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ABSTRACT
Unreasonable public bicycle dispatching area division seriously affects the operational
efficiency of the public bicycle system. To solve this problem, this paper innovatively
proposes an improved community discovery algorithm based on multi-objective
optimization (CDoMO). The data set is preprocessed into a lease/return relationship,
thereby it calculated a similarity matrix, and the community discovery algorithm Fast
Unfolding is executed on the matrix to obtain a scheduling scheme. For the results
obtained by the algorithm, the workload indicators (scheduled distance, number
of sites, and number of scheduling bicycles) should be adjusted to maximize the
overall benefits, and the entire process is continuously optimized by a multi-objective
optimization algorithm NSGA2. The experimental results show that compared with
the clustering algorithm and the community discovery algorithm, the method can
shorten the estimated scheduling distance by 20%–50%, and can effectively balance
the scheduling workload of each area. The method can provide theoretical support for
the public bicycle dispatching department, and improve the efficiency of public bicycle
dispatching system.

Subjects Data Mining and Machine Learning, Software Engineering
Keywords Multi-objective optimization, Public bicycle system, Community discovery algorithm,
Regional scheduling workload, Elite strategy

INTRODUCTION
With the progress of urbanization, people’s awareness of low carbon life and health is
increasing. The public bicycle system can provide a green and healthy way to travel,
and gradually become an important part of the public transport system. However, the
study of the division of public bicycle dispatching area is still in the primary stage.
The division of the public bicycle scheduling area has two purposes: decomposing the
scheduling between large-scale sites, and reducing the computational complexity of
path planning.

At present, themainstream regional divisionmethod is based on the urban administrative
area, and each area is an independent scheduling area. However, the boundaries of
residents’ travel are not as clear as the administrative areas. With the development of the
city, the links between the areas are more closely related, so the division based on urban
administrative areas is lack of scientific basis. Tulabandhula & Bodas (2018) proposed a
passenger monitoring system for dispatching vehicles in a public transportation network,
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it monitors passengers at the station, vehicle scheduling information and processed
hardware equipment. Because the size and population density of each administrative area
are different, the number of sites in each area varies greatly. Pan, Jun-Yi & Min (2015)
designed a heuristic simulated annealing hybrid search algorithm for large-scale VRP
distributed problems. Firstly, based on the actual road network of GIS, the mathematical
model is established. Secondly, the large-scale VRP path planning problem is studied.
The administrative area is large in size and concentrated in population. Forma, Raviv
& Tzur (2015) considers the spatial nature of public bicycle rentals, and the original
inventory factor of bicycles. Then the paper establishes a regional maximum diameter
distance constraint model. Finally, the best classification results are obtained by heuristic
algorithms to minimize the overall inventory cost. Therefore, there are more sites, public
bicycle turnover is high, and dispatching workload is large; but if there are fewer sites, public
bicycle turnover is low, and dispatching workload is small. Above all, lack of a scientific
planning method often leads to higher scheduling capital costs. Schuijbroek, Hampshire &
Hoeve (2016) applied the maximum algebra algorithm to the division of the public bicycle
scheduling area, and the paper established the corresponding partitionmathematicalmodel.
The goal of zoning is to minimize the maximum completion time based on a reasonable
level of service.

Aiming at the problems, this paper proposes an improved community discovery
algorithm based on multi-objective optimization. By using this innovative algorithm,
the results show that the algorithm brings three major benefits: it can effectively
shorten the public bicycle scheduling distance, improve the scheduling efficiency, and
effectively balance the workload of regional scheduling.

RELATED WORK
The division of the public bicycle dispatching area involves operational research,
and researchers have made significant contribution. Public bicycles and buses, as
well as cargo transport vehicles are public transport, and their operations have
similarities. Therefore, they can learn dispatching methods from each other. Kloimllner
(Miranda-Bront et al., 2017) decomposes the problem of public bicycles into two
sub-problems: scheduling area partitioning and scheduling path planning. Then
create an integer programming model to achieve as few bicycle rental points
as possible.

In addition, other researchers chose to use clustering algorithms. Phanikrishnakishore
& Madamsetti (2014) used the rental rules between public bicycle stations, the space of
public bicycle stations, and the non-spatial attributes of public bicycle stations, as well as
the self-flow characteristics, using association rules to classify sites with strong correlation
into the same category. Finally, various types of site space enclosed areas serve as the
scheduling area for public bicycles. Zhang, Liang & Wei (2017) proposed a public bicycle
scheduling area division scheme based on the improved K-means clustering algorithm. In
the data analysis, the algorithm effectively estimates the k central sites at the initial central
site. After the K-means clustering algorithm is divided, the edge sites are clustered and
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adjusted again according to the scheduling requirements. Xu, Qin & Ma (2017) integrates
the spatial relationship between the sites, and the lease relationship of the bicycle, establishes
the similarity matrix of the site, and proposes the parameters of the regional coupling,
quantifies the degree of connection between the regions, and finally uses the clustering
algorithm to obtain the corresponding result. Long, Szeto & Huang (2014) established a
dynamic regional scheduling model, for large-scale public bicycle scheduling problems,
and proposed a multi-stage re-optimized dynamic clustering algorithm, integrates optimal
division, task balance between regions and regions. Within the balance of demand, three
factors are progressively clustered, and in the process of solving, the abnormal sites are
continuously split to gradually improve the clustering results.Dziauddin, Powe & Alvanides
(2015) has studied the public bicycle dispatching area, found that there are often abnormal
sites in the division, and he proposed a K-Center algorithm, adaptively limits the capacity
of the rental site. Hartmann Tolić, Martinović & Crnjac Milić (2018) analyzed the spatial
attributes and community structure of public bicycles, and the paper used the community
discovery algorithm to analyze the community structure of public bicycles in Washington,
London and Boston, and verified the existence of community structure in the public
bicycle network.

The main method of scheduling area division is model method (Dubey & Borkar, 2015)
and clustering algorithm (Sun, Zhang & Du, 2015). The model method requires abstract
research, and there are many constraints and it is not easy to solve. Clustering algorithm is
very difficult to determine the number of clusters, and it is difficult to evaluate. Moreover,
the scheduling workload has no evaluation criteria, and it does not consider whether
the workload is balanced. Therefore, this paper proposes a new method to solve the
problem.

SCHEDULING AREA DIVISION MODEL DESIGN
This part establishes the division model of public bicycle scheduling area, including
the description of the model, and the assumptions of some conditions, and some
interpretations of the parameters. Finally, this chapter will propose a lease/return
point demand forecasting model, the data obtained from this model can help
this paper verify whether CDoMO’s estimated total dispatch distance is the
shortest.

Problem description
At present, the clustering algorithm is mainly used to solve the problem of scheduling
area division. The data set abbreviated to DS is preprocessed using a data preprocessing
program. Turn a data set into a lease/return relationship abbreviated to LRR between
sites. Then, through the similarity calculation between the sites, the similarity matrix
abbreviated to SM is generated (Yanping, Decai & Duoning, 2017). Conversion from DS
to SM , as shown in Eq. (3.1), where Rij represents the similarity between site i and site
j, Qij represents the number of bicycles rented from the site i and returned to the site j,
Qji represents the number of bicycles rented from the site j and returned to the site i.
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DS
c1
→ LRR=
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··· Qij
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··· Qji



c2
→ SM =


R11 R12

R21 R22

··· R1j
. . . R2j

...
...

Ri1 Ri2

. . .
...

··· Rij

 (3.1)

The conversion process represented by c1 and c2 is as follows: Eqs. (3.2), (3.3), M
represents the time range, which is based on the number of days:

c1 : progressing program (3.2)

c2 :Rij =
Qij+Qji

M
(3.3)

SM =


R11 R12

R21 R22

··· R1j
. . . R2j

...
...

Ri1 Ri2

. . .
...

··· Rij

 CA
→DR={R1,R2,...,Rn} (3.4)

Finally, the clustering algorithm abbreviated to CA is used for dividing, Rn stands for
dividing into n independent scheduling areas is shown in Eq. (3.4). If the division result
abbreviated toDR conforms to the lease/return law abbreviated to LRL, the user can actively
complete a part of the scheduling work to reduce the scheduling workload. However, in
the actual scheduling area division, in order to obtain the highest comprehensive benefits,
the regional division should not only conform to the law, but also achieve the balance
of scheduling workload as much as possible (Shpak et al., 2017). The regional scheduling
workload is mainly determined by the distance within the area and the number of stations
in the area. Z 1 and Z 2 should be as small as possible if the regional workload is balanced.
This balance problem can be transformed into a multi-objective optimization problem.
The objective function f is shown in Eq. (3.5):

DR={R1,R2,...,Rn}
MOO
→ minf = [Z1,Z2]T (3.5)

Z1 : Variance of the dispatch distance Z2 : variance of the number of sites
MOO: Multi-objective optimization
Calculation of Z1 in the following Eq. (3.6), n represents the number of areas, Di

represents the estimated dispatch distance of area i, and D represents the average of the
estimated dispatch distances:

Z1=
1

n−1

n∑
i=1

(
Di−D

)2 (3.6)
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Calculation of Z2 in the following Eq. (3.7), n represents the number of areas, Ni

represents the number of internal sites in area i, and N represents the average number of
internal sites:

Z2=
1

n−1

n∑
i=1

(
Ni−N

)2 (3.7)

s.t .

S=
[
(Si−P)∪ (Sj−P)

]
∪P (3.8)

Equation (3.8) indicates that each site must be divided into an area. Si and Sj represent
the partition set. P represents the parking lot sites collection:[
[Si−P]∩[Sj−P]

]
=∅(i 6= j) (3.9)

Equation (3.9) indicates that a site can only be divided into an area:

Si∩P 6=∅,Sj ∩P 6=∅ (3.10)

Equation (3.10) indicates that each scheduling area contains at least one dispatch center.
There are two optimization goals for this issue:

• Minimize the variance between the estimated dispatch distance between each area;
• Minimize the variance between the numbers of sites in each area.

Model assumptions and parameter description
The scheduling area dividing process is complicated, and the abstract model involves many
parameters. In order to make the model as close as possible to the actual division, before
the model is established, some assumptions about the scheduling area dividing process are
assumed:

• The scheduling distance of each area can be estimated theoretically, the estimated
scheduling distance is approximately equal to the actual scheduling distance;
• Dispatching vehicles are not limited by driving time and mileage;
• Only one dispatching vehicle in each area is responsible for bicycle dispatch;
• Model of the dispatching vehicle is consistent with all parameters;
• The dispatching vehicle departs from the dispatching center, completes the dispatching
task, and then returns to the original dispatching center, regardless of vehicle failure,
and other unexpected factors.

Based on the problem description and model assumptions, the parameters and variables
of the model in Table 1 are defined.

Leasing demand forecasting model
After the scheduling area is divided, in order to calculate the estimated total distance of the
scheduling, it is necessary to ensure that the demand for the lease/return site is known, so
it is necessary to predict the scheduling demand for the lease/return site in the future. This
section will be divided into 24-time periods in hours per day named t, t ∈ {0,1,...,23}. A
Meteorology Similarity Weighted K-Nearest-Neighbour (MSWK ) method is introduced
to predict the number of least and returned bicycle at the site.

Lin et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.224 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.224


Table 1 Parameters and variables of the model. Based on the problem description and model assump-
tions, the parameters and variables of the model are defined.

Parameters/variables Parameter/variable meaning

n The number of areas
i,j Area number
Di The estimated scheduling distance of the area i
Dj The estimated scheduling distance of the area j
D Regional estimated dispatch distance average
Ni The number of sites in area i
Nj The number of sites in area j
N Average number of sites within the area
S Collection of sites
Si Site division set for area i
Sj Site division set for area j
P parking lot site collection

Table 2 Exact values. In the measurement of the similarity of weather, the weather is split into five levels
and assigned corresponding values. The exact values are shown in the table.

Weather Value

Heavy snow, heavy rain 1
Snow, light snow, moderate rain, light rain 0.75
Foggy 0.5
Sunny and cloudy 0.25

Leasing number forecast model
MSWK is an improved method for predicting lease/return bicycle quantity based on
KNN algorithm. Analysed the amount of leasing in a similar time period to predict future
leasing. Weather, temperature, humidity, winds speed, and visibility are measured in five
indicators.

In the measurement of the similarity of weather, the weather is split into five levels and
assigned corresponding values. The exact values are shown in Table 2.

The quantified weather conditions at p and q for two days t is denoted byWDt
p
andWDt

q
,

respectively, and the weather similarities for t in p and q are defined as follows (Eq. (3.11)):

λ1=
1

2πσ1
e
−

(
W
Dtp
−W

Dtq

)2
σ21 (3.11)

The temperatures of the p and q two days t periods are denoted by FDt
p
and FDt

q
. The

temperature similarities of the t time periods in p and q are defined as follows (Eq. (3.12)):

λ2=
1

2πσ2
e
−

(
F
Dtp
−F

Dtq

)2
σ22 (3.12)
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The three dimensions of humidity, wind speed, and visibility are represented by a 3-D
Gaussian kernel function, and HDt

p
,SDt

p
,VDt

p
represents the humidity, wind speed, and

visibility of the t time period in p, respectively. The humidity, wind speed, and visibility
similarity of p and q periods in t are defined as follows (Eq. (3.13)):

λ3=
1

2πσ
e

−


(
H
Dtp
−H

Dtq

)2
σ23

+

(
S
Dtp
−S

Dtq

)2
σ24

+

(
V
Dtp
−V

Dtq

)2
σ25


(3.13)

In order to simplify the calculation, the temperature, humidity, wind speed, and visibility
are normalized and all σ1,σ2,σ3,σ4,σ5 are set to 1, thereby simplifying the calculation;
finally, by weighting the above three similarity indexes, p and q can be obtained. The overall
similarity indicator at time t as follows (Eq. (3.14)):

M
(
Dt
p,D

t
q;a
)
= δw

(
Dt
p,D

t
q

) 3∑
i=1

aiλi (3.14)

Where δw
(
Dt
p,D

t
q

)
is a judgment function, when both p and q are working days or all

non-working days, δw
(
Dt
p,D

t
q

)
= 1, otherwise δw

(
Dt
p,D

t
q

)
= 0. If you want to predict the

amount of rent in the t time period in q, select the most similar K days and use theMSWK
algorithm to calculate the predicted value. The specific Eq. (3.15) is as follows:

si ·pd
(
Dt
q;a
)
=

∑K
p=1M

(
Dt
p,D

t
q;a
)
si ·pd

(
Dt
p

)
∑K

p=1M
(
Dt
p,Dt

q;a
) (3.15)

Returning number forecast model
After a user rents a bicycle, they often return the bicycle to an adjacent site within a certain
period of time. Therefore, there is a need for prediction data of the number of bicycles
based on neighbouring sites, which is used to predict the number of bicycles returned to
the site. Bicycles rented from site i during time t may be returned to site j adjacent to i
during time t or t+1. For the forecast of the number of return bicycles within the lease time
t period, it is necessary to first estimate the number of bicycles rented from the site i and
at the site j within the time period t. The specific Eq. (3.16) is as follows:

e tij = si ·pd (t )
eij · f
si ·pd

(3.16)

Among them, si ·pd (t ) is the predicted value of bicycle rental quantity from site i in time
period t, eij · f is historical record of bicycle rental from site i and is still at site j. si ·pd is
historical total bicycle rental record from site i. Through the analysis of historical data, it is
found that the user’s riding time law can be fitted by the 2-Gaussian function. Therefore,
the riding time Dij (t )between rental sites i and j can be estimated by Eq. (3.17):

Dij (t )= g1(t ;µ1,σ1)+g2(t ;µ2,σ2). (3.17)
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Assume that the user’s return time is evenly distributed, and the user’s behaviour of
returning the leased bicycle is completed within the t time period or t+1-time period.
During the time periods t and t+1, the user t1 rents a bicycle from the site i at the moment,
and the probability of returning the ticket at the site j at t2 is as follows (Eqs. (3.18) and
(3.19)):

P t
ij =

1
|t |

∫
|t |

0

∫
|t |−t

′

1

0
dt
′

1dt2Dij (t2) (3.18)

P t+1
ij =

1
|t |

∫
|t |

0

∫
+∞

|t |−t ′1

dt
′

1dt2Dij (t2). (3.19)

Finally, considering the traffic patterns and the corresponding probabilities of the
adjacent sites, the formula for predicting the number of return bicycles within the sites is
obtained as follows:

si ·dd (t )=
∑
j 6=i

e tijP
t
ij+e

t−1
ij P t+1

ij . (3.20)

So far, the demand 1N of the site i at the time t in the future will be calculated by
combining the demand for rental and return of the rental site i at the time t in the future.
The specific formula is as follows:

1N = si ·dd (t )− si ·pd (t ). (3.21)

If 1N is less than zero, it means that the site i will not be able to meet the user’s bicycle
rental demand at the time t in the future, and it is necessary to dispatch the bicycle through
dispatch (Feng, Zhu & Liu, 2018). If1N is greater than the number of parking spots at the
leased site, it means that the site i at the time t in the future cannot satisfy the user’s demand
for returning the car. It is necessary to reduce the number of bicycles by scheduling.

COMMUNITY DISCOVERY ALGORITHM BASED ON
MULTI-OBJECTIVE OPTIMIZATION
Community discovery algorithm based on multi-objective optimization, which
combines quantitative indicators of regional scheduling workloads, community
discovery algorithms (Shivach, Nautiyal & Ram, 2018), and multi-objective optimization
algorithms (Mori & Saito, 2016). Firstly, the Fast Unfolding community discovery
algorithm (Sun et al., 2018) is performed based on the similaritymatrix of the site. Secondly,
the workload adjusts the results of the community discovery algorithm. Throughout the
process, the results are continuously optimized through a multi-objective optimization
algorithm.

CDoMO scheduling workload analysis
Scheduling workload is an indicator to measure the workload of a dispatch line. The
scheduling itself involves many fields, so there is no uniform standard (Kim, Jeong &
Lee, 2017). The generalized scheduling workload is mainly determined by the scheduling
distance, the delivery volume and the number of service outlets. The three parameters
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are weighted and integrated, and the workload of the dispatching line can be quantified.
SupposeW is the generalized scheduling workload,D is the driving distance (km),N is the
number of outlets (pieces), S is the delivery amount (pieces), and ρ1,ρ2,ρ3 is the driving
distance weight, the delivery amount weight, and the service outlet quantity weight as
follows Eq. (4.1):

W = ρ1 ·D+ρ2 ·N +ρ3 ·S (4.1)

This paper combines generalized scheduling workload with public bicycles, and then
obtains a quantitative formula for regional scheduling workload, Wi is the scheduling
workload of area i, and Di is the scheduling distance of area i, which is calculated by the
maximum generation star algorithm.Ni is the number of stations in area i, Si is the number
of stations in area i, and ρ1,ρ2,ρ3 is the corresponding weight coefficient as follows Eq.
(4.2):

Wi= ρ1 ·Di+ρ2 ·Ni+ρ3 ·Si (4.2)

Since the regional scheduling is based on all stations in the entire area, and in the
scheduling area division stage, the waiting scheduling sites and scheduling quantities of
each area are unknown, so in this paper, the impact of Si on the scheduling workload is
ignored, that is, let ρ3= 0. So, the Eq. (4.3) can be simplified to:

Wi= ρ1 ·Di+ρ2 ·Ni. (4.3)

In the quantitative formula of scheduling workload, the weight coefficient cannot be
determined manually, but when the scheduling workload balance is satisfied, the estimated
scheduling distance variance in each area, and the variance of the number of stations in each
area should be as small as possible, so the scheduling balance the problem can be turned
into a multi-objective optimization problem. The objective function is min f = [Z1,Z2]T .
NSGA2 is the most popular multi-objective genetic algorithm. NSGA2 first genetically
manipulates the population P to obtain the population Q; then the populations are
combined and then combined with non-inferior sorting and crowding distance sorting,
and then a new population is established. Repeat the above process, until the termination
condition is met. The detailed process is as follows:
(1) Randomly generate the initial population P0, then sort the populations non-inferiorly,

and assign a non-dominant value to each individual; then perform the operations
of selection, crossover, and mutation on the initial population P0 to obtain a new
population Q0, set to i= 0.

(2) Combine the populations of the father and offspring, then form a new population
Ri= Pi∪Qi, and then sort the population Ri non-inferiorly to obtain the non-inferior
layer F1, F2, ···.

(3) Perform replication, crossover, and mutation operators on population Pi+1 to form
population Qi+1.

(4) If the termination condition holds, then it ends; otherwise, i = i+1, go to step (2).
The main process diagram of NSGA2 is shown in Fig. 1:
This paper uses the NSGA2 multi-objective optimization algorithm to resolve the

scheduling area partition model (Wu, 2014). The length of the chromosome in NSGA2
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Figure 1 The main process of NSGA2 algorithm.
Full-size DOI: 10.7717/peerjcs.224/fig-1

is 2 (Basch et al., 2015), which corresponds to the value of the weight parameter in the
area scheduling workload. Each individual corresponds to a scheduling workload formula,
based on schedule the workload adjustment community found the results of the division.
Figure 2 shows the restricted flow of NSGA2 algorithm.

CDoMO algorithm design
Community discovery algorithm built on multi-objective integrates quantitative indicators
of regional scheduling workloads, community discovery algorithms and multi-objective
optimization algorithms. Firstly, the Fast Unfolding community discovery algorithm is
implemented based on the similarity matrix of the least sites; secondly, the workload index
is used to adjust the results of the community discovery algorithm. The entire process
continuously optimizes the results from a multi-objective optimization algorithm.

Table 3 displays the detailed algorithm calculation.

EXPERIMENT AND ANALYSIS
The rest of the paper is part of the experiment and analysis. The experimental section
was divided into two groups, which were experiments using New York public bicycle data
and Chicago public bicycle data. In the analysis section, the two groups of experiments
use K-means clustering algorithm, and Fast Unfolding community discovery algorithm
as comparisons, it compares the three aspects of the number of rental sites, the variance
of the number of scheduled bicycles, and the estimated total distance of scheduling. The
comparative data show that the algorithm is effective against both sets of experiments.
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Figure 2 Specific flow of NSGA2 algorithm.
Full-size DOI: 10.7717/peerjcs.224/fig-2

New York public bicycle
Data set introduction
Citi Bikes (Jiang et al., 2018) is a people-benefit project launched by the New York City
Government. Figure 3 displays the spatial distribution of rental sites. Blue represents
Manhattan, with 250 rental sites; green represents Brooklyn, with 77 sites. Each Citi Bicycle
rental site has GPS location information, so it is not difficult to locate the rental site. The
system records the user’s data onto each cycle. The package contains the location and time
data onto the start and the end of the site, the entire riding process, the bicycle ID, and the
user’s gender and birth date. This experiment will use the May 2016 rent-return dataset of
New York public bicycles to conduct an experiment, a total of 96, and 1986 rent-return
data. The dataset contains 16 fields, and the nine fields related to this experiment are shown
in Table 4.

This paper uses the pre-processing program to process the leased data, it turned into
the lease-return relationship between the least sites (Guo et al., 2017). It also generates a
similarity matrix based on the rent-return relationship. The similarity calculation formula
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Table 3 Detailed algorithm calculation.

Algorithm: Community discovery algorithm based onmulti-objective optimization

Input: Site similarity matrix X, population number popsize, maximum number of iterations
MaxGen.

Output: Optimal regional division results ρ∗1 , and workload index parameters ρ∗2 .
1. Initialize the historical optimal solution f ∗ and its workload index parameter ρ∗1 ,ρ

∗

2 .
2. Perform a pass phrase of the Fast Unfolding community discovery algorithm, and obtain

the results of the preliminary zoning division as R.
3. Calculate the estimated distance Di of each area in R, number of regional sites Ni.
4. Individual genes in the population as weight coefficients ρ1,ρ2. Finally, the scheduling

workload of each area is calculated by the formulaWi = ρ1 ·Di+ρ2 ·Ni. The variance of
the regional workload is denoted as V.

5. For each rental site i, try to put i into other communities and calculate the incremental
1V of the adjustment workload, the entire process records the maximum1Vmax and
the corresponding community k. If1Vmax < 0, site node i does not adjust; if1Vmax >0,
node i is adjusted to community k. Traverse all the site until all the site are adjusted and
the result is recorded as R∗.

6. Define the variance function f1 of the regional site, and define the regional dispatch
distance variance function f2, they are two objective functions to perform fast
non-dominated sorting on the results, the records of the optimal solution in the
contemporary population as f ′ , and its corresponding scheduling workload parameters
are denoted as ρ ′1,ρ

′

2. If f
′

> f ∗ after comparison, letting ρ∗1 = ρ
′

1,ρ
∗

2 = ρ
′

2.
7. Determine whether the number of program iterations exceeds the maximum number of

iterationsMaxGen. If it exceeds, the optimal regional division results, and workload in-
dex parameters ρ∗1 ,ρ

∗

2 are output; otherwise, a new population is generated through elite
strategy selection, which can ensure that certain elite individuals will not be discarded
during the evolution process, thereby improving the accuracy of the optimization re-
sults, and expanding the sampling space. And gene crossover and mutation processes
and the execution continue from 1.

for the least sites is as follows (Eq. (4.4)):

Rij =
Qij+Qji

M
(4.4)

Among them, Rij represents the similarity between site i and site j; Qij represents the
number of times to rent a bicycle from site i and site j to return the bicycle; Qji represents
the number of times of renting a bicycle from site i and returning it at site j;M represents
the time range in days. In this experiment, the data set was a total of 31 days in May 2016,
so M = 31.The corresponding abstract network can be generated through the lease-return
relationship (Fig. 4). Due to the dense population, dense sites, and prosperous business,
the sites in Manhattan are more closely linked, and Brooklyn is a river is separated from
Manhattan, so the connection between the two regional sites is sparse except for the leases
along the river.
Experimental result
In the experiment, we first used theGephi visualization network analysis platform to analyse
the community structure in the data (Hu, An &Wang, 2018). The Gephi platform uses
the integrated Fast Unfolding algorithm, it divides the public bicycle abstraction network
according to the rules of public bicycle rental. The Fast Unfolding algorithm mainly
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Figure 3 Spatial distributionmap of public bicycles in New York.
Full-size DOI: 10.7717/peerjcs.224/fig-3

includes two phases. The first phase is known as Modularity Optimization. The main part
is to divide each node into the community, its neighbourhood nodes are located, so that
the value of the module degree becomes larger; the second phase is called community.
Aggregation is mainly to aggregate the communities divided in the first step into one site,
that is, to rebuild the network based on the community structure generated in the previous
step. Repeat the above process, until the structure of the network no longer changes (Fig. 5).

After the Fast Unfolding algorithm for the New York public bicycle rental site in this
paper, Fig. 6 shows the internal community structure of the abstract network of New York’s
public bicycles, where the dots represent sites, where the sites of different communities
are represented by different colours, and the lines represent the relationships between
the sites; obviously, six communities have more close contact with leases within the same
community, and the links between different societies are relatively sparse. The results of the
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Table 4 Dataset contains 16 fields, and the nine fields.

No. Fields Meaning

1 start time Starting time
2 stop time End Time
3 start_station_id Bicycle rental site ID
4 start_station_name Name of bicycle rental site
4 start_station_longitude Longitude of rental bicycle rental site
5 start_station_latitude Latitude of rental bicycle rental
6 end_station_id Return bicycle rental ID
7 end_station_name The name of the bicycle rental site
8 end_station_longitude The longitude of the bicycle rental site
9 end_station_latitude The longitude of the bicycle rental site

Fast Unfolding community discovery algorithm are mapped to map on New York (Fig. 7).
Manhattan is a densely populated administrative district, and the vast majority of public
bicycles in the area ride on the inside, so the Manhattan District is divided into five areas
according to the law of rent. Brooklyn is structured in a district. Although the division
results are relatively reasonable, there are still many abnormal sites. These abnormal sites
are far away from their respective areas; the number of sites of each area is uniform.

CDoMO is based on community discovery algorithm, considering the regional
scheduling workload factors. The regional scheduling workload is determined by estimated
dispatch distance and the number of regional least sites. If the community finds out that
there are abnormal sites, it will cause regional forecasting scheduling distance become
larger, so that the variance between the scheduling distances will become larger. If there
is a major difference in the number of sites between areas, the variance between the
numbers of sites will increase. The goal of CDoMO is to optimize the variance of the
distance between the regional scheduling, and optimize the variance of the number of
sites. In the optimization process, the division results can be adjusted to make it more
reasonable. The division process does not take into consideration the deficiencies in the
workload balance in each scheduling area. After the community discovery algorithm based
on multi-objective optimization solves the division model of the public bicycle scheduling
area, the experimental results shown in Fig. 8 are obtained. By comparing the result shows
that the sites along the Williamsburg Bridge and the riverside along Manhattan is divided
into the same dispatch area, which is more n line with the rules of public bicycle rental and
resolving the anomaly (Zhang et al., 2011). The difference between the number of sites and
regional sites is too large (Manju & Fred, 2018).

In order to maintain the consistency of the experiment, the value of k in the classical
clustering algorithm K-means algorithm is set to 6 (Lin & Song, 2017), and then the
clustering is based on the same data set; the space area enclosed by the sites in each class as
the scheduling area. In order to achieve regional division, the results of the regional division
based on the clustering algorithm (Fig. 9). It was found that when the clustering number is
k=6, the clustering algorithm achieves a poor regional division. The number of sites in the
class represented by the red is very large, while the number of classes represented by purple
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Figure 4 Abstract network of public bicycles in New York City.
Full-size DOI: 10.7717/peerjcs.224/fig-4

and beige is very small, and the number of sites to vary greatly from the types. In addition,
the boundaries of each scheduling area are unclear and are overlapped (Zhen et al., 2016).

Algorithm performance comparison results
Built on the overall experimental results of the above three methods, it is found that
the multi-objective optimization-based community discovery algorithm proposed to this
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Figure 5 Schematic diagram of community discovery algorithm.
Full-size DOI: 10.7717/peerjcs.224/fig-5

Figure 6 Schematic diagram of analysis results of the Gephi Visual Network Analysis platform.
Full-size DOI: 10.7717/peerjcs.224/fig-6

paper can make the division of the areas consistent with the rules and make the regional
scheduling workload as balanced as possible. In addition to the analysis of the overall
distribution of provincial division space, the paper also compares and analyses the three
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Figure 7 Results of fast unfolding community Discovery algorithm in the New York dataset.
Full-size DOI: 10.7717/peerjcs.224/fig-7

dimensions of the regional rental site variance, the regional dispatch distance variance, and
the estimated total dispatch distance. Figure 10 compares the variance between the numbers
of sites. The data show that the variance between the CDoMO compared to the K-means
algorithm is reduced by 63.31%, and the variance of the Fast Unfolding algorithm is
reduced by 32.32%. Figure 11 compares the variance of the number of bicycles dispatched
in the area. The data show that the variance of the CDoMO algorithm compared to the
K-means algorithm is reduced by 88.06%, and the variance of the Fast Unfolding algorithm
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Figure 8 Results of region partition based onmulti-objective optimization algorithm in the New York
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-8
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Figure 9 Results of region partition based on clustering algorithm in the New York dataset.
Full-size DOI: 10.7717/peerjcs.224/fig-9

is reduced by 38.14%. Figure 12 compares the estimated total scheduled distances. The data
show that the variance of the CDoMO algorithm is 55.17% compared with the K-means
algorithm and 27.54% compared to the Fast Unfolding algorithm. When scheduling and
partitioning based on multi-objective optimization algorithm, the estimated scheduling
distance can be shortened, and the estimated scheduling distance is positively related to
the actual scheduling distance, so the actual scheduling distance will also be shortened; in
addition, the scheduling work of each area will also be made. Relatively balanced. Figure 13
is a comparative display of experimental results.
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Figure 10 Difference in the number of bicycle rental points under three algorithms in the New York
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-10

Figure 11 Distance difference of bicycle scheduling area under three algorithms in the New York
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-11

Chicago public bicycle
Data set introduction
First of all, the data set cited in this paper is from Chicago public bicycle data (Ye, Chu
& Xu, 2015). The starting site is 2015-1-1, and the deadline is 2015-6-30. There are two
quarters and six months of data, a total of 759,789 data records. This paper did some
data pre-processing: Trips that did not include a start or end date were removed from the
original table. Then, in order to ensure that the information of the data set more abundant,
this paper decided to use the data set, distance information of each pair of source address
and destination address. Finally, we utilize certain data pre-processing methods to remove
weather and other data because it can be considered as an ideal condition. The dataset
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Figure 12 Total distance of estimated scheduling under three algorithms in the New York dataset.
Full-size DOI: 10.7717/peerjcs.224/fig-12

Figure 13 Comparison of experimental results of region partition under three algorithms in New York
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-13

contains 12 fields, and the 10 fields related to this experiment are presented in the following
Table 5.

Experimental result
Results of the Fast Unfolding community discovery algorithm can be mapped to Chicago
map as the picture shows (Ye, Chu & Xu, 2015). In contrast, the division results are more
uniform and reasonable, but there are too many abnormal sites in the middle. These
abnormal sites are a long way from where they should have existed. The number of rental
sites in a divided area is not particularly uniform (Fig. 14).

Based on CDoMO, in the optimization process, the division results are dynamically
adjusted in time. Therefore, in this case, the division result is more reasonable, and the
problem of scheduling balance, this algorithm obviously adds more consideration. It not
only addresses the problem of abnormal sites, but also solves the problem of differences in
the number of regional sites at the same time (Fig. 15). In order to make the experiment
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Table 5 Dataset contains 12 fields, and the 10 fields.

No. Fields Meaning

1 start time day and time trip started, in CST
2 stop time day and time trip ended, in CST
3 from_station_id ID of station where trip originated
4 from_station_name name of station where trip originated
5 from_station_longitude Longitude of rental bicycle rental site
6 from_station_latitude Latitude of rental bicycle rental
7 to_station_id ID of station where trip terminated
8 to_station_name name of station where trip terminated
9 to_station_longitude The longitude of the bicycle rental site
10 to_station_latitude The longitude of the bicycle rental site

Figure 14 Results of fast unfolding community discovery algorithm in Chicago dataset.
Full-size DOI: 10.7717/peerjcs.224/fig-14
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Figure 15 Results of region partition based onmulti-objective optimization algorithm in the Chicago
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-15

consistent, we set the value of k in the K-means algorithm as 5, and then we clustered
the uniform data set. The results of the clustering are presented in the figure. This paper
believes that the results obtained by the clustering algorithm are very poor, because the red
sites represent a particularly large number of sites. The yellow site represents a particularly
small number of rental sites. This shows that the various types of leases, the number of
differences is too large, in addition, this algorithm also led to the border is not clear, and
there is some inevitable overlap. In the actual scheduling work, this situation is not allowed,
as showed in Fig. 16.

Algorithm performance comparison results
This paper will describe the quantified experimental results of the three methods, it
compares the differences between them. It is easy to see that the algorithm proposed in
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Figure 16 Results of region partition based on clustering algorithm in the Chicago dataset.
Full-size DOI: 10.7717/peerjcs.224/fig-16

this paper is optimal, compared to the other two algorithms. Figure 17 compares the
difference between the numbers of sites. Compared to the K-means clustering algorithm
and the Fast Unfolding community discovery algorithm, the variance of the CDoMO
algorithm is reduced by 66.98% and 22.57%. Figure 18 in this paper compares the number
of scheduled bicycles, it finds that the CDoMO algorithm set out in the present paper is an
optimal algorithm. Similarly, opposed to the K-means clustering algorithm and the Fast
Unfolding community finding algorithm, the variance is reduced by 83.77% and 48.72%
(Fig. 19). Figure 20 compares the estimated total distance of scheduling with the other two
algorithms, and the conclusion shows that the distance is decreased by 50.82% and 22.08%.

Then we can conclude that the CDoMO algorithm proposed in this paper: It effectively
reduces the number of sites; it effectively reduced the variance in the number of bicycles
dispatched; it effectively reduced the estimated total distance for scheduling.
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Figure 17 Difference in the number of bicycle rental points under three algorithms in the Chicago
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-17

Figure 18 Distance difference of bicycle scheduling area under three algorithms in the Chicago
dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-18

CONCLUSION
In order to solve the problem of regional division of public bicycles, this paper proposes
CDoMO. The algorithm fully considers the special law of public bicycle lease/return, and in
order to balance the scheduling workload between areas, the regional scheduling workload
index is proposed. This problem is identified as a multi-objective optimization problem
with two objective functions: minimize the variance between the estimated dispatch
distances between each area; minimize the variance between the numbers of sites in each
area. The regional scheduling workload can adjust the results of the community discovery
algorithm in real time and dynamically. In the end, the results obtained can meet the
special rules of public bicycle lease/return, and balance the workload between the areas.
The experimental results show that the CDoMO can effectively shorten the scheduling
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Figure 19 Total distance of estimated scheduling under three algorithms in the Chicago dataset.
Full-size DOI: 10.7717/peerjcs.224/fig-19

Figure 20 Comparison of experimental results of region partition under three algorithms in the
Chicago dataset.

Full-size DOI: 10.7717/peerjcs.224/fig-20

distance of public bicycle system, effectively improve the scheduling efficiency, and make
the workload of each scheduling area relatively balanced. The next step is to have a more
appropriate solution if you limit the travel time and mileage of the scheduling vehicle.
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