights) with an improvement of 0.65% in
the GM. Similarly, for PP and HAR datasets, we observe that MWOBS-parallel reduced
the number of weights by ∼95%, while achieving an improved performance with a GM of
78.85%, compared to 76.69% achieved by the unpruned ANN for PP dataset, and 97.68%
compared to 97.13% for HAR. The MWOBS-parallel achieved similar results compared
to the unpruned ANN but it was able to reduce the number of weights by ∼95%, ∼88%,
∼85%,∼70%, 13%, 12%, and 8% for WDBC, ESR, BC, MD, SM, AID, and DCC datasets,
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Figure 3 Effects of different pruning algorithms on ANN performance on the training data. (A–E)
Datasets for which all ANN pruning algorithms were completed within a given time limit. (F–J) Datasets
for which only MP and MWOBS-parallel algorithms were completed within a given time limit. The x-axis
represents the number of remaining weights after each pruning iteration, while the y-axis shows the train-
ing MSE.

Full-size DOI: 10.7717/peerjcs.137/fig-3
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Figure 4 Cross-validation performance and pruning trade-off. The colored bars represent the GM
for each of the datasets, while the solid black line denotes the percentage of the remaining weights in the
pruned ANN. The UOBS-parallel results for the PC dataset are not shown as the running time of the algo-
rithm exceeded seven days.

Full-size DOI: 10.7717/peerjcs.137/fig-4

respectively. Although MWOBS-parallel considerably reduced the number of weights for
HD, ULC, and SDD datasets, the MP algorithm achieved better results. Finally, all pruning
algorithms achieved worse performance than the unpruned ANN in TFTF dataset with a
reduction of ∼2.5% in the GM. Table S2 shows the accuracy, precision, recall, F1 score,
Cohen’s kappa coefficient, and the percentage of the remaining weights in the ANN for
each dataset. Ideally, we would hope that the pruned ANNs consistently achieve better
results than the unpruned ANN. However, the pruning effects are data dependent and may
result in ANNs that, depending on the problem, show better, similar or worse performance
compared to the unpruned ANNs. In this regard, the Friedman’s test indicates that there is
no significant difference (p-value of 0.4663) in the GM performance between the unpruned
and pruned ANNs by the different algorithms on our datasets. Nevertheless, the pruned
ANNs are considerably simpler, which reduces the computation demands and increases
the interpretability of the model. Moreover, the simpler models may arguably perform
better for unseen samples, as the simpler models in principle generalize better because they
are less likely to overfit the training data.

Overall, results in Fig. 4 show that our solutions are suitable for datasets with a small to a
medium number of samples described by a relatively large number of input features. This is
frequently the case for many classification problems in real applications. More importantly,
MWOBS-parallel can cope with complex ANN structures where other pruning algorithms
require considerably longer running times.
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ANN pruning effects on data features and comparison to feature
selection methods
In addition, we exploit the resulting pruned ANN for assessing and ranking the relevance of
the data features. In this regard, we considered the selected features by the ANNpruning and
compared their predictive accuracy with seven state-of-the-art methods for FS. Although
there have been several attempts to use ANN in FS for certain applications (Becker &
Plumbley, 1996; Dong & Zhou, 2008; Kaikhah & Doddameti, 2006; Setiono & Leow, 2000),
there are much faster and more efficient approaches for this Guyon & Elisseeff (2003).
However, we show that through ANN pruning, we can obtain more insights into the data
by ranking and selecting the discriminative features, which is an additional information
for users to explore for the problem at hand.

As observed in Fig. 4, pruning algorithms may significantly decrease the number of
weights in an ANN. With this reduction, some input features may lose their connecting
weights to all nodes in the hidden layer (e.g., x2 in Fig. 1B). This may help to infer the
significance of the input features in a dataset. To demonstrate this, we performed pruning
for the ANNs derived from the 16 datasets until the MSE exceeded a threshold on the
validation data and discarded all input features without weights to the hidden layer. We
then re-trained the ANN using only the remaining features to observe how they affected
the ANN training and testing performance.

Table 4 shows the GM for the ANNs derived by using the original set of features and the
ANNs derived using the subset of features that had at least one connecting weight to the
hidden layer after the ANN pruning. Consistent with Fig. 3F, ANN pruning selected only
2% of the features (50 out of 2,135) for PC dataset while improving the GM by ∼1.6%
compared to the more complex ANN derived using the original feature set. In general,
eight datasets (PC, AID, SM, CA, LSVT, TFTF, HAR, and WDBC) show a considerable
reduction of the input features (from 98% to 47%). The achieved GM of the ANN derived
using the feature subset from pruning improved in eight datasets (SM, PC, TFTF, AID,
ULC, HAR, ESR, and LSVT), remained relatively the same on four datasets (BC, WDBC,
DCC, and MD), and decreased in four (HD, PP, CA, and SDD). These results suggest that
some classification problems are described with a less redundant set of features, or that
the FS methods were not able to discriminate well the redundant from the non-redundant
set of features. As such, the negative effects of FS on the GM for HD, PP, CA and SDD
datasets indicate that FS may not be useful for all datasets. This may be the case when the
data samples are defined by an already small number of highly non-redundant features
(as in HD dataset) or simply when the features are weakly or not correlated. Nevertheless,
the Wilcoxon signed rank test indicates that ANNs using a reduced feature set perform
equally well compared to the unpruned ANNs (p-value of 0.6387), while being considerably
simpler and possibly more generalizable.

Here, we should note that for nine datasets (WDBC, SM, PC, TFTF, AID, ULC, HAR,
ESR, and LSVT) out of 16, the pruned ANNs achieved better performance than the
unpruned ANNs. Although the results from Table 4 give an insight of the effects of the FS
by ANN pruning, we asked how would this compare to other FS methods. For this, we
performed a comprehensive analysis to investigate the ANN pruning effects on the input
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Table 4 Selection of the input features through the ANN pruning and the effect on performance. The
ANNs were trained on 70% of the data using the selected feature set, 15% was used for validation and
15% for testing. The bolded numbers represent the highest achieved performance with pruned and/or un-
pruned network.

Dataset Remaining input features (%) GM (%)

100% (unpruned) 97.14
Breast cancer (BC)

78% (pruned) 97.14
100% (unpruned) 80.01

Heart disease (HD)
85% (pruned) 77.76
100% (unpruned) 87.38

Wisconsin Breast cancer (WDBC)
53% (pruned) 87.67
100% (unpruned) 70.71

Promoters prediction (PP)
70% (pruned) 57.73
100% (unpruned) 73.72

Cardiac arrhythmia (CA)
22% (pruned) 62.64
100% (unpruned) 59.30

Synthetic madelon (SM)
16% (pruned) 61.00
100% (unpruned) 92.58

Prostate cancer (PC)
2% (pruned) 94.20
100% (unpruned) 73.41

TF-TF combinations (TFTF)
30% (pruned) 78.40
100% (unpruned) 66.93

AID886 compounds (AID)
11% (pruned) 68.15
100% (unpruned) 78.19

Urban land cover (ULC)
94% (pruned) 84.17
100% (unpruned) 96.41

Sensorless drive diagnosis (SDD)
82% (pruned) 95.74
100% (unpruned) 88.49

Default credit cards (DCC)
71% (pruned) 87.67
100% (unpruned) 96.61

Human activity recognition (HAR)
42% (pruned) 97.04
100% (unpruned) 91.38

Epileptic seizure recognition (ESR)
97% (pruned) 91.92
100% (unpruned) 83.20

LSVT voice rehabilitation (LSVT)
24% (pruned) 87.70
100% (unpruned) 94.40

MNIST digits (MD)
85% (pruned) 94.28

features using MWOBS-parallel, and compared it with seven state-of-the-art methods for
FS.

Figures 5A–5P show the comparison of the cross-validation results obtained from a
naïve Bayes classifier derived by using the different subsets of features. Interestingly, when
considering 10% or more of the top ranked features, the feature subset determined by
MWOBS-parallel outperformed all methods for FS in two datasets (HAR and ULC).
Moreover, the feature subset obtained through MWOBS-parallel consistently achieved
comparable performance in the remaining datasets compared to the other methods for FS,
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Figure 5 Performance comparison between the methods for FS andMWOBS-parallel. (A–P) Cross-
validation accuracy results (see the Methods section) obtained from a naïve Bayes classifier derived by us-
ing different feature subsets.

Full-size DOI: 10.7717/peerjcs.137/fig-5
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withWDBC, PP, and MD being the exceptions. Given that many FS methods are heuristics
when solving the combinatorial problem of FS, the results obtained by these methods
and ANN pruning depends on the dataset and therefore, a specific method may be better
than the others for a particular dataset. However, results in Fig. 5 demonstrate that ANN
pruning is not only useful for reducing the complexity of the model, but also to get new
insights about the data by being able to select and rank the relevant features. We point out
that FS through the ANN pruning is a side benefit of the pruning process.

CONCLUSION
The simplification of ANN structures through pruning is of great importance in reducing
the overfitting during the training and in deriving more robust models. Although several
ANN pruning algorithms have been proposed, these algorithms are unable to cope with
more complex ANN structures in an acceptable amount of time if the performance
of the pruned network has to be preserved. The OBS algorithm is among the most
accurate pruning algorithms for ANNs. Overall, the main bottleneck of ANN pruning
algorithms based on OBS is the computation of the H -inverse for the pruning of each
weight. To address this problem, we implemented DANNP, an efficient tool for ANN
pruning that implements a parallelized version of the algorithm for faster a calculation
of the approximation of the H -inverse. The DANNP tool provides four ANN pruning
algorithms, namely, OBS-parallel, UOBS-parallel, MWOBS-parallel, and MP.

We considered 16 datasets from different application domains and showed that
mitigation of overfitting using ANN pruning might lead to comparable or even better
accuracy compared to fully connected ANNs. Although we have tested our tool on a set of
selected datasets, we believe that it is able to cope with problems from different domains
and is suitable for small to medium size data regarding the number of features and data
instances. We assessed the running times and performance of the implemented pruning
algorithms. Our OBS-parallel algorithm was able to speed up the ANN pruning by up
to eight times compared to the serial implementation of the OBS algorithm in a 32-core
machine. Moreover, we show that MWOBS-parallel produces competitive results to other
pruning algorithms while considerably reducing the running time.

Regarding the effects of pruning on the performance, in eight out of the 16 datasets,
the pruned ANNs result in a significant reduction in the number of weights by 70% –99%
compared to those of the unpruned ANNs. Although results show that the effects of the
ANN pruning depend on the dataset, the pruned ANN models maintained comparable
or better model accuracy. Finally, we show that through ANN pruning, input features
may lose all outgoing weights to the hidden layer, resulting in the selection of features
more relevant for the problem in question. We evaluated the selected features from ANN
pruning and demonstrated that this set is comparable in its discriminative capabilities as
the feature sets obtained by the seven considered state-of-the-art methods for FS. Although
FS methods may be used to rank the features based on different statistical measures, we
ranked the remaining features considering the sum of the absolute values of their associated
network weights. Therefore, the selection of relevant features and the ranking resulting
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from the ANN pruning provides the user with more information about the classification
problem at hand. The DANNP tool can cope with complex and medium size datasets.
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