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ABSTRACT
One of the main motivations behind social network analysis is the quest for un-
derstanding opinion formation and diffusion. Previous models have limitations, as
they typically assume opinion interaction mechanisms based on thresholds which
are either fixed or evolve according to a random process that is external to the social
agent. Indeed, our empirical analysis on large real-world datasets such as Twitter,
Meme Tracker, and Yelp, uncovers previously unaccounted for dynamic phenomena
at population-level, namely the existence of distinct opinion formation phases and
social balancing. We also reveal that a phase transition from an erratic behavior to
social balancing can be triggered by network topology and by the ratio of opinion
sources. Consequently, in order to build a model that properly accounts for these
phenomena, we propose a new (individual-level) opinion interaction model based
on tolerance. As opposed to the existing opinion interaction models, the new tol-
erance model assumes that individual’s inner willingness to accept new opinions
evolves over time according to basic human traits. Finally, by employing discrete
event simulation on diverse social network topologies, we validate our opinion
interaction model and show that, although the network size and opinion source
ratio are important, the phase transition to social balancing is mainly fostered by the
democratic structure of the small-world topology.

Subjects Network Science and Online Social Networks, Scientific Computing and Simulation,
Social Computing
Keywords Social networks, Opinion diffusion, Phase transition, Discrete event simulation,
Tolerance

INTRODUCTION
Social network analysis is crucial to better understand our society, as it can help us observe

and evaluate various social behaviors at population level. In particular, understanding

the social opinion dynamics and personal opinion fluctuation (Golbeck, 2013; Geven,

Weesie & Van Tubergen, 2013; Valente et al., 2013) plays a major part in fields like social

psychology, philosophy, politics, marketing, finances and even warfare (Easley & Kleinberg,

2010; Pastor-Satorras & Vespignani, 2001; Fonseca, 2011). Indeed, the dynamics of opinion

fluctuation in a community can reflect the distribution of socially influential people across

that community (Kempe, Kleinberg & Tardos, 2003; Hussain et al., 2013; Muchnik, Aral &
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Taylor, 2013); this is because the social influence is the ability of individuals (agents) to

influence others’ opinion in either one-on-one or group settings (Maxwell, 1993; Wang &

Chen, 2003; McDonald & Wilson, 2011). Without social influence, the society would have

an erratic behavior which would be hard to predict.

Existing studies on opinion formation and evolution (Axelrod, 1997; Riolo, Cohen &

Axelrod, 2001; Acemoglu et al., 2013; Yildiz et al., 2013; Valente et al., 2013; Hussain et al.,

2013; Guille et al., 2013; Ruan et al., 2015) rely on the contagion principle of opinion prop-

agation. However, such studies offer limited predictability and realism because they are

generally based on opinion interaction models which use either fixed thresholds (Deffuant

et al., 2000; Javarone & Squartini, 2014), or thresholds evolving according to simple prob-

abilistic processes that are not driven by the internal state of the social agents (Fang, Zhang

& Thalmann, 2013; Deng, Liu & Xiong, 2013). To mitigate these limitations, we reveal

new dynamical features of opinion spreading. The consistent and recurring real-world

observations are then explained by introducing a new social interaction model which takes

into account the evolution of individual’s inner state. We finally validate the proposed

model by analyzing empirical data from Yelp, Twitter and MemeTracker, and by using our

opinion dynamics simulation framework—SocialSim1 (Topirceanu & Udrescu, 2014)—

1 SocialSim is available at cs.upt.ro/∼
alext/socialsim.

which includes multiple complex topological models, as well as customizable opinion

interaction and influence models. Consequently, our main contributions are threefold:

1. Identification of four distinct phases in opinion formation: this aspect is not entirely

captured by existing models (Sznajd-Weron & Sznajd, 2000; Li et al., 2012; Acemoglu et

al., 2013; Chen, Wang & Li, 2014; Guille et al., 2013; Fang, Zhang & Thalmann, 2013)

although previous research (Hołyst, Kacperski & Schweitzer, 2000) has noticed that there

are some stages in opinion evolution. We argue that the succession of opinion formation

phases is critical to the social balancing phenomenon (i.e., the general opinion becomes

stable despite constant local oscillations). We also identify a phase transition from

an unstable opinion to social balancing which is related to the dynamics of opinion

formation phases.

2. Modeling opinion dynamics: we propose a new graph and threshold based interaction

model with stubborn agents (SA) (Acemoglu & Ozdaglar, 2011) which is able to

reproduce the phenomena that we observe in real-world datasets. Inspired by social

psychology, our new model assumes that individual’s willingness to accept new opinions

(i.e., tolerance) changes over time according to his/her inner state.

3. Validation of the newly proposed tolerance model via our discrete-event simulator

SocialSim (Topirceanu & Udrescu, 2014). The analysis we provide reveals the deep

connection between social balancing and the relevant parameters of social networks

such as network size, topology, and opinion source ratio (i.e., stubborn agents

distribution)(Acemoglu et al., 2013); this correlates well with our empirical observations

on large social networks.

Taken together, these new contributions show that opinion dynamics in social networks

exhibit specific patterns that depend on network size and ratio of stubborn agents (which

Topirceanu et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.42 2/33

https://peerj.com/computer-science/
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://cs.upt.ro/~alext/socialsim
http://dx.doi.org/10.7717/peerj-cs.42


we consider to be opinion sources), as well as underlying network topology. Consequently,

our findings can be used to improve our understanding of opinion formation and diffusion

in social networks, and predictability of social dynamics.

METHODS
Our empirical analysis is based on three full datasets from the SNAP online collection2 and

2 Datasets available online at: https://snap.
stanford.edu/data/volumeseries.html.

Yelp,3 which contain opinion fluctuation data with time information.

3 Dataset available online at: https://www.
yelp.com/dataset challenge/dataset.

The Yelp dataset: contains graded (1–5 stars) user reviews of American businesses, each

with a timestamp. One can obtain insights on the popularity of a business at a given time.

The usable information is the number of reviews at a given moment in time (interpreted

as network size of individuals with an opinion), the average grade in time (the average

opinion over time), and the number of votes to each review (ratio of agents with strong

or “stubborn” opinions, because when an agent votes, his opinion is already made up).

The dataset contains 366,715 users, 61,814 businesses and 1,569,264 reviews. Out of

this data, we processed and filtered businesses with at least 100 reviews (i.e., we need a

significant number of reviews for a relevant dynamical analysis). As such, we obtained

2,331 businesses for further analysis.

MemeTracker and Twitter hashtags with time information from the Stanford Large

Network Dataset Collection (SNAP); which contain the history (repost rate in time) of

diverse, popular hashtags. We can use this data to analyze the evolution of a particular

opinion in time. MemeTracker phrases are the 1,000 highest total volume phrases among

343 million phrases collected within 2008–2009. Twitter hashtags are the 1,000 highest

total volume hashtags among 6 million hashtags from Jun–Dec 2009. We filtered the

Twitter and MemeTracker data so that only the memes or hashtags which can be related to

opinions remain, e.g., we have excluded those related to rare events like natural disasters.

As such, we rendered a number of 500 re-tweets and 500 hashtags for further processing.

Discrete simulation methodology
We test and validate our new opinion interaction model based on tolerance with the

Java-based opinion dynamics simulator SocialSim (Topirceanu & Udrescu, 2014).

Like any discrete event simulation, we define the salient properties of the experimental

setup which was used to obtain the simulation results. Events are synchronized by the

simulation clock; we call the period of this clock a simulation day. One day is a simulation

period in which agents can interact with their neighbors. However, an agent does not inter-

act daily; in fact, each agent picks a random number of days to be inactive after each active

day. In our simulation, we use a random timeout interval between 1 day and 50 days. Only

after this time has elapsed, will an agent interact again with one random neighbor. After

that interaction, the agent will again choose to be inactive for a random period of days.

RESULTS
By analyzing data on opinion evolution using Twitter and MemeTracker hashtags, as well

as user reviews and votes for local businesses from Yelp, we identify unique temporal

patterns in all these datasets. When defining phases of opinion dynamics, we are tracking
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the opinion change of the social networks, denoted as ω. For Yelp there is a clear link

between the opinion state of the participants (denoted as s) and the number of stars

awarded by the users. We also assume that Yelp users are agents in a social network with

a typical structure; this underlying social network influences opinion dynamics in Yelp.

As such, opinion change is simply the variation in time of the stars awarded by users:

ω = s(t) − s(t − 1). For the Twitter and MemeTracker datasets, we interpret the number of

replies as a proxy for opinion strength, e.g., more replies indicate a stronger opinion. When

previously unopinionated people reply or re-tweet, they do so because they have formed

a clear opinion on a particular subject (say, reflected in a hashtag) and they feel the need

to express it publicly. As such, the assumption is that we can interpret the change in the

number of people that retweet or reply to a hashtag as representing the opinion change ω.

Opinion formation phases and social balancing
Using the Yelp context, we explain how the opinion formation phases (I-initiation,

F-fusion, T-tolerance and T-intolerance) are detected. For each business, we have

automatically detected all spikes in the number of total votes (interpreted as opinion

sources which never change their state, or stubborn agents SA) and have corroborated

these with the point at which the state (average stars) has a variation of less than 1 star

between maximum and minimum stars awarded. The reason behind considering the

variation interval is that 1 star is the psychological threshold represented by the unit of

measurement. Using an algorithmic explanation, we describe the pseudocode for detecting

three points of interest—A (start of convergence of state), B (spike in SA concentration just

before the convergence of state), C (spike in opinion change just after the spike in SA).

find tB so that:

maximum (s(k))-minimum(s(k))< 1 for all tB ≤ k < tmax

assign B(tB, s(tB))

Algorithm 1: Detecting B: start of convergence in stars on OX-axis

find spike[ ] := list of all local maximums in the number of total votes

find spike[tA] so that:

tA < tB (last spike before tB)

assign A(tA,SA(tA))

Algorithm 2: Detecting A: spike in SA just before convergence of stars

find spike[ ] := list of all local maximums in the opinion change

find spike[tC] so that:

tB < tC (first spike after tB)

assign C(tC,ω(tC))

Algorithm 3: Detecting C: spike in opinion change just after spike in SA
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By automatically performing this methodology on all 2,331 businesses, we find that the

average distance between the closest spike on the time axis OX (point A in the example

from Fig. 1) which occurred before the convergence of stars (i.e., point B in Fig. 1, where

the variation of awarded stars becomes lower than 1 star) is dconv = 4.131 time units.

Distance dconv is relatively small with respect to the observation interval of 100 time units

or days, suggesting the fact that spikes in SA trigger a (shortly delayed) convergence of stars.

Further, we show that the spike in SA (point A) also triggers a maximum spike in the

opinion change (point C). By running this methodology on all businesses, we obtain

an average distance between the spike in SA and maximum spike in opinion change of

dfusion = 4.828 time units. These statistical results support the fact that spikes in SA trigger

a maximum spike in opinion change.

Moreover, when we corroborate the average delays between the spike in SA and spikes

in stars and opinion change, namely 4.131 and 4.828 time units, we can conclude that

the convergence of opinion and the fusion phase are distanced, on average, by only

dcorr = 0.697 time units. Backed up by this data, we can admit that the convergence of

opinion (point B) and the triggering of the fusion phase (point C) are closely correlated.

Apart from the above statistical analysis, in order to improve the readability of our

insight, we also present an illustrative example. As such, in Fig. 1, the phase transition

happens at OX = 28 (point A) as the spike in the total votes (green line) coincides with

a delayed stabilization (point B at OX = 33) of the average stars awarded (blue line). The

triggered spike in opinion change is marked with point C (at OX = 32).

We also extend our interpretation of Yelp dynamics in terms of opinion change ω by

presenting some relevant examples from Twitter and MemeTracker datasets. Figure 2

illustrates a few cases of memes that can be related to users opinion about, for instance,

Beyonce’s song (“single ladies put a ring on it”), a movie (“where the wild things are”), or

the significance of elections outcome (#IranElections).

Inspired by a similar approach on Twitter data (Lehmann et al., 2012), we have

conducted a statistical analysis on all three datasets. Using all datasets from Twitter

(1,000 hashtags), MemeTracker (1,000 keywords) and Yelp (2,331 businesses) we have

algorithmically detected the following characteristic phases in the opinion dynamics:

1. Fusion (2nd phase) is the spike centered around the previously detected point

C(tC,ω(tC)) with tC being the time projection and ω(tC) the corresponding opinion

change of point C. For convenience, we will refer to the local spike in opinion change

ω(tC) as fs (fusion spike).

2. Initiation (1st phase): starting from time k = 0 (on OX-axis), find 0 ≤ k < tC so that

ω(k) < 0.5 · fs AND ω(k + 1) > 0.5 · fs. In other words, time k represents the first point

at which the opinion change ω exceeds 50% of the fusion spike fs. We have used this

threshold value because it represents the half amplitude of the fusion phase, which it

precedes.

3. Intolerance (4th phase): starting from time k = tmax (the highest registered time on

the OY-axis), find tC < k < tmax so that ω(k) < 0.1 · fs AND ω(k − 1) > 0.1 · fs. In
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Figure 1 Representative example for the evolution of reviews count and reviews votes for a popular businesses on Yelp. (A) The ratio of review
votes with respect to the review count, represented with the green line, is interpreted as stubborn agent SA (or opinion source) concentration. (B) The
average user defined popularity of the respective business over the same period of time represents the state of the social network. (C) The variation
of the stars (blue) is represented with orange and it is interpreted as the participants opinion change ω. Point A depicts the SA concentration which
triggers the delayed convergence in opinion (point B), and spike in opinion change (point C). In this example we have A(OX = 28), B(OX = 33),
C(OX = 32), d1 = 5, d2 = 4.
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Figure 2 Evolution of replies/retweets (opinion change ω) for some representative hashtags containing user-expressed opinion from: (A) Meme-
Tracker. Both tags 1 and 2 exhibit the fusion phase (F) (opinion spike), then they slowly converge towards intolerance (T). Tag 1 exhibits a second
spike after the F phase, then enters the intolerance phase. (B) Twitter. Tag 1 exhibits the fusion phase F (first opinion spike), then oscillates during
the tolerance phase (T) keeping social balance. Tag 2 shows an example of convergence towards the intolerance phase, as social balancing does not
occur.

other words, time k represents the first point, from end to beginning of time, at which ω

exceeds 10% of the fusion spike. We consider that a social network reaches intolerance

if tolerance θ < 0.1, so we use the 10% threshold for opinion change. Any higher than

10%, and opinion change is still in the tolerance phase, any lower, and opinion change is

likely to converge towards 0.

4. Tolerance (3rd phase): starting from time k = tC + 1 (start of social balance), find

tC < k < tmax so that ω(k) > 0.1 · fs AND ω(k + 1) < 0.1 · fs (end of social balance). In

other words, time k represents the point at which ω decreases below the 10% threshold

which we consider a transition into the intolerance phase.

Figure 2 displays the popularity of two hashtags on MemeTracker and Twitter, expressed

as posts/time evolution (posts are replies and tweets). Based on the observed fluctuations,
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we identify the following phases in opinion formation: an initiation phase (I) when

new opinions are injected into the social network and the number of replies starts to

increase rapidly; a fusion phase (F) when the opinion dynamics reaches a maximum and

different opinions start to collide; a tolerance phase (T) which represents a fluctuating yet

convergent behavior; and, occasionally, an intolerance phase (T) when the fluctuations of

opinion decrease and converge towards zero. Based on network topology and/or ratio of

opinion sources, the diffusion process may reach the fourth phase of intolerance. Opinion

sources, or stubborn agents (Acemoglu, Ozdaglar & Yildiz, 2011; Acemoglu et al., 2013),

are agents within the social network (i.e., Twitter or Yelp users) who try to instill a certain

opinion by influencing their peers; they are represented by those people within the network

who hold strong opinions that do not change over time. The concentration of opinion

sources is expressed as their ratio relative to the entire population.

Additionally, the analysis of Twitter and MemeTracker results in Fig. 2 shows that all

tags exhibit a clear F phase (first spike). In Fig. 2B, tag 2 converges towards intolerance (T

phase), while tag 1 enters a balanced oscillation (T phase) which supports the empirical

observation of a phenomenon that we call social balancing, i.e., oscillations at microscopic

scale of individuals opinion become stable and predictable at the macroscopic scale of the

society. As such, social balancing is defined as the succession of I − F − T phases, whereas

social imbalance occurs if either the society does not reach T or, after reaching T, it decays

into a T phase. For example, tag 2 (#IranElections) in Fig. 2B has a shorter, more abrupt

oscillation. In this case, we consider that the number of opinion sources is not high enough

(i.e., above a critical threshold) for social balancing to happen. Tag 2 is an example of social

imbalance with a decisive crystallization of just one opinion, as there is no T phase.

The averages of opinion change obtained for each considered dataset and for each phase

are the following (their representation is given in Fig. 3). Within square brackets are the

minimum, maximum and standard deviation for each statistical average:

• Twitter: initiation starts at OX = 0 and ends and OX = 33 [0, 39, 9.06], and has an

average amplitude OY = 21% [0%, 49%, 5.08]. Fusion happens at OX = 42 and has an

amplitude of 100% (i.e., it represents the maximum spike). Tolerance starts on average

at OX = 48 (43, end of time series, 4.07), and has an average amplitude OY = 44% [13%,

83%, 4.01]. Intolerance starts on average at OX = 68 (44, end of time series, 26.54), and

has an average amplitude OY = 5% [0%, 21%, 4.06].

• MemeTracker: initiation starts at OX = 0 and ends and OX = 37 [0, 40, 6.24], and has an

average amplitude OY = 13% [0%, 49%, 10.59]. Fusion happens at OX = 42 and has an

amplitude of 100% (i.e., it represents the maximum spike). Tolerance starts on average

at OX = 50 (43, end of time series, 4.88), and has an average amplitude OY = 56% [45%,

97%, 3.90]. Intolerance starts on average at OX = 62 (44, end of time series, 17.95), and

has an average amplitude OY = 5% [2%, 20%, 3.74].

• Yelp (all measurements are translated to the left on the time axis so that t = 0 coincides

with the spike in SA, namely point A): initiation starts at OX = 0 and ends and OX = 2

[0, 6, 2.1], and has an average amplitude OY = 0.34 [0.1, 1.35, 0.14] stars. Fusion
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Figure 3 The four opinion formation phases represented in terms of: normalized amplitude (number
of tweets/maximum number of tweets or opinion change in Yelp/maximum opinion change in stars),
with each bar-plot depicting the minimum, maximum and average variation of opinion change; and
time duration (on OX time-axis), with each horizontal bar depicting the minimum, maximum dura-
tions of the phase (gray), and the time at which it occurs on average (orange). All datasets indicate the
same shape of opinion dynamics and the same succession of phases: I-initiation, F-fusion, T-tolerance
and T-intolerance.

happens at OX = 6 [3, 23] and has an amplitude of OY = 2.25 [0.93, 4.9] stars. Tolerance

starts on average at OX = 33 [15, 73], and has an average amplitude OY = 0.475 [0.275,

1.36] stars. Intolerance starts on average at OX = 77 [47, end of time series], and has an

average amplitude OY = 0.175 [0.095, 0.46] stars.

By corroborating the four obtained intervals, and also by analyzing the shapes rendered

in Fig. 3, on both the OX axis (time axis) and OY axis (opinion change), we can conclude

that the four phases recurrent in all datasets and, indeed, representative for opinion

formation.
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Phase transition
With data from Yelp, we show the effects of a phase transition from social instability

to social balancing which can occur when a critical concentration of opinion sources is

reached in a social network. Figure 1 highlights the fact that opinion (i.e., the stars given

by users to a particular business) stabilizes only after reaching a critical ratio of opinion

sources (i.e., votes representing strong opinions). This can be viewed in Fig. 1 at time

point OX = 28. We interpret this phenomenon as a rise beyond a σ threshold for the

concentration of opinion sources, which determines the social balancing, i.e., the average

opinion stabilizes despite of opinion oscillations at local level.

Corroborating all these empirical observations with the statistical analysis, we can state

that Twitter and MemeTracker illustrate a responsive type of behavior, i.e., an immediate

evolution towards the F phase, so a high opinion change is quickly reached for a relatively

small ratio σ of opinion sources. This behavior, in turn, correlates well with another

study which shows that Twitter online networks have a strong random and small-world

component (Duma & Topirceanu, 2014).

In contrast, the Yelp dataset can be associated with a saturated type of behavior, as the

ratio σ (relative to the maximum number of votes) needed to trigger the phase transition

towards social balancing is high in all three cases. Balancing does not occur until a high

concentration of opinion sources (we interpret them as similar to opinion-influencing

“stubborn agents” (Acemoglu et al., 2013) or “blocked nodes” (Ruan et al., 2015)) are

inserted into the social network.

New tolerance-based opinion model
This section analyzes the characteristics of a new opinion model that can reproduce

this kind of real-world phenomena, i.e., the four opinion formation phases and phase

transition towards social balancing. Our interaction model is tested on synthetic networks

and compared to the empirical data—introduced in the previous section—through

qualitative means.

In terms of network structure, our analysis includes the basic topologies such as mesh,

random (Erdös & Rényi, 1960), small-world (Watts & Strogatz, 1998), and scale-free

networks (Barabási & Albert, 1999). Also, based on the last decade of research on realistic

social network topology generation which either adds the small-world property to

scale-free models (Holme & Kim, 2002; Fu & Liao, 2006; Li, Qian & Wang, 2012), or adds

a power-law degree distribution to the small-worlds (Jian-Guo, Yan-Zhong & Zhong-Tuo,

2006; Chen, Zhang & Huang, 2007; Wang & Rong, 2008; Zaidi, 2013), we also consider the

Watts–Strogatz with degree distribution (WSDD) (Chen, Zhang & Huang, 2007).

In terms of opinion dynamics, we rely on a predictive opinion interaction model that can

be classified as being graph- and threshold-based (Guille et al., 2013). Generally speaking,

previous models use fixed thresholds (Javarone & Squartini, 2014; Biswas et al., 2011;

Li et al., 2012; Das, Gollapudi & Munagala, 2014; Li et al., 2013) or thresholds extracted

from real-world examples (Galuba et al., 2010; Saito et al., 2011). However, there are a

few models which use dynamic thresholds (Fang, Zhang & Thalmann, 2013; Deng, Liu &
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Xiong, 2013; Li et al., 2011), but their evolution is not driven by the internal states of the

social agents. On the other hand, our empirical references (i.e., Twitter, MemeTracker and

Yelp) indicate that opinion does not cease to oscillate and consensus is a rare case in real

world. Therefore, we propose an opinion interaction model based on stubborn agents,

because it assumes that the society does not reach consensus. Based on recent research on

stubborn agents which use a discrete (Yildiz et al., 2013) or continuous (Acemoglu et al.,

2013) representation of opinion, we integrate the following opinion models: one-to-one

(simple contagion) versus one-to-many diffusion (complex contagion) (Centola & Macy,

2007), and discrete (0 or 1) versus continuous (0–1) opinion representation. By combining

opinion representation and opinion diffusion, we obtain 4 distinct models; they are

defined in Fig. 4A and exemplified in Figs. 4B and 4C. We build our tolerance-based

opinion interaction model by using the SD (1) and SC (2) opinion representations as

defined in Fig. 4A.

Given a social network G = {V,E} composed of agents V = {1,2,...,N} and edges

E, we define the neighborhood of agent i ∈ V as Ni = { j | (i,j) ∈ E}. The disjoint

sets of stubborn agents V0,V1 ∈ V (opinion sources), and null agents Vnull ∈ V

(non-participants with no opinion) never change their opinion, while all other (regular)

agents V \ {V0 ∪ V1 ∪ Vnull} update their opinion based on the opinion of one or all of their

direct neighbors.

We use xi(t) to represent the real-time opinion of agent i at time t. Normal (regular)

agents can start with a predefined random opinion value xi(0) ∈ [0,1]. The process of

changing the opinion of regular agents is triggered according to a Poisson distribution

and consists of either adopting the opinion of a randomly chosen direct neighbor, or an

averaged opinion of all direct neighbors.

We represent with si(t) the discrete opinion of an agent i at moment t having continuous

opinion xi(t). In case of the discrete opinion representation SD (1) (Fig. 4A), xi(t) = si(t);

in case of the continuous opinion representation SC (2) (Fig. 4A), si(t) is given by Eq. (1).

si(t) =


0 if 0 ≤ xi(t) < 0.5

NONE if xi(t) = 0.5

1 if 0.5 < xi(t) ≤ 1.

(1)

Furthermore, s(t) denotes the average state of the population at a certain time t by

averaging the opinion of all individual agents i ∈ V .

s(t) =
1

|V |


i∈V

si(t). (2)

The previous social interaction models (Deffuant et al., 2000; Javarone & Squartini,

2014; Li et al., 2012; Chau et al., 2014; Das, Gollapudi & Munagala, 2014; Fang, Zhang &

Thalmann, 2013; Li et al., 2011) do not assign nodes (i.e., individuals or social agents)

the basic properties of humans, i.e., humans evolve, learn, react, and adapt in time. The

reason for the simplicity behind the existing models is twofold: first, the state-of-the-art
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Figure 4 The interaction models, based on the two types of opinion representation and two types
of diffusion. (A) Taxonomy. (B) Opinion representation types where the larger nodes (labeled with S)
represent stubborn agents (or opinion sources) which can also have any value for opinion, with the
property that their opinion value never changes. Discrete opinion (left): nodes have opinion 0 (red)
or 1 (green) at any time (SD). Continuous opinion (right): nodes have any opinion between 0 and 1,
highlighted by the color gradient transitioning from red to green (SC). (C) A scenario highlighting the
two opinion diffusion models for discrete representation. Single diffusion (left): the central white node
picks one random neighbor and adopts his opinion (SD). Complex diffusion (right): the white node
polls all neighbors for their opinion and then adopts an averaged opinion (CD). Note that only direct
neighbors can influence opinion, not friends of friends etc. (e.g., the gray node).
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models are only suited for theoretical contexts so bringing additional complexity to the

interaction model would significantly increase the difficulty of mathematical analysis;

second, involving measures of human personality (e.g., quantifying an individuals trust,

credibility, or emotional state) is a complicated endeavor, in general; this was not the main

goal of previous work.

Individual tolerance: interpretation and formalism
In order to improve the existing opinion interaction model based on a fixed threshold, we

consider the evolution of personal traits by taking inspiration from social psychology.

As a new contribution to the state-of-the-art, we introduce the concept of tolerance

which reflects the individual’s inner state and personal beliefs regarding surrounding

opinions. For instance, egocentrism, as it is called in psychology, is highly correlated with

individual’s emotional state (Elkind, 1967). We choose to extend this model because the

egocentrism-emotional state correlation is a trait that has been shown to influence and

evolve with individual opinion (Windschitl et al., 2008).

Corroborating literature on attitude certainty (Clarkson et al., 2013), consensus

(Clarkson et al., 2013), confirmation bias (Nyhan & Reifler, 2010), social group influ-

ence (Roccas & Amit, 2011), and ingroup emotion (Moons et al., 2009), we extrapolate

the mechanism that leads to the formation of opinion into a measurable parameter.

As such, we define tolerance θ as a parameter that reflects the willingness of an agent to

accept new opinions. Similar to real life, individuals with higher tolerance will accept the

others opinion easier; thus, this parameter can be defined as a real number 0 ≤ θ ≤ 1. An

agent with a tolerance value of 1 is called fully tolerant, whereas an agent with a tolerance

of 0 is called fully intolerant (i.e., stubborn agent). Tolerance values which are greater

than 0.5 describe a tolerance-inclined agent, while values smaller than 0.5 describe an

intolerance-inclined agent.

Similar to the threshold-based continuous opinion fluctuation model described by

Acemoglu et al. (2013), tolerance can be used as a trust factor for an agent relationship;

however, as opposed to the trust factor, tolerance changes its value over time:

xi(t) =


0 if i ∈ V0

1 if i ∈ V1

0.5 if i ∈ Vnull

θi(t)xj(t) + (1 − θi(t)) xi(t − 1) if j ∈ Ni

for t > 0 (3)

where the new opinion xi(t) is a weighted sum of the agent’s prior opinion xi(t − 1) and

the current opinion xj(t) of one randomly selected direct neighbor. The weights for the two

opinions are given by the current tolerance θi(t) of the agent, thus, the extent of how much

it can be influenced depends on its internal state.

As can be inferred from Eq. (3), the greater the tolerance of an agent, the easier it can

accept external opinions from others. At the beginning of the opinion formation process

(t = 0), all agents are considered as having a high tolerance (θi(0) = 1), but, as the society

evolves, agents become intolerant, therefore segregated in clusters which tend to have
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a more stable opinion. We further define the tolerance θ of the entire population as a

normalized average of all individual tolerances:

θ(t) =
1

|V |


i∈V

θi(t). (4)

We also introduce the concept of opinion change ω as the ratio of agents which have

changed their current state (discrete time step t) since the last observation (time t − 1):

ω(t) =
1

|V |


i∈V

|si(t) − si(t − 1)|. (5)

If an agent changes its state from one opinion to another, then the absolute difference

|si(t) − si(t − 1)| will be 1; conversely, it will be 0 if the agent state does not change. This

change, averaged over all agents at the interaction (discrete) moment t, defines the opinion

change of the population ω(t). This metric is used to draw insights regarding the current

tolerance level across the entire society.

Progressive tolerance model
Our model for tolerance evolution stems from the idea that the evolution towards both

tolerance and intolerance varies exponentially (Hegselmann & Krause, 2002; Weidlich,

2002), e.g., a person under constant influence becomes convinced at an increased rate over

time. If that person faces an opposing opinion, it will eventually start to progressively build

confidence in that other opinion. Thus, our proposed progressive model represents the

tolerance fluctuation as a non-linear function, unlike other models in literature. For the

first time, we integrate these socio-psychological characteristics in the dynamical opinion

interaction model; as such, the new tolerance state is obtained as:

θi(t) =


max(θi(t − 1) − α0ε0,0) if si(t − 1) = sj(t)

min(θi(t − 1) + α1ε1,1) otherwise.
(6)

In Eq. (6), tolerance decreases by a factor of α0ε0 if the state of the agent before interaction,

si(t − 1), is the same as the state of the interacting neighbor (randomly chosen from all

direct neighbors) sj(t). If the states are not identical, i.e., the agent comes in contact with an

opposite opinion, then the tolerance will increase by a factor of α1ε1. Variable t represents

the time step where an opinion update is triggered; these moments are considered as

being randomly distributed. The two scaling factors, α0 and α1, both initially set as 1,

act as weights (i.e., counters) which are increased to account for every event in which the

initiating agent keeps its old opinion (i.e., tolerance decreasing), or changes its old opinion

(i.e., tolerance increasing). Therefore, we have:

α0 =


α0 + 1 if si(t − 1) = si(t)

1 otherwise
(7)

α1 =


1 if si(t − 1) = si(t)

α1 + 1 otherwise.
(8)
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Figure 5 The tolerance function as defined by the progressive tolerance model. (A) Tolerance scaling:
shows how tolerance θ increases with the α1ε1 scaling, as a result of continuous opinion change for
an agent i. (B) Intolerance scaling: shows how tolerance θ drops with the α0ε0 scaling, from an initial
tolerance θi(0) = 1 to complete intolerance (θi(t) = 0).

On even terms with the observation of the majority illusion (Lerman, Yan & Wu, 2015),

which explains that globally rare opinions and bias may be strongly present in local

neighborhoods as a result of the topology of social networks, we dynamically model

bias using the two scaling factors α0 and α1. Whenever an event occurs, the counter

corresponding to the other type of event is reset. These factors are used to increase the

magnitude of the two tolerance modification ratios ε0 (intolerance modifier weight) and

ε1(tolerance modifier weight). The two ratios are chosen with the fixed values of ε0 = 0.002

and ε1 = 0.01. To determine these values, we have tried various ε0:ε1 ratios as follows: if ε0

is increased such that ε0:ε1 = 1:1, most nodes will quickly become intolerant, as opinion

will cease to diffuse; conversely, if ε0 is decreased closer to a 1:10 ratio, then the society

will become tolerance-inclined, with random opinion fluctuations. The used ε0:ε1 ratio

of 1:5 was chosen through consistent experimentation in order to provide a good balance

between the deviations towards tolerance and intolerance, respectively.

As an illustration of the 1:5 ratio for ε0:ε1, Fig. 5 represents the non-linear tolerance

function as implemented in Eq. (6). The displayed examples show that a total of 10

consecutive steps are required to maximize the tolerance if an agent starts with θi(0) = 0.5,

because the cumulative sum of θi(0) + ε0


j α0 reaches 1 after 10 iterations. Similarly, in

Fig. 5B, the sum θi(0)− ε1


j α1 requires t = 45 iterations to reach intolerance (θi(t) = 0),

having started from θi(0) = 1.

MODEL VALIDATION
Our dynamical opinion model adds significant complexity to the opinion interaction

model. Therefore, we use discrete event simulation (SocialSim (Topirceanu & Udrescu,

2014)) over complex social network topologies, in order to validate our model’s capability

to reproduce real-world phenomena like the opinion formation phases and the phase

transition towards social balancing.

An important aspect is that our model is based solely on the simple SD/SC contagion

principles. We have also implemented a complex contagion model in SocialSim, and
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performed extensive simulations to compare it against our simple contagion results and we

have found that when using complex contagion, the dynamics of the society is accelerated

and the I, F phases occur very fast, the T phase is omitted, and the society enters the

intolerance phase. This is due to the fact that averaging the opinion of neighbors does not

allow a node to be in contact with the likely divergent opinions of his neighbors, one by

one, and thus tolerance cannot increase. As a consequence, nodes tolerance θ will decrease

after each interaction. Conceptually, we have defined the tolerance model to keep nodes

tolerant through individual interactions which present diversity in opinion, like we would

have in real life. Even if humans usually evolve towards the average opinion of their social

group, they do so through sequences of individual interactions, as our model tries to

capture.

Simulation on basic topologies
Regular networks
The first simulation setup is based on regular topologies, i.e., lattice and mesh. The results

show that a homogeneous cluster of stubborn agents divides the overall society opinion

(i.e., green (1) vs. red (0)) with a ratio that is directly proportional with their initial

distribution. Figure 6 is used as an exemplification of the four phases, as obtained in

SocialSim, and shows how a mesh network of 100,000 agents (generated by placing nodes

uniformly in a 1,000 by 1,000 unit space and connecting them within a radius of 10 with

link probability p = 0.15) evolves under the influence of 64 stubborn agents—32 of each

opinion evenly distributed among the population. This way, we observe the same opinion

formation phases as identified by our empirical observations: initiation I (Fig. 6A), fusion

F (Fig. 6B), tolerance T (Fig. 6C), and intolerance T (Fig. 6D). The situation in Fig. 6C

may lead to one of two scenarios: a perpetual (proportional) balance of the two opinions,

introduced by us as social balancing (the society remains in the T phase, and T is never

reached), or a constant decrease in opinion dynamics which ultimately leads to a stop in

opinion change (the society reaches the T phase), as depicted in Fig. 6D.

Figure 7 provides illustrative, single experiment results, which intend to capture the

specific behavior of opinion evolution. Again, the same patterns were observed throughout

all our multiple simulations. Figure 7A illustrates a society which tends towards the

tolerance phase T and social balance, by providing the evolution of the overall society

state s(t) (as defined in Eq. (2)), tolerance θ(t) (see Eq. (4)), and opinion change ω(t)

(Eq. (5)). For the society described in Fig. 7A, the initiation phase I is revealed by the early

increase of ω(t), as the number of individuals with opinion increases. The climax of ω(t)

represents the fusion phase F. At this stage, there is a maximum number of bordering

agents with distinct opinions (a situation that is also depicted in Fig. 6B) and s(t) evens out.

In the tolerance phase T, the agents tend to stabilize their opinion, i.e., θ(t) stabilizes and

s(t) converges towards the ratio of stubborn agents (which was chosen as 1:1).

Another observation is that opinion fluctuation is determined by the stubborn agents

density (see Fig. 7B, 7C and 7D). Because of the regular topology, the fewer stubborn

agents (regardless of their opinions) there exist in the society, the more the opinion
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Figure 6 Green (1) vs. red (0) opinion evolution with homogeneous stubborn agent distribution in
a 100,000 node social network. The network is initialized with 32 red and 32 green stubborn agents
(represented as the darker nodes) which start influencing the neighboring regular agents. Initially, the
regular agents have no opinion and are colored with grey. We distinguish between the following phases of
opinion formation: (A) the initiation phase I where the society has no opinion, i.e., the stubborn agents
exercise their influence to the surrounding neighborhood without being affected by any other opinion.
The opinion change ω(t) rises during this phase, whereas tolerance θ(t) remains high. (B) The fusion
phase F where the society is now mostly polarized (green or red) and different opinion clusters expand
and collapse throughout the society. The opinion change ω(t) reaches a maximum, and tolerance θ(t)
begins to slowly decrease. (C) Tolerance phase T, where the cluster interaction stabilizes and new, larger,
more stable clusters emerge. Most of the individuals within the society have been in contact with both
opinions; each agent’s opinion si(t) begins to converge, and the tolerance θ(t) is steadily declining or
becomes stable. (D) Intolerance phase T, where the overall tolerance of agents has decreased to a point
where opinion fluctuation ceases and the red opinion becomes dominant (θ(t) < 0.1). The society may
or may not reach this phase.
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Figure 7 Simulation of a 100,000 mesh network with SocialSim (Topirceanu & Udrescu, 2014), display-
ing a representative example for the evolution of s(t), θ(t), and ω(t), as well as the opinion evolution
s(t) with various stubborn agents distributions. (A) Representative setup for the mesh topology, where
the lowest panel displays the opinion change (ω) evolution over three simulation phases: (I) initiation,
(F) fusion, and (T) tolerance. The opinion state (s) and its tolerance (θ) are also displayed in the middle
and upper panels. (B) Opinion evolution s(t) with few and evenly distributed stubborn agents SA (1:1
ratio: 1 green, 1 red). (C) Opinion evolution with many and evenly distributed stubborn agents (1:1 ratio:
32 green, 32 red), (D) opinion evolution with few and unevenly distributed stubborn agents (1:4 ratio: 1
green, 4 red).

fluctuates. This is explained by the fact that having few stubborn agents means few

points of opinion control and stabilization in the local mesh structure; conversely, many

stubborn agents make possible the control of more regular agents. Because of this, s(t) may

drastically get biased in someone’s favor until the entire society stabilizes (Fig. 7B). Also,

due to the small influencing power of a few agents, the opinion will not necessarily stabilize

with the same distribution ratio. As expected, the opinion distribution of a society with a

high opinion source concentration will tend towards the ratio of the two stubborn agent

populations (Fig. 7C).

If the ratio of the two stubborn agent populations is not 1:1, then the opinion

fluctuation will be around that ratio only during the initiation phase I. Afterwards, the

overall opinion will get more biased towards the opinion of the larger stubborn agent

population. In Fig. 7D the ratio is 1:4 between green and red stubborn agents, therefore the

fluctuation starts around 20% green opinions, but eventually stabilizes at 8%.
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Figure 8 (A) Representative simulations depicting opinion evolution in networks with 32 uniformly dis-
tributed stubborn agents for both competing opinions. (A) An uncorrelated random scale-free network
in which opinion constantly oscillates, society becomes balanced and stabilizes in the tolerance phase
(T) after going through the initiation (I) and fusion (F) phases. (B) An Erdos–Renyi network in which
opinion change is maintained high and opinion presents high oscillations, but the overall state s of the
society becomes stable and predictable around 50% (i.e., as expected for a balanced ratio of SAs).

The scenarios presented above hold true for lattices. Consequently, these conclusions

are more of theoretical interest, as real social networks are typically not organized as such

regular topologies. Next, we consider more realistic network topologies.

Random networks
In order to generate random topologies, we have implemented both Erdos–Renyi

networks (Erdös & Rényi, 1960) (see Fig. 8A), as well as uncorrelated networks with

preferential attachment (uncorrelated scale-free) as defined by (Catanzaro, Boguna

& Pastor-Satorras, 2005) (see Fig. 8B). We create networks of 100,000 nodes with the

Erdos–Renyi algorithm (Erdös & Rényi, 1960) with wiring probability p = 10−4, and the

algorithm described in Catanzaro, Boguna & Pastor-Satorras (2005) with 10,000 nodes

with power-law distributed node degrees within the range 1–100. We use an exponent of

γ = −2.41, which is within the power-law interval −3 < γ < −2.

Because of the random nature of this second topology, the results obtained with

SocialSim are much closer to what we obtain for random networks. Figure 8 represents

the opinion formation phases. Due to the disassortative connectivity, opinion dynamics

leads to an evolution towards social balance.

The explanation for this balancing is due to the the fact that nodes may be connected

to any random hubs, so neighboring nodes will not adhere to the same community

influenced by the exact same hubs. This diversity in connections keeps tolerance high,

so that opinion is kept in balance.
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Small-world networks
By constructing Watts–Strogatz small-world networks of 100,000 nodes (Watts & Strogatz,

1998; Strogatz, 2001; Wang & Chen, 2003; Tsvetovat & Carley, 2005; Chen, Zhang & Huang,

2007; Bandyopadhyay et al., 2011), we show experimentally that a different type of behavior

can emerge. Specifically, we used multiple simulation settings with rewiring probabilities

p = 0.1, p = 0.2 and p = 0.5 respectively, and keep the results for p = 0.1 as being the

most representative, because the clustering coefficient remains high (i.e., 0.368). As such,

Figs. 9A and 9B present the society as having a mixed opinions distribution with clusters

forming around stubborn agents. Similar to the representation in Fig. 6, this topology

allows multiple agents to cluster around the stubborn agents and converge towards their

opinion. A higher rewiring parameter p is associated with a more random topology

which is found to increase tolerance and dissolve agent clusters around opinion sources.

Consequently, this model not only increases the dynamics of opinion fluctuation, but also

keeps the society in social balance. The fourth and final phase of opinion evolution—the

intolerance phase—does not occur, and opinion change ω(t) is maintained at a (high)

constant level. Moreover, the state of the society s(t) is stable.

The society depicted in Fig. 9A is homogeneously mixed from an opinion standpoint.

Clusters do not form because many agents have long range links to other distant agents

whose opinion can be different from the local one. This leads to a perpetual fluctuation

which remains in balance. The noticeable effect on a small-world network is that the

opinion stabilizes very fast and always at the ratio of the two stubborn agent populations

(i.e., 1:1 in our case). In a mesh network, having few stubborn agents leads to an imbalance

of opinion, but in the case of small-world topologies, opinion across the entire population

always stabilizes. Opinion change ω(t) is also much higher compared to the mesh

(i.e., 42% versus 10% under the same conditions) due to the long range links.

Networks with preferential attachment
We apply the same methodology by constructing a 100,000 node Barabasi–Albert (BA)

network with preferential attachment and highlight the unique behavior it enacts (Barabási

& Albert, 1999; Pastor-Satorras & Vespignani, 2001; Albert & Barabási, 2002; Wang & Chen,

2003; Song, Havlin & Makse, 2005; Chen, Zhang & Huang, 2007). As Fig. 9C shows, the

society does not reach a balance at the expected value (32:32 ⇒ 50%); instead, it gets

biased towards one opinion or another. The reason behind this behavior is related to the

power-law degree distribution (Wang & Chen, 2003). As such, BA scale-free networks

behave more like a tree-structure with hubs rather than as a uniform graph. Indeed, as

opinion flows from one agent to another, the higher impact of the hub nodes on the

opinion formation at the society level becomes clear. If, for example, a green stubborn

agent is placed as the root of a sub-tree filled with red stubborn agents, that sub-tree will

never propagate red opinion as it cannot pass through the root and connect with other

nodes. Experimentally, this is illustrated in Fig. 9C. The green agents have been placed

over nodes with higher degrees, and this can be seen in the evolution of the opinion. There

is some initial fluctuation in the society and although the stubborn agent distribution is

even, the fluctuation rapidly imbalances as the overall tolerance θ(t) plummets and all
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Figure 9 Opinion evolution with homogeneous stubborn agent distribution (32:32) in small-world
and BA networks. (A) Tolerance phase where visible clusters emerge for small-world networks. (B) For
small-world networks, social balancing is attained because tolerance remains extremely high (θ(t) >

90%), opinion change (ω) exhibits the three opinion evolution phases (initiation I, fusion F, and
tolerance T), and never reaches intolerance. The state of the society s(t) is stable. (C) Social balancing
is not achieved for BA networks: tolerance drops constantly and the society reaches the intolerance phase
(T). The state of the society s(t) is unstable during the first three phases of opinion change, then stabilizes
as tolerance (θ) and opinion change (ω) fall.

agents become sort of “indoctrinated” by the green opinion. The rapid drop in tolerance

coincides with the drop in opinion change ω(t) and the stabilization of the state s(t) at

over 90%. Simulations were also run on the WSDD topology (Chen, Zhang & Huang,

2007), which has a strong preferential attachment component, and yield similar results

which lead to the same set of observations. We generated the WSDD topology based on 10
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Figure 10 Simulation results on a small-world network with 32 red and 32 green stubborn agents
for the: (A) fully random interaction model: there are no opinion formation phases, the society is
balanced all the time and the opinion has almost no oscillations; (B) random-tolerance interaction
model: there are no clear opinion formation phases, the society is balanced all the time, while the
opinion has oscillations.

communities, each with 1,000 nodes. The nodes are connected with K = 2 neighbors on

each side and a rewiring probability p = 0.1.

Validation hypotheses
In order to strengthen the idea of social balancing, which is observed in our experimental

data, we propose to validate the tolerance model against a null/random model. This is

addressed by the implementation of random interacting agents in our simulation tool,

followed by a replication of the experiments, and a final conclusion. We have added

randomness in two ways:

• Fully-random interaction model: all agents have random tolerance values, random

initial opinions, interact with random neighbors who posses random opinions, and

tolerance is updated randomly after each interaction. Looking at the simulation results

with random interaction model, we obtain the same output regardless of topology and

SA concentration.

• Random-tolerance interaction model: similar with our proposed opinion interaction

model, but here each agent receives a static tolerance initialized with a random value in

the [0,1] interval at startup.

Figure 10 depicts a small-world with 32 green and 32 red stubborn agents. The state of

the society remains balanced at 50% and there are no visible opinion formation phases.

With the random-tolerance interaction model, the state of the society oscillates much more

in comparison with the fully random model, but less when compared with our proposed

tolerance interaction model. As for the fully-random model, the opinion formation
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phases are not clear. We can only conclude that using a random/null model for validation

shows that tolerance actually plays an important role in the statistical results obtained in

our paper.

In real-world social networks there are agents which do not hold any opinion, and they

simply do not participate the diffusion process. We have covered this scenario in Eq. (1) as

an agent which has opinion x(t) = 0.5 will carry the state NONE. These agents are called

null agents (NA) and do not take part in the opinion interaction. Theoretically, we consider

that NAs should act like edge-disconnections in the graph. By adding NAs in SocialSim,

we were able to test them with all our synthetic topologies. The higher the population of

randomly distributed NAs, the fuzzier the four phases become. Initiation (I) is less steeper,

fusion (F) isn’t that spiky anymore, tolerance (T) is achieved harder/later as the state

oscillates more, but the society is still in balance and predictable; opinion change stabilizes

with some delay. The phases tend to dissolve after a concentration of approximately 30%

population of null agents.

Additional simulations have been run with NAs and all obtained results lead to the

same observations as those presented in Figs. 11A–11F. All tests from Fig. 11 were run on

small-worlds with 10,000 nodes.

In reference Acemoglu et al. (2013) the authors try to solve the equations that describe

the stationarity of opinion evolution by using random walks from regular agents to

stubborn agents which influence their state. Even if their model is simpler than the

model proposed in our paper, they have to come up with some simplifying assumptions

in terms of network topology (only regular topologies are tractable) and number of

agents (they solve equations on small networks and then generalize the results in a

qualitative discussion). Because our paper adds significant complexity to the model

(i.e., node tolerance is not a fixed threshold, but a dynamic one which depends on the

interactions with neighbors), solving the stationarity equations would require even

stronger simplifying assumptions. This is the reason for using simulation in order to

analyze the stationarity distribution. Nonetheless, in all simulation scenarios, the obtained

stationarity described in the paper coincides with one of two (mutually exclusive) cases:

• The society reaches intolerance as overall tolerance converges towards 0 (i.e., θ(t) ≃ 0

for t → ∞). When this happens, no further modifications to the state of the society can

be achieved. We obtain this behavior on mesh and BA topologies. Meshes imply only

local connectivity to neighbors that converge towards a similar state, thus tolerance is

bound to decrease to 0 (see Fig. 7A). BA networks imply connections to hub nodes,

which means that all neighbors are influenced by the same local hubs, which in turn

decreases tolerance to 0 (see Fig. 9C). Such a situation, in the case of regular small

networks, was already mathematically described by Acemoglu et al. (2013). The authors

measure the probability of being influenced by a SA using random walks. In our case,

Eq. (3) can be simplified, for the majority of nodes with θi(t) ≃ 0, to: xi(t) = xi(t − 1), so

the state of the society becomes stable.

• The society remains in social balance, as the overall tolerance converges towards a

non-zero constant in time (i.e., θ(t) > 0 for t → ∞), which causes the state and opinion
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Figure 11 Simulation results for the tolerance-based opinion interaction on a small-world network with 10,000 nodes, of which are 32 green
SAs and 32 red SAs. The social network consists of (A) 20% null agents, (B) 30% null agents, (C) 40% null agents, (D) 80% null agents.

change to also stabilize (for t → ∞). We obtain this phenomenon on random and

small-world topologies. Small-worlds have the unique feature of being both regular

and random in a proportion p, given by the rewiring parameter of the Watts–Strogatz

algorithm. Thus, nodes interact with equal probability (for p = 0.5, as used in our

experiments) with neighbors with similar opinion, and with distant random nodes

with different opinion. A proportional value p = 0.5 will keep tolerance at maximal

value as can be seen in Fig. 9B. Due to the random distribution of initial opinion

and links (in random networks and small-worlds with p = 0.5), nodes will oscillate

ergodically, and both Eqs. (7) and (8) will be activated with relatively equal probability.

This keeps the tolerance variation of each node around a certain convergence value:

θi(t) = θi(t − 1) ± α0/1ε0/1, where both α0ε0 = 0 and α1ε1 = 0 imply small variation

in θi(t). In such a case, for a relatively stable tolerance, the stationarity can also be

described as in Acemoglu et al. (2013) (where θ is assumed as fixed).
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Phase transition in opinion dynamics
This section aims at analyzing the impact of topology, network size, interaction model,

stubborn agent placement, ratio and concentration on the opinion change (ω), and on

convergence towards intolerance (θ).

Simulations show that, in a society with a fixed stubborn agent distribution, the

topology τ determines if:

• the society enters the intolerance phase I: θ → 0 (with θ < 0.1), which also results in

ω → 0;

• the society balances and never enters the intolerance phase I: θ → θlimit, where

θlimit > 0.1 and maintains a high ω;

• the society continues to oscillate for 0.1 < θ < 1, but the tolerance level does not

stabilize.

In case of the Yelp dataset, we notice that for a given topology τ , and a network of

size N, when the concentration of stubborn agents is bigger than a critical ratio σ , the

society never becomes intolerant. In such cases, the society becomes balanced, with slight

oscillation in tolerance or opinion change. The goal is therefore to find the tuples (τ , N, σ )

at which this phenomenon occurs.

To obtain our results we have used five topologies τ (mesh, random, small-world, BA

and WSDD), network sizes N of 400 up to 100,000 nodes, our new tolerance interaction

model, a ratio of 1:1 between green (1) and red (0) stubborn agents, and an increasing

concentration of stubborn agents ranging from 1% to 36%.

Impact of topology
The tolerance and opinion change with respect to the number of stubborn agents, as

depicted in Figs. 12A and 12B highlight a clear difference between the five topologies,

namely mesh, random, small-world, BA, and WSDD. There is a total of three clearly

distinguishable behaviors: a responsive behavior (present in small-worlds and random

graphs), a linear behavior (for mesh networks), and a saturated behavior (corresponding to

BA and WSDD networks).

The tolerance increases linearly for the mesh, as the population of stubborn agents

increases. Consequently, there is no critical σ for which a phase transition occurs due to the

high regularity of the network, but there is a visible saturation point (when the blue graph

begins to drop in Fig. 12A). This happens because the society is physically filled with more

stubborn agents than regular ones and because all stubborn agents have θ = 0, the overall

tolerance begins to drop.

The responsive behavior exhibited by the random network and small-world networks

suggests that these two topologies behave similarly in the context of opinion source

saturation. The two topologies are almost identical under the conditions defined here, as

they behave almost as the opposite of mesh networks: once the critical point σ is reached,

their tolerance rises to the maximum value. Then, as the stubborn agents population

increases, the tolerance and opinion change values decrease proportionally. The random
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Figure 12 Tolerance (θ) and opinion change (ω) evolution with the increasing concentration of evenly distributed stubborn agents (SA) and
increasing network sizes. values over the five topologies for an increasing concentration of evenly distributed stubborn agents. (A) and (B) θ and ω

respective values, over the five topologies when the size of the network is fixed as N = 2,500, and the concentration of stubborn agents ranges from
4% to 36%. (D), (D), (E), and (F) Tolerance θ stabilization values at which social balancing occurs over increasing network sizes (N = 400–2,500
nodes) on mesh, small-world, BA, and WSDD networks, respectively.
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and small-world topologies are equivalent with the mesh topology as the society becomes

saturated with stubborn agents (i.e., see Figs. 12A and 12B in terms of tolerance θ and

opinion change ω, respectively).

Finally, the saturated behavior groups together the BA and WSDD topologies, both of

which have the feature of degree-driven preferential attachment. The two topologies show

smaller responsiveness to social balancing. As depicted in Figs. 12A and 12B, the critical

point of stubborn agents concentration for BA is by far the greatest one (i.e., σ = 16%)

and the maximum tolerance θ reached is the smallest among the simulations aiming at

the impact of topology (20%). The WSDD topology shows a better response, at a much

lower critical stubborn agents concentration point (σ = 4%) and reaches social balance at

θ = 30%.

Impact of network size
When analyzing the opinion change at society level, the same observations and classifi-

cation are valid for all other network sizes. The larger the size N is, the more accurate the

delimitation shown in Figs. 12A and 12B becomes.

The impact of size offers a comparison of different tolerance stabilization on the same

topology. The results in Figs. 12C–12F show how well the social balancing effect scales with

increasing sizes of the network.

The behavior of meshes, presented in Fig. 12C, shows a linearly proportional increase

of the critical stubborn agents concentration σ (around 20–25%) in accordance with the

network size N. A similar evolution is visible in Fig. 12F, on networks with preferential

attachment, where the required σ is also proportionally bigger on larger networks. In

Figs. 12D and 12E, the random and small-world networks exhibit similar behavioral

patterns: they achieve the critical point σ with maximal opinion change, and then evolve

towards intolerance at a pace that is corroborated with N (i.e., a slower drop in tolerance

for larger networks occurs).

The results presented in Fig. 12 contains averages stemming from multiple experiments

run in SocialSim, then processed separately in Microsoft Excel. In Figs. 12C–12F, the

points on the OX axis are fixed SA concentrations which are used throughout these exper-

iments, and the values on the OY axis are averages obtained from multiple runs (i.e., 10).

An individual graph from one sub-figure is based on 8 (different SA concentrations) ×10

experiments = 80 simulations. One subfigure is the result of 3 × 80 = 240 simulations,

therefore Fig. 12 is based on 4 × 240 = 960 simulations. All simulations presented in

this section confirm our main observations (Twitter, MemeTracker, Yelp) on opinion

formation phases and phase transition towards social balancing.

DISCUSSION
The results for the proposed tolerance-based opinion interaction model show that, if indi-

vidual traits are considered for modeling social agents, then we can realistically reproduce

real-world dynamical features of opinion formation such as opinion formation phases, as

well as their evolution towards social balancing. At the same time, we demonstrate that the

dynamics of opinion formation is influenced by topology, network size and stubborn agent
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(opinion source) distribution across the entire population. Overall, the topology seems to

have the strongest influence on opinion formation and spread; this can be summarized by

the following different tendencies:

• Responsive behavior: Tolerance stabilization is attained right after reaching a relatively

low critical ratio of stubborn agents. Inserting additional stubborn agents entail a drop

in autonomy and opinion flow. Such a behavior is achieved by random and small-world

topologies, and it can be motivated by the uniform degree distribution and the existence

of both local and long-range links, which foster opinion diversity and social balancing;

this can be representative for a decentralized and democratic society.

• Linear behavior: The critical threshold at which tolerance becomes stable for mesh

topologies increases linearly with the stubborn agents concentration. The mesh

topology corresponds to a limited, almost “autistic” social interaction behavior (where

each agent only interacts with close proximity neighbors); therefore, the probability of

opinion diversity only increases with the proportional addition of stubborn agents. For

meshes, social balancing is attained only if a substantial number of stubborn agents is

inserted.

• Saturated behavior: Tolerance converges slowly around a specific low value. This

behavior is achieved in BA and WSDD networks. Due to the nature of these topologies,

even though long-range links exist, nodes tend to be preferentially attached to the same

hub nodes, meaning the same opinion sources. The amount of stubborn agents required

to reach social balance is much higher and the resulting balance saturates quickly. It

is thus a conservative, stratified and oligarchic type of society which reacts later and

slower to new stimuli. Most individuals within this type of society remain intolerant and

opinion change is treated as suspicious and non-credible.

Besides these original contributions, the results obtained with our model confirm prior

studies which show how individuals converge towards the state of their ingroup (Moons et

al., 2009; Van Der Schalk et al., 2011). This is especially noticeable on networks with high

modularity, like the WSDD network in which every member in a community converges

towards the community’s dominant opinion, yet every community converges towards a

different state.

An important real-world aspect of our new tolerance model (which assumes that the

level of acceptance of neighboring opinions evolves over time) is that the tolerance level

of an agent θi(t) is proportional to the degree of the node. In other words, the more

neighbors a node has, the more likely it is to receive different influences which can

guarantee a higher tolerance level. This observation is backed up by a recent study which

proves that individuals with a higher (in)degree are less likely to be influenced, and the

influence of friends is not significantly moderated by their friends’ indegree and friendship

reciprocity (Geven, Weesie & Van Tubergen, 2013).

The results rendered with our tolerance model also fall in line with a research direction

started by Gross & Blasius (2008) where the authors show that there is a self-organization

in all adaptive networks, including multi-agent opinion networks. Our real-world
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observations and opinion simulation results show a similar topological self-organization

based on stubborn agent topological properties.

Finally, the study of opinion dynamics through our proposed concept of social balancing

shows key features that may be used in practical applications, like marketing or conflict

resolution. Under the requirement of keeping the social state stable, while never reaching

intolerance, we provide a classification of network topologies based on the social balancing

property. Networks with the democratic small-world structure promote balancing; the

phenomenon is also exhibited if there is a high concentration of stubborn agents to

stabilize opinion in mesh networks. If there are significantly fewer stubborn agents in

the network, balancing will only be achieved if one side is using a placement strategy to

counter its rivals (Gionis, Terzi & Tsaparas, 2013). A small-world network will not offer an

advantage to any of the opinions due the link layout and uniform degree distribution. On

the other hand, the oligarchic scale-free topology shows a clear importance of strategically

placed agents in hub nodes which intrinsically render the opposing nodes on lower levels of

the tree virtually powerless. The balancing phenomenon does not occur in networks with

scale-free properties. Clearly, the social balancing concept remains open for further debate,

improvement, and real-world validation.
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The Meme Tracker dataset:

http://snap.stanford.edu/data/memetracker9.html.

The Twitter dataset:

http://snap.stanford.edu/data/twitter7.html.

The Yelp dataset:

http://www.yelp.com/dataset challenge.
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