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ABSTRACT
This paper is aimed at identifying the required knowledge for information robots.
We addressed two aspects of this knowledge, ‘what should it know’ and ‘what should
it do.’ The first part of this study was devoted to the former aspect. We investigated
what information staff know and what people expect from information robots. We
found that there are a lot of similarities. Based on this, we developed a knowledge
structure about an environment to be used to provide information. The developed
knowledge structure worked well. In the field study we confirmed that the robot was
able to answer most of the requests (96.6%). However, regarding the latter aspect,
although we initially replicated what human staff members do, the robot did not
serve well. Many users hesitated to speak, and remained quiet. Here, we found that
the knowledge for facilitating interaction was missing. We further designed the
interaction flow to accommodate people who tend to be quiet. Finally, our field study
revealed that the improved interaction flow increased the success ratio of information
providing from 54.4% to 84.5%.

Subjects Robotics
Keywords Information-providing, Direction giving, Belief about robots

INTRODUCTION
Direction giving is often considered as a desired task for social robots and embodied agents

(Cassell et al., 2002; Kopp et al., 2008; Ono, Imai & Ishiguro, 2001; Okuno et al., 2009). In

our daily life, one of the roles that frequently offer direction giving is information service

(Fig. 1). Such information booths/counters can be found in stations, airports, shopping

malls, and sightseeing places.

We wondered what would be the required ‘knowledge’ to develop for a robot that

engages in such an information service. Probably, most of us have experienced using

information services, and many of us believe that we know what the information services

are. Thus, one would argue that it is just easy to develop such a robot. One might say that “I

know from common sense what the information service is. I can just implement it.” Is this

true?

We started the study with two research questions:

• Is our common knowledge about the tasks of information services (i.e., what they serve)

applicable to information robot?
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Figure 1 Information service.

• Can we create an information robot by replicating what human information staff knows

and does? Or, is there any missing knowledge?

We first investigated what people would expect from an information robot, and

confirmed that there are a lot of similarities with what human information staff does

(section ‘Information in a Shopping Mall’). Thus, we decided to use knowledge about

human information staff (what they know and what they do), and developed an

information robot (section ‘System’). However, in regard to the second research question,

the assumption was not true. Thus, we further investigated missing knowledge (sections

‘Preliminary Trials: Lack of ‘Knowledge’ for Interaction’ and ‘Field Experiment’).

RELATED WORKS
Information-providing robots
Robots have been deployed as tour guides. There were a couple of museum robots that

navigated around the environment and provided explanations (Thrun et al., 1999). Robots
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are also used for interactive information-providing. For instance, Gross et al. (2009)

developed an article search robot which enables visitors to request an item and let the

robot navigate to its location. Input for these robots is often with GUIs, thus there are lists

of destinations/items, one of which is chosen by the user.

In contrast, in case of dialog-based system, the difficulty is to predict the set of requests

users could ask. Thus, there are assumptions made for the input, such as name of locations.

For instance, a virtual agent, Mack, developed by Cassell et al. (2002) is able to respond

with the names of locations and people in offices, and provide direction giving (Kopp et al.,

2008). But, in a real-world natural interaction, what users would ask for is not bound by

such assumptions. In Kanda et al. (2009), the robot provided direction-giving interaction

in response to the name of locations in a shopping mall, and exceptions were handled by a

human operator. That is, the system on its own did not address the questions beyond the

assumptions.

Overall, in the previous studies, there was not much exploration for what people would

ask/request in an information dialog with a robot. In contrast, we found that people ask

various requests beyond the names of locations, and identified a required knowledge

representation.

Direction-giving interaction
It is reported that a good direction consists of pairs of actions and landmarks (Daniel et al.,

2003), such as “turn right at the post office, and . . . .” To provide such explanations, there

is a technique to build a knowledge about spatial relationships among shops and corridors

(Morales et al., 2011). There are techniques to make a robot understand directions from

humans (Kollar et al., 2010); in the study of Kollar and colleagues, the representation stores

the relationship between the description of the entities in the space and the map.

In these studies, the common assumption is that a system is able to provide directions

if the name of a location is asked. In contrast, our study reveals other type of requests in

information dialog, and we report on the required knowledge representation.

Note that it is well known in HRI studies that gaze and pointing gestures make the

interaction more natural and effective (e.g., Sidner et al., 2004; Mutlu, Forlizzi & Hodgins,

2006). The use of gesture in direction giving is also studied in conversational agents (Kopp

et al., 2008) as well as in human-like robots (Ono, Imai & Ishiguro, 2001; Okuno et al.,

2009). Our direction-giving behavior is informed by these studies.

Engagement
In our study, we noticed some visitors remained silent, even after directly approaching

the robot and hearing its requests to engage. Relevant to this, there were studies about

“engagement” process; that is, when people participate and feel connected in collaboration,

their gaze will meet with each other and they do not quit the interaction (Sidner, Lee &

Lesh, 2003). Rich and his colleagues developed a technique to detect engagement using

people gaze (Rich et al., 2010). Kobayashi and his colleagues developed a technique to select

a person to whom a robot should ask questions in multi-party interaction in the way a

teacher appoints a student in a class for an answer (Kobayashi et al., 2010). Their technique
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is based on the findings that people nodding and engaging in mutual gaze are more likely to

answer than someone avoiding a meeting gaze. In contrast, the silent visitors in our study

were people who voluntarily approached the robot. They typically behaved as if they were

willing to interact with the robot but did not talk with it.

Knowledge representation
There are several computer applications (e.g., Google search or Apple’s Siri) that provide

information related to location. There are many similar aspects between our robot and

such applications, e.g., both need connection between language and local knowledge,

interpretation needs to be contextual, and answers to be provided in verbal way. Thus,

similarly to these approaches, we used ontology (McGuinness & Van Harmelen, 2004)

to build the knowledge representation. However, we need to build our own knowledge

representation because required the knowledge structure is different, and we cannot simply

apply existing software like Google search and Siri for the robot. For instance, robots can

use pointing gesture (also, often robots are not equipped with display), which very much

changes the way of giving direction.

INFORMATION IN A SHOPPING MALL
We investigated the daily tasks of information service employees and what visitors typically

expect from robots acting as such. We found a lot of similarities. The study protocol

was approved by institutional review boards of Advanced Telecommunications Research

Instituted International with reference number 14-502-2.

Daily tasks of information service
We interviewed two employees working at the information desk of a shopping mall.

First we asked an overall description of their job: they usually wait for visitors to

come to the information booth. They were requested by the mall administrators to

serve as ‘information staff.’ Only procedures for lost items were provided; for other tasks

(e.g., information providing) they use their common sense.

Further, we asked them to categorize the typical requests from visitors, and how they

would respond. Both reported that there are three types of requests:

Direction giving: They reported that this is the most frequent request. Visitors ask

simple where-type questions, e.g., “where are the toilets?” In addition to the name of

locations, people use other popular name, like “hello show,” or the name of designated

areas, like “smoking area.” Their typical response is to provide turn-by-turn directions

using utterance and pointing gesture. When visitors do not understand, they sometimes

write down to a map, or on rare occasions take them to the destination.

Recommendation (inquiry): When a visitor does not know whether there are shops

that meet his needs, he may query the information staff. Visitors may inquire of the

characteristics of shops, such as name of items, and the category of shops. Here are some

examples of questions: “Are there Japanese restaurants?”; “Are there shops that sell Osaka

souvenirs?” The staff members typically verbally list the shops or events that meet their

criteria. Visitors sometimes ask for a recommendation from the staff without providing
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solid conditions but only using subjective words e.g., “Are there any good restaurants?” For

such requests, the staff members reported that they typically try not to give a subjective

preference, because their preferences may or may not match with those of the visitors.

Thus, their responses for inquiry and recommendation are similar: they try to objectively

reply and provide a list of shops that seem appropriate.

Lost child and lost-and-found: When children are lost, or when visitors lose items,

they come to the information desk. For lost children, the staff usually makes a public

announcement throughout the shopping mall. Lost items can be retrieved at the

information booth when available upon confirmation of ownership.

Expectations from information robot
To investigate what people expect from information robots, we interviewed customers in

the shopping mall. To find people who would be willing to help us with collecting knowl-

edge for future robots, we prepared a situation where visitors can see a robot in the midst of

interaction. Thus, we prepared a robot for information, which is controlled with Wizard-

of-Oz method. We then asked people who stopped around the robot and/or interacted

with it to participate in the interview. Twenty-one visitors participated in the interview.

In the interview, we asked the visitors to imagine future situations in which robots

would be capable of offering information services they like, regardless of their previous

observations of the robot’s capability. We then asked them to freely provide as many

functions they would like information robots to have.

The interviews were recorded and transcribed for analysis. We categorized the different

kind of requests expressed by the visitors, For instance, visitors reported sentences such as:

“I often look for the smoking area, thus I would like to ask the robot about it.”

This utterance was coded as expectation for direction giving, because we interpret it as

‘where’-type question in which visitors simply want to know the location. The followings

ones were coded as expectation for recommendation (inquiry):

“I’d like to know about sports and furniture shops.”

“The shop which sells the most? Well, I want the robot give me recommendations of

shops.”

Such cases were classified as recommendation (inquiry), because visitors need to know

more information than just a location.

Then, two coders who do not know the research purpose judged whether each

transcribed sentence would fit into the above defined categories, or not (which is

categorized as ‘other’). The judgement of the two coders matches reasonably well, yielding

kappa coefficient .857.

Table 1 shows the coding result. The ratio of visitors who mention the expectation

is listed in each row. They can provide multiple answers, thus the sum of the ratios

exceeds 100%.

The expectation of the visitors for the information robot largely overlaps with what

human information services provide. Almost all visitors (20 out of 21) mentioned that

they expect direction giving and the majority (16 out of 20) reported that they expect the
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Table 1 The analysis result of expectation for information.

Expectation Ratio

Direction giving 95.2%

Recommendation (inquiry) 76.2%

Other

Playing with children 23.8%

Lost child 4.8%

robot to offer turn-by-turn direction accompanied with pointing gesture. For instance, one

spontaneously mentioned the practicality of pointing gesture in directions giving:

“Well, ‘where,’ umm, I did not understand ‘which’ direction I should go. So it would be

useful if the robot could do pointing gestures,”

There were 3 visitors who expected the robot to take them to the destination, and 1

visitor who wanted the robot to explain with a map.

There were 16 people that expected a recommendation service. For instance, some

mentioned “I’d like to have some recommendations for restaurants,” or “I’d like to know

places where children can play around.” Others wanted to have more detailed explanations.

For instance, one commented:

“I’d like to know what kind of shop it is, its atmosphere, what it sells, and so on.”

In contrast, the ‘playing with children’ category is specific to the information robot. We

collected comments such as:

“Interacting with the robot was enjoyable. This is good for people who come with their

children”.

“Many families only have one child. It would be nice if the robot behaved like a brother.”

Requirements
The expectations for information robots largely overlapped with what is delivered at

human information services. That is, most of them expect two services: direction giving

and recommendations. Thus, in this study, we focused on these two services.

Further, we investigated the required knowledge to be stored. We analyzed the

utterances of the requests. We labeled them based on the type of request. For instance,

we assigned a label ‘name of location’ to the utterance “I’d like to know where the event

dream world takes place,” ‘name of item’ to the utterance “I’d like to know where can I buy

coffee.” If multiple labels are applicable we assigned all of them. Labels are merged when

possible, resulting in 6 different labels. To confirm the classification, we asked two coders

who did not know the purpose of the research to classify the utterances based on the 6

labels. Their coding matches reasonably well, yielding kappa coefficient of .637.

Finally, we identified that the following information is needed:

(1) Name of location: such as names of shops or names of events. In addition to the formal

name, people use various nicknames. 78.3% of people mentioned this category.
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Figure 2 System architecture.

(2) Item name: people look for specific product or entity available in shops. For instance,

this category includes items such as “cell phone charger” and “coffee.” 47.8% of people

mentioned this category.

(3) Category: shops can usually be grouped into larger categories, like “restaurant,”

“Japanese restaurant.” 52.2% of people mentioned this category.

(4) Features: shops are usually recognized as some generally-known features, like “good

view,” “expensive,” and “recommended.” 65.2% of people mentioned this category.

(5) People activity: locations are sometimes referred as the activity that people do there,

like “play,” “eat,” “shop.” 60.9% of people mentioned this category.

(6) People’s state: locations are sometimes referred as the place appropriate for people’s

physical condition, like “injured,” “tired,” “hungry.” For instance, some visitors said: “I

would like to receive recommendation, just by saying ‘I’m hungry’ for example.”

13.0% of people mentioned this category; note that this request was not reported by the

information desk staff, thus it can be considered as specific to the information robot.

Based on this analysis, we developed the knowledge representation for the information

robot.

SYSTEM
Architecture
Our goal is to develop a robot that autonomously provides information services. Based

on the analysis in section ‘Information in a Shopping Mall,’ we developed a knowledge

representation that can be used by such a robot. Figure 2 shows the architecture of the

system. Information from sensors goes through modules like people tracking (explained

in section ‘People tracking’), localization (section ‘Localization’), and speech recognition

(section ‘Speech recognition (with human operator)’). Output from these modules are

used in the behavior controller (section ‘Behavior controller’), which contains a dialog

manager (section ‘Dialog manager’). The environmental knowledge is stored in ontology

(section ‘Ontology of entities in the map’) and map (section ‘Route perspective map’), and

used by the dialog manager. We explain these modules in the later section.
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Figure 3 Environment of the shopping mall.

Figure 4 Knowledge representation for the environment.

Knowledge representation
There are two types of information in the knowledge representation. One is the map

used for direction giving (explained in section ‘Route perspective map’). The other is

shop-related data (explained in section “Ontology of entities in the map’).

Environment
The study was conducted in a big shopping mall located in a suburban area. It consists of

three buildings (Fig. 3A), one having 12 floors, and others having 6 floors. There are 51

shops, 31 restaurants, 42 facilities, 6 event halls, 4 squares (e.g., Fig. 3B), 2 stages, and many

offices. The mall is mainly busy during weekends. Almost all shops are for non-daily goods,

like clothes, shoes, sports, outdoor activities. We often observe people who look for shops

and locations (e.g., they look at the floor maps, and/or ask the service staff). The main hall

where big events take place is located far (a 5 min of walk) from the square where we put

the robot, thus people often asked where an event was taking place.

Ontology of entities in the map
We designed our knowledge representation for ‘request’ and ‘shops’ together using an

ontology language, OWL (McGuinness & Van Harmelen, 2004). Figure 4 shows the

designed knowledge structure, i.e., ontology. The basic element in OWL is the ‘class,’

which has ‘properties’ that store the information. There are two primary classes, ‘location

entity’ and ‘requestable property’ prepared.
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Table 2 Possible relationships.

Users’ request Possible relation

Item name Is sold at/is served at/is at

Category Belongs to

Features Is a feature of

People activity Is possible at

People’s state Is satisfied/healed/solved at

Location entity

We define entities like shops, facilities and events as instances of the ‘location entity’

class. There are three properties:

(1) Name: we stored the official or commonly used name.

(2) Nicknames: some shops are referred to with a nickname. We listed such nicknames

people could use. For example, “Kentucky Fried Chicken” is referred as “KFC.”

(3) Location on the geometrical map: each location is associated with the geometrical map

(explained in the section ‘Route perspective map’).

We further separate the class into two subclasses, selective location and non-selective

location. When multiple locations are available, people would prefer to select one. For

instance, if there are two Italian restaurants, people would choose one based on their own

criteria, such as better, cheap, popular, etc. We store one extra property, ‘introduction

property,’ in selective location to be used in dialog to help people selecting locations. In

contrast, people would usually not care about which toilets to which they would go. Such

locations are implemented as non-selective location class.

Requestable property

There are six types of information communicated in information dialog (section

‘Requirements’). Except for name of location, they are realized as ‘requestable property’

class, which has subclasses ‘item name,’ ‘category,’ ‘features,’ ‘people activity,’ and ‘people’s

state.’ When a user requests information, it is turned into an instance of the ‘requestable

property.’ Then, the location(s) having the same property will be searched. Each property

item has wordings that are expected to be used in people’s utterance. For instance, ‘eat’

(instance of people’s activity subclass) is associated with wordings such as “eat,” “have

lunch,” and “have a meal.” Note that more complex requests (e.g., “Japanese” restaurant

with a “good view”) can be represented as multiple instances combined with ‘and/or’

operators, but we did not implement such complex operations because users rarely made

such complex requests.

Relationships between ‘location entity’ and ‘requestable property’

Table 2 shows possible relationships between two subclasses. For instance, some visitors

could request a restaurant where they can have “pasta.” To handle such requests, a “pasta”

entity is prepared as an instance of ‘item name’ subclass which is associated with shops with
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Figure 5 Illustration of the route perspective map.

the relation ‘is served at.” Such relation is defined inside dialog management (section ‘Be-

havior controller’) as well. Note that an instance of ‘requestable property’ can be associated

with multiple ‘location entities’ (e.g., “pasta” can be served at multiple restaurants).

Finally, we prepared the data for the shopping mall (section ‘Environment’). There are

201 location entities (84 shops, 75 service facilities, 39 events, and 3 buildings) with in

total 3,345 nicknames. There are 530 requestable properties (501 items, 163 categories, 44

features, 63 people activities, 22 people’s states) prepared as well.

Route perspective map
Informed by Morales et al. (2011), we manually prepared a route perspective map

(illustrated in Fig. 5), which consists of pairs of landmarks and actions. Using the map, the

system generates turn-by-turn directions giving, such as “go straight, turn left at the book

store, go out the door with exit sign . . . .” The map includes the following information:

(1) Topological map: Nodes are located at decision points in the map. Transition through

corridor or between different floors, such as stairs, escalators, and elevators, are

expressed as movements between nodes. Entrances of shops, facilities, and events

(i.e., location entity) are also represented as nodes.

(2) Landmarks: If available, visible landmarks are manually associated for each route as

denoted in Morales et al. (2011), e.g., famous shop names with salient signboards,

elevators, and escalators.

(3) Actions: In Morales et al. (2011), actions were only turning behaviors, which were

computed from a topological map. In contrast, as there are many floors and multiple

buildings, we added actions like “enter the next building,” “go to the 3rd floor.”
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Behavior controller
When a person stops by the robot (within 2.5 m for 3.0 s), or is detected as approaching at

2.5 m from it, it starts a dialog. The robot orients its body and gaze to the user. When there

is no user, the robot shows liveliness by slightly moving head and arms.

During the dialog, its head and body is oriented toward the user, except for the moment

when it performs a pointing gesture which is often used when giving directions. When it

points at a direction, its head direction is oriented toward the pointed direction for the

first three seconds of pointing in order to draw the user’s attention toward the pointed

direction. The robot ends the dialog when the user leaves the robot’s side (3 m away), or

when the dialog management module decides to end the dialog.

Dialog manager
We developed a rule-based mechanism for dialog management. Assuming that there is

an input coming from the speech recognition module (explained in ‘Speech recognition

(with human operator)’), the input is turned into text and matched with name/nickname

properties of location entities and with instances of requestable properties (explained in

‘Ontology of entities in the map’). If a requestable property matched, it is compared with

location entities.

When only non-selective locations are matched, it chooses the nearest one. In case

the user asked for a location with a specific name of location, there should be only one

location to be matched. In these cases, the system provides direction-giving dialog, in which

turn-by-turn directions to the location are generated.

Otherwise, it initiates a recommendation dialog. It verbally lists the locations that match

with the requestable property instance one by one. For each location, it explains the location

using the text in its introduction property. For instance, it utters “Ramen is served at a

ramen restaurant named Kaika-ya. They serve a ramen with tuna soup. May I explain

the directions to go there?” As human staff does, we carefully avoid telling subjective

preferences, but only provided objective facts.

In addition, it reacts to the words for greeting. When an input matches with words like

“hello,” it returns a greeting utterance. When an input matches with leave-taking words like

“bye,” it returns leave-taking words and ends the dialog.

When no location is matched, the system explains that “(requested item) is not in this

shopping mall. I only know about this mall.”

Other modules
Robot
We used a robot characterized by its human-like physical expressions. It is 120 cm high

and 40 cm in diameter on a mobile platform. It has a 3-DOF head and 4-DOF arms. There

are two 30 m range laser sensors attached. We used the robot with a maximum speed of

550 mm/sec and 50 ◦/s for rotations. The accelerations are set to 300 mm/s2 and 50 ◦/s2. To

clearly communicate its role, we put an ‘information staff ’ sign in Japanese on the chest of

the robot (Fig. 1).
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People tracking
We use a people tracking method described in Brscic et al. (2013), which provides an

estimation of the location of pedestrians every 33 ms. It covers the square we used. There

are 49 3-D range sensors attached on the ceiling (combination of Panasonic D-Imager,

ASUS Xtion, and Velodyne HDL-32E).

Localization
For robot localization, we use a particle filter with a ray tracing approach on a grid map

(Fox, Burgard & Thrun, 1999). The grid map is built from odometry and laser scanner data.

This module is called every 350 ms and updates the robot’s position.

Speech recognition (with human operator)
We developed fully-autonomous system using ASR (automatic speech recognition), but in

order to better test the overall framework we used a human operator instead of ASR.

Automatic speech recognition (ASR). We used an ASR software, ATRASR (Matsuda et al.,

2006). It uses a language model based on FSA (Finite State Automaton). We constructed

the language model mainly using the terms appeared in the ontology.

With preliminary trials using the Wizard-of-Oz approach, we analyzed the way visitors

speak to the robot. In total, 470 requests collected over 3 days of preliminary trials. From

the analysis of the requests, we found that they mainly follow three ways of speaking, as

follows:

• Noun/adjectives only:

People only spoke words like a name (nickname) of location, category, or item name,

such as “restaurant,” and “coffee.” Sometimes, for features and people’s activity, they add

such terms like “place for” (eat/lunch/play). Some ontology items are adjectives, such as

“tired.” People sometimes only spoke such adjectives.

• “Where is” question:

The above noun is used in “where is” question, such as “where is Kaika-ya (the name of

restaurant) ?”

• “I would like to” sentence:

People also use the form of “I would like to” + “verb” + “noun” in requesting sentences,

such as “I would like to buy coffee.”

For all names, nicknames, and requestable properties, we automatically generated

grammatical structures for ASR. Further, we added the following grammars. First, some

basic verbs like “go” can be used in “I would like to” type sentences but were not included

in the ontology (as they by themselves does not represent any specific request), which

we manually added (8 verbs). Second, we added filler words, such as “well,” “ah,” that

appear in advance to questions (12 words). Third, to eliminate noises from environments,

like sounds from people’s walking, whistle from ships, we added some fillers (66 fillers).

Overall, we prepared the lexicon whose size is 1,469 with 4,938 links.
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The ASR outputs the matched names, nicknames, or requestable properties, which are

used in the dialog manager to determine the answer to be provided. In case the ASR detects

the recognition to be less reliable (because the input does not match well with its language

model), the dialog manager prompts the user to say again with utterances like “could you

repeat please?” The ASR is deactivated while the robot is speaking.

We evaluated the system performance using this ASR implementation. We put the robot

on a square of the mall (Fig. 3B), and let the visitors freely use it. With our preliminary test,

with 22 users, there are 81 requests, for which the robot was only able to correctly respond

in 19.8% of the cases. (In a similar study only 21.3% of successful recognition was achieved

Matsuda et al., 2006.)

There were 4 types of errors: error in sound detection error (due to other ambient

sounds, the system failed to detect the start of utterance) (17.3%), ASR resulted in low

reliability score (30.9%), utterance did not match with the prepared grammar/vocabulary

(2.47%), and mis-recognition in ASR (29.6%). In case the mis-recognition occurred,

often the system seemed to be interfered by ambient noise, which was matched with some

vocabulary in the lexicon.

In contrast, in case ASR successfully detected the names, nicknames, or requestable

properties, the system provided appropriate answers. Overall, this preliminary test revealed

that the system is capable of handling users’ utterances when the ASR is successful, while

we would yet need to wait ASR technologies to be ready for real world environments.

Wizard-of-Oz. The system is ready for autonomous speech recognition. But, for this study,

to focus on other parts of interaction rather than working for errors in speech recognition,

we used a human operator only to support speech recognition.

We strictly limit the task of the operator, and have him work like the dumb ASR software

described in the previous section. We did not allow the operator to add his knowledge. Just

like the output from the ASR, the operator only typed the words spoken by the user. For

instance, to our knowledge, if a user asks for a “Place for lunch” but such wording is not in

the system vocabulary, in previous studies Wizard-of-Oz operators replaced such words to

the ones system can handle, like “restaurant”; by doing so, the system can work with a very

limited vocabulary and knowledge. Instead, with our system, a novice person who does not

know the environment (e.g., list of shops) can easily serve as an operator.

PRELIMINARY TRIALS: LACK OF ‘KNOWLEDGE’ FOR
INTERACTION
We conducted a preliminary study with the system reported in the previous section. We

initially intended to supplement missing data and evaluate its performance. We found the

system itself worked well (we will report in section ‘Evaluation of system performance’);

however, interaction failed in other parts we did not think about. That is, some visitors

responded in an unexpected way. In short, until this study was conducted, we focused

on the ‘information’ aspect, which we found to be satisfyingly prepared, but we found a

problem in ‘interaction.’
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Figure 6 The interaction failed because the visitor did not speak.

Figure 7 The visitor kept silent after prompted.

Here, we report two typical cases of failures. From these cases of failures, with a

trial-and-error approach, we seek the reason why interaction fails and seek for better

pattern of interaction for the problem. Finally, we generate hypotheses about missing

knowledge in interaction (to be reported in the next section).

Case 1: Interaction did not start

The initial version of the robot imitated the interaction of human information staff.

It waited for the arrival of the visitors, and waited for them to make a request. This is

what a human staff member would do. The signboard showing ‘information staff ’ on the

chest of the robot was very visible, so we expected that every visitor would have common

expectations as those investigated in section ‘Expectations from information robot.’

However, frequently people would stay in front of the robot without saying anything.

Figure 6 shows one of such cases. A man stopped in front of the robot, and the robot was

ready to receive a request, orienting its body and head toward him; but, without talking to

it, he moved to a side of the robot, and the robot followed. He moved back, and it followed

again. Finally, he left after 30 s of silence.

Case 2: Passive visitors

Further, we noticed that the conversation got stuck when it asked for a request, even

though the user initially spoke to the robot. For instance, Fig. 7 shows a visitor who

engaged in greeting, but came to be silent when prompted to ask request. She left after

5 s of silence after being prompted.
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We interpreted that such people do not have concrete requests in their mind, thus they

were stuck when asked to offer requests.

FIELD EXPERIMENT
For each case of problems found in the preliminary trial (reported in the previous

section), we generated a hypothesis, and conducted an experiment to confirm our idea

to supplement such weakness. The study protocol was approved by institutional review

boards of Advanced Telecommunications Research Instituted International with reference

number 14-502-2.

Experiment 1
Hypothesis
We initially replicated the way human staff interact with visitors. That is, we make it clear

that the robot is serving as information staff. Assuming that visitors have the common

expectations the purpose of information staff we let the robot wait for a visitor to make

a request, and to prompt to request if not asked. However, this assumption was not

always correct. Visitors may not share or may be unsure about their expectations of the

‘information robot’ role. If this is the case, we can probably moderate the problem by

letting the robot first explain its role (direction giving and recommendation). Thus, we

made the following prediction:

Prediction 1: If the robot proactively explains its role as information staff, people will

more frequently request information from it.

Participants
The study was conducted during weekends. The participants were visitors of the shopping

mall who are typically group of friends and families who come to the mall for leisure.

The mall is big and the layout is complicated, thus people are often in real need of getting

directions from someone.

When a robot is placed on the mall, people sometimes stopped at the robot. We assumed

that such people who stopped at the robot as the participants.

Condition
There are two conditions compared.

- With self-introduction: when a person stops, the robot starts self-introduction. It says,

“Hello, I can provide directions and recommendations.” Then, it prompts him/her to

request “May I provide you some information?”

- Without self-introduction: when a person stops, the robot waits him/her to request

without speaking to the user.

In both conditions, when a visitor requests it immediately moves into the information

dialog. After 20 s of silence, the robot closed the interaction saying “bye-bye.”

Procedure
The robot was placed at a square of the mall (Fig. 3B). We choose this location because

visitors often arrive from the nearby escalator, and need direction giving around this
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location. The study was conducted during daytime on weekends. We prepared six pairs of

25-minutes time slots. For each pair, two conditions were assigned. Between the slots, we

put 5-minutes break, so that visitors are not influenced by the adjacent time slot.

The visitors of the mall were able to freely interact with the robot. There was a signboard

showing ‘information staff ’ on the frontal side of the robot, which was clearly visible to the

visitors. Beyond that, there were no restrictions nor instructions provided to visitors. There

was a person ensuring safety, but he stayed behind a column so that his presence was hardly

noticeable from pedestrians. In such circumstances, we observed the pedestrians’ natural

reaction to the robot.

Measurement
Considering the role of the information staff, we define the success of the interaction as

follows:

Success: The case where the robot was able to receive a request and offered appropriate

information/service.

We coded the success from the recorded video. Note that we only evaluated people who

stopped in front of the robot (more than 3 s) and faced towards it; we consider that letting

people stop is beyond the scope of this paper. If the same person interacted multiple times,

only the first one was evaluated. Further, we only evaluated one participant per group

(i.e., only the first member of the group, who stopped and faced the robot, was counted

as our participant), so that the experiment would not suffer from other members’ prior

interactions.

Result
In total, there were 238 interactions evaluated, which were coded by two coders who

did not know the study hypothesis. One coded the whole data and the second one did

confirmatory coding for 10% of the data. Their coding results matches well (kappa

coefficient .962).

Figure 8 shows the result of the study. There were 69.0% of the successful interactions in

the with self-introduction condition, while 54.4% in the without self-introduction condition.

Typical failure was, like the one shown in Fig. 6, when visitors stayed in front of the robot

but remained silent even if they were prompted to talk to the robot. Some visitors left in the

middle of the conversation, and some explicitly said they did not need service (6 cases in

with self-introduction condition).

We applied a Chi-square test to evaluate the ratio of success against failures. There is a

significant difference between the conditions (χ2(1) = 4.755, p < .05, ϕc = .141).

Thus, prediction 1 was confirmed. When the robot provides self-introduction, the

interactions ended with success more frequently. We interpret that even though the robot

serves an ‘information’ role, people should share a common expectation. Unless it explains

its role, some people might fail in using it.

Discussion
It is plausible that there are two sources of failure addressed. One is the belief that the robot

can talk to them; another is the expectation that it offers information. We mainly argued
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Figure 8 Result of the experiment 1.

the second point, but it simultaneously offered help for the first element. Thus, one would

argue that it is better to compare with a robot that only speaks to users but does not provide

self-introduction.

However, it was not easy to prepare such a condition when the robot only shows the

capability that it can talk in the context of information service. For instance, if it only

greeted people, visitors might expect it to engage in variety of interactions, but in reality

the robot can only react for the ‘information’ role. Thus, although the effect would be due

to both elements, we conducted the study in such a way. It remains as an open question

what is the best length of self-introduction. We could make it short and only imply its task

by saying something like “May I help you?” We consider that to our observation, people

did not get bored due to length of the self-introduction and thus it could be considered as

reasonable.

Experiment 2
Hypothesis
In the experiment 1, we found that self-introduction moderated the problem of failure;

yet, interaction failed for about 30% of the visitors. We hypothesized that there are visitors

who initiated interaction out of curiosity, without a concrete request in mind. Such people

would be stuck when a robot prompts them for a request in a direct way. We hypothesized

that we can moderate this problem, if the robot turns its offer into a question that they can

easily answer. Thus, we made the following prediction:

Prediction 2: If the robot prompts a user for a request in a way of questions they can

easily answer, people will more frequently make requests to the information robot.

Participants
The same procedure was used as in experiment 1.
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Figure 9 Result of the experiment 2.

Condition
There are two conditions compared. In both conditions, when a person stops, the robot

starts with a self-introduction, saying “Hello, I can provide directions and recommenda-

tions.” This is identical to the wording used in experiment 1. After a short pause, the robot

utters “I will give recommendations based on the locations you are going to,” and prompts

the user to ask. The prompting utterance differs depending on the following condition:

- Open-ended prompting: It prompts the user by saying

“What kind of recommendation do you wish?”

- Close-ended prompting: It prompts the user by saying “Where are you going?”

In both conditions, whenever a visitor requests something to the robot, it immediately

moves into the information dialog. If the user keeps silent for 8 s, it once repeats the

prompting utterance. If there were 20 s of silence after the prompting utterance, the robot

closed the interaction saying “bye-bye.”

Procedure
The same procedure was used as in experiment 1. We prepared seven pairs of 25-minutes

time slots.

Measurement
The same measurement was used as in experiment 1.

Result
In total, there were 205 interactions evaluated, which were coded by two coders who do

not know the study hypothesis. One coded the all data and second one did confirmatory

coding for 10% of the data. Their coding results matches well (kappa coefficient .936).

Figure 9 shows the result of the study. There were 84.5% of successful interactions in

close-ended prompting condition and 69.4% in open-ended prompting condition. Similar to

the experiment 1 failure cases, some visitors kept silent when prompted, some visitors left
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in the middle, and some explicitly said they did not need the service (3 cases in close-ended

prompting condition).

We applied a Chi-square test to evaluate the ratio of success against failures. There is a

significant difference between the conditions (χ2(1) = 5.678, p < .05, ϕc = .166).

The prediction 2 was consequently confirmed. When the robot’s prompting was

close-ended, the interaction was more frequently successful than open-ended prompting.

We interpret that as predicted many visitors did not have requests in mind and got stuck

when asked to request; instead, if the robot offered a prompting utterance that invited the

user to talk about what they know (e.g., their destination), it will more easily continue the

dialog and offer information requested by the user.

Discussion
There are some open questions remaining. One would argue that those who kept silent

are people who did not want to ‘hear’ the information, thus they did not respond to

‘hear’ questions in close-ended prompting. It is possible that they did not have that

much will to spontaneously ask the robot to provide information; nevertheless, in

open-ended prompting condition, people who were coded as success stayed until the robot

finished providing information. One would also argue that the robot could anyway give

information even if visitors kept silent. This is possible, and maybe the robot should do so

for the remaining 15.5% of people. Our assumption is that it is probably better if they hear

information they requested, rather than randomly chosen information. We could not fully

clarify why the remaining 15.5% of people who kept quiet in close-ended condition. We

tried to interview such people, but they did not want to be interviewed.

Evaluation of system performance
Throughout the experiment 1 and 2, the robot was controlled with the system reported

in ‘System’. In total, there were 435 requests made for the information robot. We analyzed

how they were handled, and evaluated whether the robot’s responses were correct.

66.8% of the case requests were a name of location and 4.0% were a nickname. In the

other cases, these requests were turned into requestable properties: there were 4.4% item

name, 14.6% category, 7.2% feature, 2.5% people activity, and 0.4% people’s state. In 78.6%

of cases, the system provided direction-giving service, and 21.4% recommendation service.

The appropriateness was evaluated by coders who do not know the study hypothesis.

They judged based on the following criteria:

Correct: the information the user requested is included and correct in the response from

the robot.

For instance, when a user asked “Are there Japanese restaurants?” the coder judged

whether the robot provided the information about any Japanese restaurant (if any),

and whether the provided information is correct. There coding results show moderate

matching (kappa coefficient was .481).

There were 96.6% of cases judged as correct. Incorrect cases were caused by the

lack of nickname (8 cases), users who left before information was provided (3 cases),

operator’s mistype (3 cases), and complex requests which the system was unable to handle
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Figure 10 A scene of correct and successful interaction.

(1 case). Overall, we believe that the system was able to cover the requests from users

reasonably well.

Figure 10 shows one of example of scene of interaction where the robot provided correct

information. She asked a ‘where’ question using the name of a furniture shop, which was

matched with the location entity instance of the furniture shop. Thus, the robot provided

the direction to the shop while pointing the direction. She listened to the direction while

looking at the robot. When the robot pointed, she looked at the pointed direction. Finally,

she said “Thank you!” to the robot, and walked to the pointed direction.

Figure 11 shows a scene where visitors’ requests were based on their physical state.

They only said, “I’m hungry.” The robot was able to associate it to restaurants, so it

recommended ramen restaurant. They requested it to provide directions to the restaurant,

and the robot pointed the direction end explained the route.

Overall, the system worked reasonably well.

LIMITATION
The content of knowledge can be local to the specific environment, robot, language,

culture, and so on. The common sense about what the information service is would differ

across cultures. Thus, if our study results were to be applied somewhere else, although

we believe that most of the framework and structure of knowledge is pertinent, we would

probably need to carefully adjust the knowledge. For instance, it is plausible that people

in other cultures would inquire information with a different form. Knowledge about

interaction would also differ. People in other cultures can be more or less open, active,

hesitate, and/or curious, thus the effectiveness of such strategy can be different.
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Figure 11 Request made based on visitors’ state.

CONCLUSION
We investigated the knowledge relevant to information robot. First, we confirmed

that what visitors expect for an information robot well overlapped with what human

information staff do. We developed a knowledge representation for information robot.

Our field study confirmed the knowledge representation was useful. When users requested,

the robot was able to provide information with 96.6% of success. However, it also revealed

that many people did not behave in the same way as they did with human staff. Our initial

version of interaction flow only allowed 55.4% of success in providing information, while

visitors in failure kept silent during the interaction. Through our field experiments, we

found that some people need the robot to provide self-introduction about its role, and

some people need close-ended prompting, i.e., letting users talk about what they know to

make a request, instead of letting them generate a request. Finally, the robot was able to

provide information for 84.5% of visitors. What we changed might be subtle, yet it changed

the results quite a bit.
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