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ABSTRACT
In recent years, a large body of literature has accumulated around the topic of
research paper recommender systems. However, since most studies have focused on
the variable of accuracy, they have overlooked the serendipity of recommendations,
which is an important determinant of user satisfaction. Serendipity is concerned
with the relevance and unexpectedness of recommendations, and so serendipitous
items are considered those which positively surprise users. The purpose of this article
was to examine two key research questions: firstly, whether a user’s Tweets can assist
in generating more serendipitous recommendations; and secondly, whether the
diversification of a list of recommended items further improves serendipity.
To investigate these issues, an online experiment was conducted in the domain of
computer science with 22 subjects. As an evaluation metric, we use the serendipity
score (SRDP), in which the unexpectedness of recommendations is inferred by using
a primitive recommendation strategy. The results indicate that a user’s Tweets do
not improve serendipity, but they can reflect recent research interests and are
typically heterogeneous. Contrastingly, diversification was found to lead to a greater
number of serendipitous research paper recommendations.

Subjects Data Mining and Machine Learning, Digital Libraries
Keywords Recommender system, Experimental study, User study, Scholarly articles, Serendipity,
Digital library

INTRODUCTION
To help researchers overcome the problem of information overload, various studies have
developed recommender systems (Beel et al., 2016; Bai et al., 2019). Recommendations
are generated based on considerations such as a user’s own papers (Sugiyama & Kan, 2010;
Kaya, 2018) or the papers a user has accessed or liked in the past (Nascimento et al., 2011;
Achakulvisut et al., 2016). Most previous studies have focused only on improving the
accuracy of recommendations, one example of which is normalised discounted cumulative
gain (nDCG). However, several studies on recommender systems conducted in other
domains (e.g. movies) have drawn attention to the fact that there are important aspects
other than accuracy (McNee, Riedl & Konstan, 2006; Herlocker et al., 2004; Kotkov,
Wang & Veijalainen, 2016; Kotkov, Veijalainen & Wang, 2018). One of these aspects is
serendipity, which is concerned with the unexpectedness of recommendations and the
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degree to which recommendations positively surprise users (Ge, Delgado-Battenfeld &
Jannach, 2010). A survey byUchiyama et al. (2011) revealed that researchers think that it is
important for them to be recommended serendipitous research papers.

In this article, we study a research paper recommender system focusing on serendipity.
Sugiyama & Kan (2015) investigated serendipitous research paper recommendations,
focusing on the influence of dissimilar users and the co-author network on recommendation
performance. In contrast, this study investigates the following research questions:

� (RQ1) Do a user’s Tweets generate serendipitous recommendations?

� (RQ2) Is it possible to improve a recommendation list’s serendipity through
diversification?

We run an online experiment to facilitate an empirical investigation of these two
research questions using three factors. For RQ1, we employ the factor User Profile Source,
where we compare the two sources of user profiles: firstly, a user’s own papers; and
secondly, a user’s Tweets. The user’s own papers are a feature of existing recommender
systems, as evidenced by the work conducted by Sugiyama & Kan (2015) and Google
Scholar (https://scholar.google.co.jp/). In this study, we assume that the user’s Tweets
produce recommendations that cannot be generated based on papers, since researchers
Tweet about recent developments and interests that are yet not reflected in their papers (e.
g. what they found interesting at a conference or in their social network) (Letierce et al.,
2010). In addition, they are likely to have used their Twitter accounts to express private
interests. We conjecture that taking private interests into consideration delivers
serendipitous recommendations, since the recommender system will then suggest research
papers that include both professional interests and private interests, and which are thus
likely to be serendipitous. We also observed that recommendations based on a user’s
Tweets received a precision of 60%, which is fairly high in the domain of economics
(Nishioka & Scherp, 2016).

Furthermore, we analyse the factor Text Mining Method, which applies different
methods of candidate items (i.e. research papers) for computing profiles, as well as user
profiles comprising different content (i.e. Tweets or previous papers).

As text mining methods, we compare TF-IDF (Salton & Buckley, 1988) with two of its
recent extensions, namely CF-IDF (Goossen et al., 2011) and HCF-IDF (Nishioka,
Große-Bölting & Scherp, 2015). Both have been associated with high levels of performance
in recommendation tasks (Goossen et al., 2011; Nishioka, Große-Bölting & Scherp, 2015).
We introduce this factor because text mining methods can have a substantial influence
on generating recommendations. For RQ2, we introduce the factor Ranking Method,
where we compare two ranking methods: firstly, classical cosine similarity; and secondly,
the established diversification algorithm IA-Select (Agrawal et al., 2009). Cosine similarity
has been widely used in recommender systems (Lops, De Gemmis & Semeraro, 2011),
while IA-Select ranks candidate items with the objective of diversifying recommendations
in a list. Since it broadens the coverage of topics in a list, we assume that IA-Select delivers
more serendipitous recommendations compared to cosine similarity.
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Along with the three factors User Profile Source, Text Mining Method, and Ranking
Method, we conduct an online experiment in which 22 subjects receive research paper
recommendations in the field of computer science. As an evaluation metric, we use the
serendipity score (SRDP), which takes unexpectedness and usefulness of recommendations
into account. It considers a recommendation as unexpected, if it is not recommended by a
primitive recommendation strategy (i.e. baseline). The results reveal that a user’s Tweets
do not improve the serendipity of recommender systems. On the other hand, we confirm
that the diversification of a recommendation list by IA-Select delivers more serendipitous
recommendations to users.

The remainder of the paper is organised as follows: firstly, we describe related
studies; in turn, we describe the recommender system and the experimental factors and
evaluation setup; and finally, before concluding the article, we report on and discuss the
experimental results.

RELATED WORK
Over the last decade, many studies have developed research paper recommender
systems (Beel et al., 2016; Bai et al., 2019). According to Beel et al. (2016), more than half
of these studies (55%) have applied a content-based approach. Collaborative filtering
was applied by 18% and graph-based recommendations, utilising citation networks or
co-authorship networks, were applied by 16%. Other researches have employed
stereotyping, item-centric recommendations, and hybrid recommendations. In this article,
we employ a content-based approach, as a number of works have done in the past with
promising results (Sugiyama & Kan, 2010; Nascimento et al., 2011; Achakulvisut et al.,
2016; Kaya, 2018).

Clarifying the notion of serendipity
Most existing studies have evaluated research paper recommender systems by focusing
on measures of accuracy, including precision, mean reciprocal rank (MRR), and
normalised discounted cumulative gain (nDCG). However, studies that have addressed
recommender systems in other domains (e.g. movies) argue that there are important
considerations other than accuracy (McNee, Riedl & Konstan, 2006; Herlocker et al., 2004).
One of these considerations is serendipity, which is a term that has been defined differently
in the literature in the context of recommender systems. For instance, Kotkov, Wang &
Veijalainen (2016) defined serendipity as “a property that indicates how good a
recommender system is at suggesting serendipitous items that are relevant, novel and
unexpected for a particular user.” Similarly, Herlocker et al. (2004) defined serendipity
as measure of the extent to which the recommended items are both attractive and
surprising to the users. Other researchers have offered comparable definitions of
serendipity (Shani & Gunawardana, 2011).

According to Ge, Delgado-Battenfeld & Jannach (2010), it is important to recognise
two important aspects of serendipity: firstly, a serendipitous item should be unknown
to the user and, moreover, should not be expected; and secondly, the item should be
interesting, relevant, and useful to the user. Taking these two aspects into account,
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Ge, Delgado-Battenfeld & Jannach (2010) proposed a quantitative metric to evaluate the
degree to which recommender systems are effective at generating serendipitous
recommendations.

Most recently, Kotkov et al. (2018) conducted a literature review and operationalised
common definitions of serendipity. Regarding unexpectedness, they organised four
different definitions:

� Unexpectedness to be relevant (i.e. a user does not expect an item to be relevant).

� Unexpectedness to be found (i.e. a user would not have found this item on their own).

� Implicit unexpectedness (i.e. an item is significantly dissimilar to items a user usually
consumes).

� Unexpectedness to be recommended (i.e. a user does not expect an item to be
recommended).

In terms of novelty, they set two different definitions:

� Strict novelty (i.e. a user has never heard about an item or has consumed it and forgot
about it).

� Motivationally novelty (i.e. a user has heard about an item, but has not consumed it).

This resulted in 4 × 2 = 8 definitions of serendipity. In addition, they investigated effects
of different definitions of serendipity on preference broadening and user satisfaction.
They found that all variations of unexpectedness and novelty broaden user preferences,
but one variation of unexpectedness (unexpected to be relevant) hurts user satisfaction.

In this study, we evaluate the serendipity of recommendations using a metric proposed by
Ge, Delgado-Battenfeld & Jannach (2010). The metric considers a recommendation as
unexpected, if it is not recommended by a primitive recommendation strategy (i.e. baseline).
Thus, this study takes into account “unexpectedness to be found” and “unexpectedness to
be recommended” in the different variations of unexpectedness proposed by Kotkov et al.
(2018). We choose this definition of serendipity as this is most relevant in our library
context, where we recommend scientific papers to researchers (Vagliano et al., 2018).

Use of social media for serendipitous recommendations
In previous studies addressing content-based research paper recommender systems
(Beel et al., 2016; Bai et al., 2019), the authors calculated recommendations based on a
user’s own papers (Sugiyama & Kan, 2010) or papers a user has read in the past
(Nascimento et al., 2011). In other domains, several studies have developed content-based
recommender systems (Chen et al., 2010; Orlandi, Breslin & Passant, 2012; Shen et al.,
2013) that utilise data from a user’s social media accounts, including Twitter and Facebook.
Another study proposed research paper recommendations based on a user’s Tweets, which
received a relatively high precision of 60% (Nishioka & Scherp, 2016). However, we
hypothesise that because researchers Tweet about recent developments and interests that
are not yet reflected in their papers (Letierce et al., 2010), a user’s Tweets will deliver
recommendations that are not generated based on papers.
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In the context of research paper recommender systems, Sugiyama & Kan (2015)
investigated serendipitous research paper recommendations focusing on the influence of
dissimilar users and the co-author network on the recommendation performance.
However, the researchers evaluated their approaches using accuracy-focused evaluation
metrics such as nDCG andMRR.Uchiyama et al. (2011) considered serendipitous research
papers as papers that are similar but in different fields from users’ field. In contrast,
this article investigates serendipitous research paper recommendations from the
perspective of Tweets and diversification.

Use of diversification for serendipitous recommendations
As discussed above, unexpectedness is a key concept for serendipity (Ge, Delgado-
Battenfeld & Jannach, 2010). One approach that can be used to generate unexpected
recommendations relates to diversification (Ziegler et al., 2005; Agrawal et al., 2009).
This is because diversification leads to the creation of recommendation lists that include
dissimilar items, meaning that users have an opportunity to encounter items they are
unfamiliar with. IA-Select (Agrawal et al., 2009) has been used in the past as a solid
baseline for diversifying lists of recommendations (Vargas & Castells, 2011; Vargas,
Castells & Vallet, 2011; Wu et al., 2018). Additionally, Maximum Marginal Relevance
(MMR) (Carbonell & Goldstein, 1998) is a well-known diversification method. Kotkov,
Veijalainen & Wang (2018) proposed a serendipity-oriented greedy (SOG) algorithm,
which diversifies a list of recommendations by considering unpopularity and dissimilarity.
In this article, we employ IA-Select, because the experimental research conducted by
Vargas & Castells (2011) shows that IA-Select performs better in general and the SOG
algorithm requires a parameter setting.

EXPERIMENTAL FACTORS
In this article, we build a content-based recommender system along with the three factors
User Profile Source, Text Mining Method, and Ranking Method. It works as follows:

1. Candidate items of the recommender system (i.e. research papers) are processed by one
of the text mining methods, and paper profiles are generated. A candidate item and a set
of candidate items are referred as d and D, respectively. d’s paper profile Pd is
represented by a set of features F and their weights. Depending on text mining methods,
a feature f is either a textual term or a concept. Formally, paper profiles are described as:
Pd = {(f, w(f, d)) | ∀ f ∈ F }. The weighting function w returns a weight of a feature f for
data source Iu. This weight identifies the importance of the feature f for the user u.

2. A user profile is generated based on the user profile source (i.e. Tweets or own papers)
using the same text mining method, which is applied to generate paper profiles. Iu
is a set of data items i of a user u. In this article, Iu is either a set of a user’s Tweets or a set
of a user’s own papers. u’s user profile Pu is represented in a way that it is comparable to
Pu as: Pu = {(f, w(f, Iu)) | ∀ f ∈ F }.

3. One of the ranking methods determines the order of recommended papers.
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The experimental design is illustrated in Table 1, where each cell is a possible design
choice in each factor.

In this section, we first provide a detailed account of the factor User Profile Source.
In turn, we show three of the different text mining methods that were applied in the
experiment. Finally, we note the details of the factor Ranking Method, which examines
whether diversification improves the serendipity of recommendations.

User profile source
In this factor, we compare the following two data sources that are used to build a user
profile.

� Research papers: The research papers written by a user are used as a baseline. This
approach is motivated by previous studies that have investigated research paper
recommender systems, including Sugiyama & Kan (2010) and Google Scholar.

� Twitter: In contrast to the user’s papers, we assume that using Tweets leads to more
serendipitous recommendations. It is common practice among researchers to Tweet
about their professional interests (Letierce et al., 2010). Therefore, Tweets can be used to
build a user profile in the context of a research paper recommender system. We
hypothesise that a user’s Tweets improve the serendipitous nature of recommendations
because researchers are likely to Tweet about recent interests and information (e.g. from
social networks) that are not yet reflected in their papers.

Text mining method
For each of the two data sources (i.e. the user’s own papers or their Tweets) and the
candidate items, we apply a text mining method using one of three text mining methods.
Specifically, we compare three methods, namely TF-IDF (Salton & Buckley, 1988), CF-IDF
(Goossen et al., 2011), and HCF-IDF (Nishioka, Große-Bölting & Scherp, 2015), to build
paper profiles and a user profile. This factor was introduced because the effectiveness
of each text mining method is informed by the type of content that will be analysed
(e.g. Tweets or research papers). For each method, a weighting function w is defined. This
weighting function assigns a specific weight to each feature f, which is a term in TF-IDF
and a semantic concept in CF-IDF and HCF-IDF.

� TF-IDF: Since TF-IDF is frequently used in recommender systems as a baseline
(Goossen et al., 2011), we also use it in this study. Terms are lemmatised and stop words
are removed (http://www.nltk.org/book/ch02.html). In addition, terms with fewer than

Table 1 Experimental factors and design choices.

Factor Possible design choices

User profile source Twitter Own papers

Text mining method TF-IDF CF-IDF HCF-IDF

Ranking method Cosine similarity IA-select
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three characters are filtered out due to ambiguity. After pre-processing texts, TF-IDF is
computed as:

wtf ‐idfðw; tÞ ¼ tf ðw; tÞ � log jDj
jfw 2 d : d 2 Djg (1)

tf returns the frequency of a term w in a text t. A text t is either a user profile source Iu
or candidate item d. The term frequency acts under the assumption that more
frequent terms are more important (Salton & Buckley, 1988). The second term of the
equation presents the inverse document frequency, which measures the relative
importance of a term w in a corpus D (i.e. a set of candidate items).

� CF-IDF: Concept frequency inverse document frequency (CF-IDF) (Goossen et al.,
2011) is an extension of TF-IDF, which replaces terms with semantic concepts from
a knowledge base. The use of a knowledge base decreases noise in profiles (Abel,
Herder & Krause, 2011; Middleton, Shadbolt & De Roure, 2004). In addition, since a
knowledge base can store multiple labels for a concept, the method directly supports
synonyms. For example, the concept “recommender systems” of the ACM Computing
Classification Systems (ACM CCS) has multiple labels, including “recommendation
systems”, “recommendation engine”, and “recommendation platforms”.

The weighting function w for CF-IDF is defined as:

wcf ‐idf ða; tÞ ¼ cf ða; tÞ � log jDj
jfa 2 d : d 2 Djg (2)

cf returns the frequency of a semantic concept a in a text t. The second term presents the
IDF, which measures the relative importance of a semantic concept a in a corpus D.

� HCF-IDF: Finally, we apply hierarchical concept frequency inverse document frequency
(HCF-IDF) (Nishioka, Große-Bölting & Scherp, 2015), which is an extension of CF-IDF.
HCF-IDF applies a propagation function (Kapanipathi et al., 2014) over a hierarchical
structure of a knowledge base to assign a weight to concepts at higher levels. In this way,
it identifies concepts that are not mentioned in a text but which are highly relevant.
HCF-IDF calculates the weight of a semantic concept a in a text t as follows:

whcf ‐idf ða; tÞ ¼ BLða; tÞ � log jDj
jfd 2 D : a 2 dgj (3)

BL(a, t) is the BellLog propagation function (Kapanipathi et al., 2014), which is
defined as:

BLða; tÞ ¼ cf ða; tÞ þ FLðaÞ �
X

aj2pcðaÞ
BLðaj; tÞ (4)

where cf(a, t) is a frequency of a concept a in a text t, and

FLðaÞ ¼ 1
log10ðnodesðhðaÞ þ 1ÞÞ. The propagation function underlies the assumption

that, in human memory, information is represented through associations or semantic
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networks (Collins & Loftus, 1975). The function h(a) returns the level, where a concept
a is located in the knowledge base. Additionally, nodes provides the number of
concepts at a given level in a knowledge base, and pc(a) returns all parent concepts
of a concept a. In this study, we employ HCF-IDF since it has been shown to work
effectively for short pieces of text, including Tweets (Nishioka & Scherp, 2016), in the
domain of economics.

Ranking method
Finally, we rank all the candidate items to determine which items should be recommended
to a user. In this factor, we compare two ranking methods: cosine similarity and
diversification with IA-Select (Agrawal et al., 2009).

� Cosine similarity: As a baseline, we employ a cosine similarity, which has been widely
used in content-based recommender systems. The top-k items with largest cosine
similarities are recommended.

� IA-Select: Following this, we employ IA-Select (Agrawal et al., 2009) to deliver
serendipitous recommendations. IA-Select was originally introduced for information
retrieval, but it is also used in recommender systems to improve serendipity (Vargas,
Castells & Vallet, 2012). This use case stems from the algorithm’s ability to diversify
recommendations in a list, which relies on the avoidance of recommending similar items
(e.g. research papers) together. The basic idea of IA-Select is that, for those features
of a user profile that have been covered by papers already selected for recommendation,
the weights are lowered in an iterative manner. At the outset, the algorithm computes
cosine similarities between a user and each candidate item. In turn, IA-Select adds
the item with the largest cosine similarity to the recommendation list. After selecting the
item, IA-Select decreases the weights of features covered by the selected item in the user
profile. These steps are repeated until k recommendations are determined.

For example, recommendations for the user profile Pu = ((f1, 0.1), (f2, 0.9)) will contain
mostly those documents that include feature f2. However, with IA-Select, the f2 score
is decremented iteratively in the event that documents contain the f2 feature. Thus,
the probability increases that documents covering the f1 feature are included in the list of
recommended items.

Overall, the three factors with the design choices described above result in 2 × 3 × 2 = 12
available strategies. The evaluation procedure used to compare the strategies is provided
below.

EVALUATION
To address the two research questions with the three experimental factors described in the
previous section, we conduct an online experiment with 22 subjects. The experiment is
based in the field of computer science, in which an open access culture to research papers
exists, and Twitter is chosen as the focal point because it is an established means by which
researchers disseminate their works. The experimental design adopted in this study is
consistent with previous studies (Nishioka & Scherp, 2016; Chen et al., 2010).
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In this section, the experimental design is described, after which an account of the
utilised datasets (i.e. a corpus of research papers and a knowledge graph of text mining
methods) is given. Following this, descriptive statistics are presented for the research
subjects, and finally, the serendipity score is stated. The purpose of the serendipity score is
to evaluate the degree to which each recommender strategy is effective in generating
serendipitous recommendations.

Procedure
We implemented a web application that enabled the subjects (n = 22) to evaluate the 12
recommendation strategies described above. First, subjects started on the welcome page,
which asked for their consent to collect their data. Thereafter, the subjects were asked
to input their Twitter handle and their name, as recorded in DBLP Persons
(https://dblp.uni-trier.de/pers/). Based on the user’s name, we retrieved a list of their research
papers and obtained the content of the papers by mapping them to the ACM-Citation-
Network V8 dataset (see below). The top 5 recommendations were computed for each
strategy, as shown in Fig. 1. Thus, each subject evaluated 5 × 12 = 60 items as “interesting” or
“not interesting” based on the perceived relevance to their research interests.

A binary evaluation was chosen to minimise the effort of the rating process, consistent
with several previous studies (Nishioka & Scherp, 2016; Chen et al., 2010). As shown in Fig. 1,
the recommended items were displayed with bibliographic information such as the authors,
title, year, and venue. Finally, the subjects were provided with the opportunity to access
and read the research paper directly by clicking on a link. In order to avoid bias, the sequence
in which the 12 strategies appeared was randomised for each subject. This corresponds to
earlier experimental setups such as a research paper recommender system in the domain
of economics (Nishioka & Scherp, 2016) and other studies (Chen et al., 2010). At the same
time, the list of the top 5 items for each strategy was also randomised to avoid the
well-documented phenomenon of ranking bias (Bostandjiev, O’Donovan & Höllerer, 2012;

Figure 1 Screenshot of the evaluation page. Each subject rated an item as either “interesting” or “not
interesting” based on their research interests. Full-size DOI: 10.7717/peerj-cs.273/fig-1
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Chen et al., 2010). The subjects were informed about the randomised order of the strategies
and items on the evaluation page.

The actual ranks of the recommended items, as well as their position on the evaluation
page, were stored in a database for later analyses. After evaluating all strategies, the subjects
were asked to complete a questionnaire focusing on demographic information (e.g. age,
profession, highest academic degree, and current employment status). Finally, an
opportunity was provided for the subjects to provide qualitative feedback.

Datasets
The candidate items for the experiment were computer science articles drawn from a large
dataset of research papers. To analyse and extract semantic concepts from the research
papers and Tweets, an external computer science knowledge base was used. This section
describes the research papers and knowledge graphs used for the experiment.

Research papers
Since the experiment recommended research papers from the field of computer science,
a corpus of research papers and a knowledge base from the same field were used.
The ACM citation network V8 dataset (https://lfs.aminer.org/lab-datasets/citation/
citation-acm-v8.txt.tgz), provided by ArnetMiner (Tang et al., 2008), was used as
the corpus of research papers. From the dataset, 1,669,237 of the available 2,381,688
research papers were included that had a title, author, year of publication, venue, and
abstract. Titles and abstracts were used to generate paper profiles.

Knowledge graph
The ACM Computing Classification System (CCS) was used as the knowledge graph for
CF-IDF and HCF-IDF (https://www.acm.org/publications/class-2012). The knowledge
graph, which is freely available, is characterised by its focus on computer science, as well as
its hierarchical structure. It consists of 2,299 concepts and 9,054 labels, which are organised
on six levels. On average, a concept is represented by 3.94 labels (SD: 3.49).

For the text mining methods (i.e. CF-IDF and HCF-IDF), we extracted concepts from
each user’s Tweets and research papers by matching the text with the labels of the concepts
in the knowledge graph. As such, we applied what is known in the literature as the
gazetteer-based approach. Before processing, we lemmatised both the Tweets and research
papers using Stanford Core NLP (https://stanfordnlp.github.io/CoreNLP/), and stop
words were removed. Regarding Tweets, which often contain hashtags to indicate topics
and user mentions, only the # and @ symbols were removed from the Tweets. This
decision stemmed from an observation made by Feng & Wang (2014), namely that the
combination of Tweets’ texts with hashtags and user mentions results in the optimal
recommendation performance.

Subjects
Overall, 22 subjects were recruited through Twitter and mailing lists. 20 were male and two
were female, and the average age was 36.45 years old (SD: 5.55). Several of the subjects
held master’s degrees (n = 2), while the others held a PhD (n = 13) or were lecturers or
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professors (n = 7). In terms of the subjects’ employment status, 19 were working in
academia and three in industry. Table 2 shows countries where subjects work. On average,
the subjects published 1,256.97 Tweets (SD: 1,155.8), with the minimum value being 26
and the maximum value being 3,158.

An average of 4,968.03 terms (SD: 4,641.76) was extracted from the Tweets, along with
an average of 297.91 concepts (SD: 271.88). Thus, on average, 3.95 (SD: 0.54) terms and
0.24 concepts (SD: 0.10) were included per Tweet. We show a histogram regarding the
number of terms in Tweets per subject in Fig. 2. We observe that subjects are divided
into those with a small total number of terms in their Tweets and those with a large total
number of terms in their Tweets. Regarding the use of research papers for user profiling,
the subjects had published an average of 11.41 papers (SD: 13.53). On average, 687.68
terms (SD: 842,52) and 80.23 concepts (SD: 107.73) were identified in their research
papers. This led to 60.27 terms (SD: 18.95) and 5.77 concepts (SD: 3.59) per paper. Figure 3
shows a histogram regarding the number of terms in research papers per subject. We see

Table 2 The number of subjects in each country.

Country The number of subjects

Germany 8

US 4

China 2

UK 2

Austria 1

Brazil 1

France 1

Ireland 1

Norway 1

Sweden 1

Figure 2 Distribution of subjects with regarding to the number of terms in their Tweets. The x-axis
shows the number of terms in their Tweets. The y-axis shows the number of subjects. For instance, there
are five subjects whose total number of terms in Tweets is between 10,001 and 20,000.

Full-size DOI: 10.7717/peerj-cs.273/fig-2
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that there are a few subjects with a large total number of terms. Most subjects have a
small total number of terms in their research papers because they published only a few
research papers so far.

Subjects needed 39 s (SD: 43 s) on average to evaluate all five recommended items per
strategy. Thus, the average length of time needed to complete the experiment was 468 s.
It is worth noting that this time does not include reading the instructions on the
welcome page, inputting the Twitter handle and DBLP record, and completing the
questionnaire.

Evaluation metric
To evaluate the serendipity of recommendations, we used the serendipity score (SRDP)
(Ge, Delgado-Battenfeld & Jannach, 2010). This evaluation metric takes into account both
the unexpectedness and usefulness of recommended items, which is defined as:

SRDP ¼
X

d2UE

rateðdÞ
jUEj (5)

UE denotes a set of unexpected items that are recommended to a user. An item is
regarded as unexpected if it is not included in a recommendation list computed by the
primitive strategy. We used the strategy Own Papers × TF-IDF × Cosine Similarity as a
primitive strategy since it is a combination of baselines. The function rate(d) returns
an evaluation rate of an item d given by a subject. As such, if a subject evaluated an item as
“interesting”, the function would return 1, otherwise 0.

We did not directly ask subjects to evaluate the unexpectedness of recommendations,
because this is not the scenario in which the recommender system is used. Rather, we
were aiming to detect indirectly from the subjects’ responses, if the serendipity feature
had an influence on the dependent variables. Furthermore, we wanted to keep the
online evaluation as simple as possible. Asking for “how surprising” a recommendation
is, increases the complexity of the experiment. Subjects needed to know what a
non-surprising recommendation is (in comparison). In addition, the cognitive efforts

Figure 3 Distribution of subjects with regarding to the number of terms in their research papers.
The x-axis shows the number of terms in their research papers. The y-axis shows the number of sub-
jects. For instance, there are two subjects whose total number of terms in research papers is between 2,001
and 4,000. Full-size DOI: 10.7717/peerj-cs.273/fig-3
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required to conduct a direct evaluation of unexpectedness is much higher and it is in
general difficult for subjects to share the concept of the unexpectedness.

RESULTS
The purpose of this section is to present the results of the experiment. At the outset, the
quantitative analysis is examined, which shows the optimal strategy in terms of SRDP.
In turn, the impact of each of the three experimental factors is analysed.

Comparison of the 12 strategies
The results of the 12 strategies in terms of their SRDP values are presented in Table 3.
As previously noted, this study drew on Own Papers × TF-IDF × Cosine Similarity as a
primitive strategy. Thus, for this particular strategy, the mean and standard deviation
are 0.00.

The purpose of an analysis of variance (ANOVA) is to detect significant differences
between variables. Therefore, in this study, ANOVA was used to identify whether any
of the strategies were significantly different. The significance level was set to α = 0.05.
Mauchly’s test revealed a violation of sphericity (χ2(54) = 80.912, p = 0.01), which
could lead to positively biased F-statistics and, consequently, an increase in the
risk of false positives. Therefore, a Greenhouse-Geisser correction with ε = 0.58 was
applied.

The results of the ANOVA test revealed that significant differences existed between the
strategies (F(5.85, 122.75) = 3.51, p = 0.00). Therefore, Shaffer’s modified sequentially
rejective Bonferroni procedure was undertaken to compute the pairwise differences
between the strategies (Shaffer, 1986). We observed significant differences between the
primitive strategy and one of the other strategies.

Table 3 SRDP and the number of unexpected items included in the 12 strategies. The values are
ordered by SRDP. M and SD denote mean and standard deviation, respectively.

Strategy SRDP |UE|

Text mining method Profiling source Ranking method M (SD) M (SD)

1. TF-IDF Own papers IA-Select 0.45 (0.38) 2.95 (1.05)

2. CF-IDF Twitter CosSim 0.39 (0.31) 4.91 (0.29)

3. TF-IDF Twitter IA-Select 0.36 (0.29) 4.91 (0.43)

4. CF-IDF Twitter IA-Select 0.31 (0.22) 4.95 (0.21)

5. CF-IDF Own papers CosSim 0.26 (0.28) 4.91 (0.29)

6. CF-IDF Own papers IA-Select 0.25 (0.28) 4.91 (0.29)

7. HCF-IDF Own papers IA-Select 0.24 (0.22) 4.95 (0.21)

8. HCF-IDF Twitter CosSim 0.22 (0.28) 5.00 (0.00)

9. TF-IDF Twitter CosSim 0.20 (0.24) 4.95 (0.21)

10. HCF-IDF Twitter IA-Select 0.18 (0.21) 5.00 (0.00)

11. HCF-IDF Own papers CosSim 0.16 (0.18) 5.00 (0.00)

12. TF-IDF Own papers CosSim 0.00 (0.00) 0.00 (0.00)
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Impact of experimental factors
In order to analyse the impact of each experimental factor, a three-way repeated measures
ANOVA was conducted. The Mendoza test identified violations of sphericity for the
following factors: firstly, User Profile Source × Text Mining Method × Ranking Method
(χ2(65) = 101.83, p = 0.0039); and secondly, Text Mining Method × Ranking Method
(χ2(2) = 12.01, p = 0.0025) (Mendoza, 1980). Thus, a three-way repeated measures
ANOVA was applied with a Greenhouse-Geiser correction of ε = 0.54 for the factors User
Profile Source × Text Mining Method × Ranking Method and ε = 0.69 for the factor
Text Mining Method × Ranking Method. Table 4 shows the results with the F-Ratio, effect
size η2, and p-value.

Regarding the single factors, Ranking Method had the largest impact on SRDP, as the
effect size η2 indicates. For all the factors with significant differences, we applied a post-hoc
analysis using Shaffer’s MSRB procedure. The results of the post-hoc analysis revealed
that the strategies using IA-Select resulted in higher SRDP values when compared to those
using cosine similarity. In addition, we observed a significant difference in the factors
User Profile Source × Ranking Method and Text Mining Method × Ranking Method.
For both factors, post-hoc analyses revealed significant differences when a baseline was
used in either of the two factors. When a baseline was used in one factor, |UE| became
small unless a method other than a baseline was used in the other factor.

DISCUSSION
This section discusses the study’s results in relation to the two research questions. In turn,
we review the results for the Text Mining Method factor, which was found to have the
largest influence on recommendation performance among the three factors.

RQ1: Do a user’s Tweets generate serendipitous recommendations?
Regarding RQ1, the results of the experiment indicate that a user’s Tweets do not

improve the serendipity of recommendations. As shown in the rightmost column of
Table 3, Tweets deliver unexpected recommendations to users, but only a small fraction of
these are interesting to the users. This result is different from previous works. For instance,
Chen et al. (2010) observed the precision of a webpage recommender system based on

Table 4 Three-way repeated measures ANOVA for SRDP with Greenhouse-Geisser correction and
F-ratio, effect size η2, and p-value. The p-values are marked in bold font if p < .05, which indicates a
significant difference in a factor.

Factor F η2 p

User profile source 2.21 0.11 0.15

Text mining method 3.02 0.14 0.06

Ranking method 14.06 0.67 0.00

User profile source × Text mining method 0.98 0.05 0.38

User profile source × Ranking method 18.20 0.87 0.00

Text mining method × Ranking method 17.80 0.85 0.00

User profile source × Text mining M. × Ranking M. 2.39 0.11 0.11
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user’s Tweets was around 0.7. In addition, Lu, Lam& Zhang (2012) showed that a concept-
based tweet recommender system based on user’s Tweets achieves a precision of 0.5. One
way to account for this result is by drawing attention to the high probability that the users
employed their Twitter accounts for purposes other than professional, research-related
ones. In particular, the users are likely to have used their Twitter accounts to express
private interests. We presume that taking private interests into consideration delivers
serendipitous recommendations. This is because the recommender system will then
suggest research papers that include both professional interests and private interests, and
which are thus likely to be serendipitous. In the future, it may be helpful to introduce
explanation interfaces for recommender systems (Herlocker, Konstan & Riedl, 2000;
Tintarev & Masthoff, 2007). The purpose of these explanation interfaces is to show why a
specific item is being recommended to users, thereby enabling users to find a connexion
between a recommended paper and their interests.

RQ2: Is it possible to improve a recommendation list’s serendipity through
diversification?

In terms of RQ2, the results indicate that the diversification of a recommendation list
using the IA-Select algorithm delivers serendipitous recommendations. This confirms
results published elsewhere in the literature, which have found that IA-Select improves
serendipity (Vargas, Castells & Vallet, 2011; Vargas & Castells, 2011). For instance, in the
domain of movies and music, Vargas & Castells (2011) employed IA-Select for
recommender systems and confirmed that it provides unexpected recommendations.
Additionally, the iterative decrease of covered interests was associated with greater variety
in recommender systems for scientific publications. Furthermore, the experiment
demonstrated that diversified recommendations are likely to be associated with greater
utility for users.

Text mining methods
Among the three factors, the Text Mining Method factor was associated with the most
substantial impact on recommender system performance. In contrast to observations
made in previous literature (Goossen et al., 2011; Nishioka & Scherp, 2016), CF-IDF and
HCF-IDF did not yield effective results. It is worth emphasising that this result could have
been influenced by the quality of the knowledge graph used in this study (i.e. ACM CCS),
particularly in view of the fact that the performance of many text mining methods is
directly informed by the quality of the knowledge graph (Nishioka, Große-Bölting &
Scherp, 2015).

Another way to account for the poor outcomes relates to the variable of the knowledge
graphs’ age. In particular, ACM CCS has not been updated since 2012, despite the fact
that computer science is a rapidly changing field of inquiry. Furthermore, relatively few
concepts and labels were included in the knowledge base, which contrasts with the
large number included in the knowledge graphs used in previous studies. For example,
the STW Thesaurus for Economics used 6,335 concepts and 37,773 labels, respectively
(Nishioka & Scherp, 2016). Hence, the number of concepts and labels could have
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influenced the quality of the knowledge graph and, in turn, the recommender system’s
performance.

In addition, while a previous study that used HCF-IDF (Nishioka & Scherp, 2016)
only drew on the titles of research papers, our study used both titles and abstracts to
construct paper profiles and user profiles when a user’s own papers were selected as the
user profile source. Furthermore, since our study used sufficient information when mining
research papers, we did not observe any differences among TF-IDF, CF-IDF, and
HCF-IDF, which can include related concepts. Finally, as with any empirical experiment,
data triangulation is needed before generalising any of the conclusions drawn in this
paper. Therefore, further studies of recommender systems in other domains and similar
settings should be conducted.

In this article, we used only textual information in Tweets. We did not use contents
from URLs mentioned in Tweets, images, and videos. We observed that Tweets by subjects
contain on average 0.52 URLs (SD: 0.59). In the future, we would like to take these contents
into account, as Abel et al. (2011) did.

Threats to validity
In this article, we only considered the domain of computer science. In other domains,
the results and findings might be different. In the future, we would like to conduct studies
in other domains such as biomedical science using MEDLINE and social science,
economics. In addition, the results shown in this article may potentially be influenced by
the number of subjects we recruited. Finding significances with few subjects is harder
than with many subjects. However, we observed several significances and measured the
effect sizes. We assume that adding more subjects would bring almost no additional
insights.

As noted in the related work, this study evaluates serendipity of recommendations
focusing on “unexpectedness to be found” and “unexpectedness to be recommended”.
This is motivated by our library setting, where we assume researchers are working on
research papers and like to receive recommendations for literature that they have not
found yet (Vagliano et al., 2018). Referring to the other variations of serendipity as
proposed by Kotkov et al. (2018), like “unexpectedness to be relevant” and “implicit
unexpectedness”, we leave them for future studies.

CONCLUSION
The purpose of this study’s online experiment was to determine whether Tweets and the
IA-Select algorithm have the capability to deliver serendipitous research paper
recommendations. The results revealed that Tweets do not improve the serendipity of
recommendations, but IA-Select does. We anticipate that this insight will contribute to
the development of future recommender systems, principally because service providers
and platform administrators can use the data presented here to make more informed
design choices for the systems and services developed. The data from this experiment are
publicly available for further study and reuse (https://doi.org/10.5281/zenodo.3367795).
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