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We report a series of simulations on the well-known “other-race effect.” We
trained an autoassociative network on a majority and a minority race of faces,
and tested the model’s ability to process faces from the two races in different
ways. First, the model was better able to reconstruct unlearned majority faces
than minority faces. Secondly, the average inter-face similarity was higher for
the reconstructed minority faces than for reconstructed majority faces, indi-
cating that the model was coding the majority faces more distinctively than
the minority faces. These results held for Caucasian faces as the majority
race and Japanese faces as the minority race and vice versa. Thirdly, we
simulated a recognition task for same- and other-race faces by using a face
history matrix and a recognition task matrix with equal numbers of Caucasian
and Japanese faces, and reconstructing these faces as a weighted combination
of the two matrices. Using Caucasian faces as the majority race, the model
was better able to discriminate learned from new Caucasian faces than learned
from new Japanese faces. We discuss the results in terms of perceptual tuning
to information useful for processing faces of a single race.
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Introduction

For many years scientist and layperson alike
have suspected that faces of one’s own race are
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recognized more accurately than faces of another
race. In the early part of the century, Feingold
(1914,p. 50) stated the supposition and a plausible
reason for its existence this way

other things being equal, individuals of a
given race are distinguishable from each
other in proportion to our familiarity, to
our contact with the race as a whole.
Thus, to the uninitiated American all Asi-
atics look alike, while to the Asiatic, all
White men look alike.

More recently, it has been shown that approxi-
mately half of potential jurors believe that such a
bias exists (Deffenbacher & Loftus, 1982). Indeed,
abundant empirical support for the own-race bias
in face recognition accuracy can be found in the
recent meta-analyses of a large number of studies
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on the topic (Shapiro & Period, 1986; Bothwell et
al., 1989).

Several hypotheses have been advanced to ac-
count for the cross-race phenomenon: Faces of
some races are inherently more difficult to identify
than others; prejudicial attitudes lead to less ac-
curate recognition for other-race faces; and other-
race faces are processed more superficially than
same-race faces. There is little support for any of
these accounts (Brigham, 1986). A fourth possi-
bility is that implied by the quote from Feingold
(1914): an own-race bias is in direct proportion to
the difference in amount of contact with persons
of one’s own and another race. Several studies
have found a smaller other-race effect for persons
living in more racially integrated circumstances
(Cross et al., 1971; Feinman & Entwistle, 1976).
However, while at least one study (Brigham et al.,
1982) yielded a small but significant correlation
of self-reported degree of cross-race contact and
cross-race recognition ability, other studies (e.g.
Brigham & Barkowitz, 1978) have found no rela-
tionship at all.

It may be, however, that current techniques are
not sensitive enough to adequately assess the quan-
tity and quality of contact with persons of another
race. There are data which suggest that the cross-
race effect may indeed be a matter of differen-
tial exposure to faces of different races. For one
thing, a number of attempts to improve same-race
face recognition have all failed (Malpass, 1981).
However, similar training efforts for other-race
face recognition have yielded improvements (e.g.
Goldstein & Chance, 1985).

We think that the differential effects of further
training in face recognition are due to differen-
tial amounts of perceptual learning associated with
same versus other-race faces. A cross-sectional
study of the development of face recognition abil-
ity by Chance et al. (1982) found that 6 year old
Caucasian children show only a small cross-race
effect recognizing Japanese compared with Cau-
casian faces. At successively older ages up to
early adulthood, ability to recognize both races in-
creased, but ability to recognize same-race (Cau-
casian) faces increased much more rapidly. Hence,
any attempt to improve same-race face recogni-
tion by short-term training programs may be inade-

quate compared with years of extensive processing
of same-race faces.

Studies examining the role of perceptual learn-
ing1 in the other-race effect are difficult to carry
out empirically for two reasons. First, while it
may be possible to find subject populations with
a relatively controlled “face-learning” history, it is
generally not possible to equate the populations
along other important cultural and social dimen-
sions that may affect performance on the task. Sec-
ondly, as we have already noted, short-term per-
ceptual learning studies involving practice with a
single race of faces are not necessarily adequate
to control for the lifetime experience of observers
with faces of their own race. These methodological
difficulties make the cross-race effect an ideal can-
didate for simulation approaches to understanding
the psychological data.

In the present study, we present simulations of
a perceptual learning account of the other-race ef-
fect that is based on the following principles. First,
we assume that faces of different races comprise
different statistical categories of faces. Secondly,
within a given category of faces, a set of differen-
tially weighted “features2” is optimal for encoding
faces in a manner that makes faces within the cate-
gory most discriminable. Different feature sets and
weightings, however, are optimal for processing
faces from other-race categories of faces. Thirdly,
with exposure to many faces of a given race and a
smaller number of faces of other races, perceptual
learning enables observers to make optimal use of
the features that are best for processing faces from
the category with which they have had the most
experience, topically, faces of their own race. By
this account, the difficulties experienced with faces
of another race are due to the fact that the optimal
features for distinguishing faces of one’s own race
are not optimal in processing the faces of another
race.

One way to simulate the other-race effect is to
train an autoassociative network on different pro-
portions of faces of an ’own’ and ’other’ race. We

1 Referred to in the face recognition literature simply
as “experience.”

2 The word features is used in its most general sense
without commitment to a specific definition.



SIMULATING THE OTHER-RACE EFFECT 165

trained an autoassociative system on a large num-
ber of faces of a majority race and a smaller num-
ber of faces of a minority race to mimic the other-
race effect. The advantages of an autoassociative
memory used with Widrow-Hoff error correction
is that it will develop connection weights in such
a way as to optimize the storage capacity of the
matrix. Thus, with very similar stimuli, such as a
single race of faces, the model should tune itself
to the information important for processing faces
from within the class. Due to the distributed nature
of the memory, when faces are retrieved from the
system, they will be filtered by the learning history
of the system.

Several predictions about the system’s ability to
process same- and other-race faces follow. First,
when the network is trained on a majority of faces
of one race and a minority of faces of another race,
its ability to represent faces of the majority race
should be better than its ability to represent faces
from the minority race. This is due to the fact that
model will have developed “features” that are more
appropriate for faces of the majority race. We can
assess the validity of this prediction by looking at
the quality of face reconstructions for new (pre-
viously unencountered) faces of the majority and
minority races. Secondly, reconstructed new faces
of the minority race should be more similar to one
another than reconstructed faces of the majority
race. In other words, the average inter-face sim-
ilarity should be greater for reconstructed minority
faces than for reconstructed majority faces. This is
because the model will not develop a coding that
makes optimal use of the distinguishing features
for the minority race; hence, these faces should
be “perceptually” more similar to one another. Fi-
nally, the model should be better able to recognize
majority faces than minority faces.

The simulations serve, first, to test the model
qualitatively as a face recognition tool with a much
larger and higher quality stimulus set than that
used previously (Kohonen, 1984; O’Toole et al.,
1988; O’Toole & Abdi, 1989). We will look
specifically at the model’s performance with re-
spect to the predictions stated above.

Secondly, this type of model suggests a differ-
ent definition of features than has previously been
used to characterize faces. Since the autoasso-

ciative memory can be decomposed into a set of
eigenvectors, and since faces learned by the model
can be reconstructed by the weighted combina-
tion of these eigenvectors, the eigenvectors may
be thought of as features for characterizing the
stimulus set. We should expect to see differences
in eigenvectors based on the face history of the
model. Furthermore, since we used a simple visual
code in these simulations, the eigenvectors can be
displayed as images. We shall discuss the potential
role of the eigenvectors as features for characteriz-
ing same-and other-race faces.

Simulation 1

The model is defined first and then its applica-
tion to the other-race problem is presented. A dig-
itized image of each face was coded as a vector
comprised of pixel elements concatenated from the
rows of the face image. Thus, theith face was rep-
resented by aJ×1 vector (whereJ is equal to the
width times the height of the face image in pixels)
and is denoted byf i . For convenience, normalized
vectors are assumed (i.e.fT

i f i = 1). The autoasso-
ciative matrix was constructed as

A = ∑
i

f i fT
i (1)

Recall of individual faces from the matrix was
done according to the rule

f̂ i = Af i (2)

where f̂ i is the system estimate off i . The qual-
ity of this estimate is measured by comparing the
reconstructed image with the original image using
the cosine of the angle between the vectorsf̂ i and
f i . The Widrow-Hoff error-correction rule was ap-
plied iteratively to optimize the quality of the recall
across the stimulus set

A[t+1] = A[t]− γ
(
f i −A[t]f i

)
fT
i (3)

wherei is randomly chosen andγ decreases as the
reciprocal of the iteration number.

Since the eigen-decomposition of the autoasso-
ciative matrix is equivalent to principal component
analysis (Abdi, 1988), the autoassociative matrix
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Figure 1. Mean cosines between original and reconstructed images for the OLD and NEW majority and minority
faces.
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can give indications of the statistical structure of
the stimulus set. The storage capacity of such a
matrix is approximately 15% of its dimensionality
for random vectors (Hopfield, 1984). Since the di-
mension of our images was very large by compar-
ison with the number of stimuli, this limit was not
a problem for these simulations.

Method

Stimuli. A total of 319 Caucasian and Japanese
faces were digitized from slides with a resolu-
tion of 16 grey levels using a Fotovix digitizer
attached to a 286-based computer with a 16-bit
TARGA board (True Vision). Faces were of young
adults and were roughly half male and half female.
None of the slides pictured people with facial hair
or glasses. The images were aligned so that the
eyes were at about the same height. The images
were cropped around the face to eliminate cloth-
ing. Each face was 151 pixels wide and 225 pix-
els long, and so was represented by a 33 975-pixel
vector consisting of the concatenation of the pixels
rows. A spatial differentiation encoding was used
to enhance lines prior to the extraction of the pixel
vector (cf. O’Toole et al., 1988). The simulations
were carried out on a Sun MicroSystems SparcSta-
tion and on a Convex C-1 Vector computer.

Procedure. Two simulations of the other-race
effect were performed: one used Caucasian faces
as the majority race and Japanese faces as the mi-
nority race, and the other used Japanese faces as
the majority and Caucasian faces as the minority
group. For the Japanese minority simulation, an
associative memory was trained using error correc-
tion on 95 Caucasian and five Japanese faces. For
the Caucasian minority simulation 95 Japanese and
five Caucasian faces served as the training set3.

Results and Discussion

Representations of majority and minority race
faces. The model was tested by reconstructing
the Japanese and Caucasian faces that the model
learned (OLD), and by reconstructing a sample
of Japanese and Caucasian faces not learned by
the model (NEW). The cosine between the origi-
nal and reconstructed image indicates the quality

of the model’s representation of the face. Fig-
ure 1 shows the mean cosines for the OLD and
NEW majority and minority faces for the simu-
lations. Three points are worth noting. First,
in both simulations, the OLD stimuli (both Cau-
casian and Japanese faces) were nearly perfectly
reconstructed (mean cosine=0.98). This is a con-
sequence of the fact that the capacity of the matrix
was not challenged (cf. Hopfield, 1984, and be-
low). We discuss below one method of degrading
the performance of the model in a psychologically
interesting way. Secondly, the average cosine for
the reconstructed NEW majority faces was greater
than the average cosine for the reconstructed NEW
minority faces. This can be seen in the interaction
in Figure 1. The differences between the quality
of the reconstructions for majority and minority
faces reflects the model’s greater success in coding
or representing novel faces from the majority race
than from the minority race.

Finally, in both simulations, the cosines for the
NEW faces did not reflect random performance
for the model. In other words, the minority race
faces were not completely unfamiliar stimuli for
the model. This is a consequence of the fact that
all faces share a general schema of features and so
a given race might be best thought of as a subcate-
gory of the general class of face stimuli.

Similarity. We tested the prediction that novel
majority faces are perceived by the model to be
less similar to one another (i.e. more distinctive)
than minority faces. An analysis of the similar-
ity of the reconstructed NEW faces to one another
was carried out. In this analysis, 50 randomly cho-
sen NEW Caucasian faces and 50 randomly cho-
sen NEW Japanese faces were reconstructed and
the model’s estimate of each face was used for this
similarity analysis. These stimuli can be thought
of as filtered or “perceived” by the matrix trained
with a majority and minority race. For each race of
faces, the inter-face similarity for the recalled faces

3 The choice of 95% majority and 5% minority faces
is arbitrary. We have carried out the first set of sim-
ulations with 75% and 25%, as well, and have found
qualitatively similar, though less extreme, results for the
model’s ability to represent new majority and minority
race faces.
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was calculated by taking the cosine between all
possible pairs of different ‘perceived’ faces. The
cosine between two faces indicates the similarity
between the two, with identical or scaled faces
yielding cosines of 1.0. The average similarity of
all possible pairs of reconstructed faces was taken
as the average inter-face similarity.

Several conditions were analyzed. For each ma-
jority simulation, the average inter-face similarity
of Caucasian and Japanese faces was computed.
Furthermore, the reconstructions were carried out
using different numbers of eigenvectors to look at
the consistency of the similarity effects. To ex-
plain this latter analysis, a short digression into
the properties of associative matrices is necessary.
The reconstruction of any face from the autoas-
sociative matrix can be achieved either by Equa-
tion (2) or, equivalently, by taking a weighted sum
of the eigenvectors of the matrixA, where the
weights of each eigenvector for a facef i are equal
to the dot-product between the face vector and the
eigenvector (multiplied by the eigenvalue of the
eigenvector—when error correction is not being
used, since error correction has the effect of equal-
izing the eigenvalues). For these simulations, error
correction was used and so the eigenvalue was not
included in the weights. Thus, the reconstruction
is given by

f̂ i = (f i ·e1)e1 +(f i ·e2)e2 + . . .

. . .+(f i · è )è + · · ·+(f i ·en)en (4)

whereè indicates thè -th eigenvector.
The reconstruction of each face, then, can be

quantified precisely by this list of coefficients and
the set of eigenvectors ofA4. Returning from our
digression, it is dear that a face may be recalled
using this second procedure with all or any subset
of eigenvectors. Since eigenvectors can be ordered
by importance of contribution using their associ-
ated eigenvalues, we recalled faces using different
numbers of eigenvectors to test the consistency of
the results as more eigenvectors were included.

The results of this analysis appear in Figure 2
(a) for the Caucasian majority simulation and in
Figure 2 (b) for the Japanese majority simulation.
Average interface similarity, as defined by the av-
erage cosine between all possible pairs of recon-
structed faces ( as coded by the set of coefficients

used to reconstruct them), appears on they axis
and number of eigenvectors is plotted on thex axis.
In both simulations, faces from the minority race
were more similar to one another on the average
than were faces in the majority race. Thus, when
the model is trained on a majority of faces of one
race and a minority of faces of another race, it cre-
ates more distinct codings of majority race faces.
This finding is reminiscent of Feingold’s (1914)
quote.

Simulation 2

As previously noted, the capacity of an autoas-
sociative memory without error correction can be
estimated as approximately 15% of its dimension-
ality. This estimate assumes random vectors. The
vectors we used were of dimensionality 33 975 and
so the capacity of the memory should be roughly
5096 faces. While there are two differences be-
tween these simulations and those for which the
capacity estimates were derived, these have inverse
effects on the capacity estimates. First, we used
error correction, which improved the capacity of
the matrix. Secondly, faces are not random vectors
but are highly correlated, a factor that lessens the
capacity. In any ease, it is clear from Simulation
1 that 100 faces did not challenge the capacities of
the matrix. Since we had a limited data base of
faces, we explored a number of methods for de-
grading the system’s performance. At least one
of these is interesting psychologically and would
merit attention regardless of the performance con-
straints. This method draws on the metric multidi-
mensional sealing analogy cited previously.

Multidimensional scaling tries to represent
space relations between entities of a stimulus set
in the smallest dimensional space possible while
accounting for some experimenter-set criterion of
variance. The eigenvectors of an associative mem-

4 A strong analogy with metric multidimensional
scaling is present here. The axes or dimensions of met-
ric multidimensional scaling solutions are the eigen-
vectors ordered by the magnitude of their associated
eigenvalues. Thus, the first axis is the first eigenvec-
tor, etc. Typically, multidimensional scaling solutions
use as many axes as are needed to account for some
experimenter-specified proportion of variance.
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Figure 2. Average inter-face similarity for the (a) Caucasian and (b) Japanese majority (95%) simulations, plotted
as a function of the number of eigenvectors used to reconstruct the faces. The minority (5%) race faces for both
simulations are more similar to one another than are faces in the majority race.
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ory are equivalent to the axes of a multidimen-
sional scaling solution, with the eigenvector with
the largest positive eigenvalue accounting for the
largest proportion of variance, and the eigenvector
with the second largest eigenvalue accounting for
the second largest proportion of variance, and so
on. The maximum number of dimensions needed
to account for all of the variance is equal to the
rank of the matrix (i.e. the number of eigenvectors
with non-zero eigenvalues). Frequently in multi-
dimensional scaling, however, an acceptably large
proportion of the variance may be accounted for
by a very small set of dimensions and, thus, the
eigenvectors with smaller eigenvalues may be dis-
carded without losing much information about the
structure of the stimulus set.

Likewise, recall from an associative memory
can be carried out using a smaller number of eigen-
vectors (cf. equation (4)). The criterion for an ac-
ceptable number of dimensions in this case, how-
ever, is one that maintains an acceptable (but not
perfect) level of recognition performance.

Recognition Memory for Same- and
Other-race Faces

To simulate a recognition memory task we need
to model two components of memory, a long-term
experience component (i.e. face race history) and a
short-term face recognition task. We expect expe-
rience to affect the short-term recognition task in
the ways outlined above. For the purpose of com-
pleteness, we report two simulations. In the first,
we tested the ability of the autoassociative memory
to distinguish between OLD and NEW faces for a
majority matrix. In the second, we added a short-
term component to this matrix, which consisted of
half Caucasian and half Japanese faces. We then
examined the ability of the model to discriminate
OLD from NEW faces for these additional faces.
We should note that we do not believe that this is
the only or even best way to simulate such a task.
We feel that it is the simplest way, however, and so
we chose to explore this method first.

Method

The matrix was tested for accuracy with a
Yes/No procedure as follows. Learned Caucasian

and Japanese faces (OLD) and NEW Caucasian
and Japanese faces were reconstructed. The qual-
ity of the reconstructions was measured as the co-
sine between the original and reconstructed im-
ages. A Yes/No recognition procedure was imple-
mented by setting a criterion cosine valueβ and
by assigning a ‘Yes’ to faces for which the cosine
between the original and reconstructed image ex-
ceeded the criterion and ‘No’ to faces for which
the cosine was less than the criterionβ. The most
direct choice forβ is the mean of the cosine dis-
tribution means for the reconstructed OLD faces
and the reconstructed NEW faces. Signal detec-
tion methodology maps easily onto this Yes/No
task since the distribution of cosines for OLD faces
can be thought of as the signal distribution and the
distribution of cosines for NEW faces as the noise
distribution. OLD faces with cosines greater than
β are considered hits and NEW faces with cosines
greater thanβ are considered false alarms. Ad′

score may then be computed in the standard way.
Also, since the distribution of cosines for the signal
(i.e. the OLD faces) and the distribution of cosines
for the noise (i.e. the NEW faces) are known com-
pletely, a ROC curve may be plotted by choosingβ
values and calculating the hit and false alarm rates
that would result from using these different crite-
ria.

Results and Discussion

To test the accuracy of the models, we used all
of the OLD faces (100 faces: 95 majority and five
minority) and a sample of 120 NEW faces, approx-
imately half Japanese and half Caucasian. The ac-
curacy of the model using all the eigenvectors was
essentially perfect. We degraded the simulations,
therefore, by using smaller numbers of eigenvec-
tors. Figure 3 (a and b) displays ROC curves for
the performance of the Caucasian and Japanese
majority models, respectively, with three different
numbers of eigenvectors contributing to the recon-
struction. For both majority simulations, 10 eigen-
vectors yielded excellent performance. Dividing
the faces into majority and minority face groups
did not show the cross-race effect. That is, major-
ity faces did not yield larger values ofd′. This is
likely to be due to the fact that only five minority-
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Figure 3. ROC curves for the performance of the (a) Caucasian and (b) Japanese majority (95%) models. Perfor-
mance is plotted with different numbers of eigenvectors contributing to the reconstructions.
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Figure 4. ROC curves for the long-term experience and short-term recognition Caucasian majority matrix.

race faces were used in these simulations and that
race was probably the largest category difference
in these simulations and is, therefore, likely to be
represented in the first few eigenvectors.

We then simulated the short-term component by
recalling faces combining the eigenvectors from
the long-term majority matrix and the short-term
half-Caucasian(n = 40) and half-Japanese(n =
40) matrix, weighting the long-term component at
0.75 and the short-term component at 0.255. We
report a simulation only for the Caucasian major-
ity matrix6. Here we see the classic cross-race ef-
fect, with the Japanese faces being more difficult
to recognize (i.e. to separate OLD from NEW in
the short-term recognition task) than the Caucasian
faces. The ROC curves for this simulation are dis-
played in Figure 4.

The eigenvectors as features. Recalling faces
from the autoassociative matrix is carried out
by summing together a weighted combination of
eigenvectors. That is, the faces are ‘put together’
by adding up the eigenvectors in differentially
weighted combinations. As such, by most psycho-
logical definitions, the eigenvectors can be thought
of as features of the faces. This interpretation
of eigenvectors in associative matrices has been
pointed out by Anderson et al. (1977). Also,
in the context of low-dimensional representation
of images, Sirovitch & Kirby (1987) suggest an

5 These numbers are arbitrary and are simply an at-
tempt to give more weight to the long-term experience
than the short-term recognition task.

6 This is because we do not yet have a sufficient
number of Japanese faces available to complete the
analysis for the Japanese faces.
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Figure 5. (a)The first four eigenvectors for the Caucasian majority simulation.



174 O’TOOLE, DEFFENBACHER, ABDI, & BARTLETT

Figure 5. (b) (b) The first four eigenvectors for the Japanese majority simulation.
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eigenvector-based description.
Applied to the current work, the eigenvectors

of a matrix of face images are a different sort of
feature than has generally been used in describ-
ing faces. For one thing, the eigenvectors repre-
sent global and not local features, since they span
the face. Secondly, with the exception of the first
eigenvector in each of these simulations, the eigen-
vectors are not readily interpretable in a traditional
feature sense. The first four eigenvectors for the
Caucasian majority simulation and the Japanese
majority simulation are displayed in Figure 5 (a
and b). It should be noted that the eigenvectors are
face-like. Furthermore, the eigenvectors resemble
somewhat the majority race of the matrix. The first
eigenvector contains characteristics typical of the
majority race (e.g. note the roundness of the eyes
and face in the Caucasian majority eigenvectors,
and the squareness of the face and distinctiveness
of the nostrils for the Japanese majority eigenvec-
tors). Finally, for completeness, Figure 6 shows
the first eigenvector of each majority matrix made
from a pixel-based code without spatial differen-
tiation. The race differences are even more strik-
ing in these cases since shading information is pre-
served.

General Summary and
Discussion

The purpose of these simulations was to model
some common effects associated with processing
other-race faces. We have tried to show that these
effects can be modeled, in part, as a process of fine
tuning to the information most useful for distin-
guishing faces within a homogenous set (i.e. a sin-
gle race of faces). This tuning is suboptimal for
processing other-race faces, however, and the sys-
tem shows a number of shortcomings for the mi-
nority faces as compared to the majority faces. Our
simulations produced three results. First, when the
face history of a network was strongly biased to-
ward a single race of faces, the model’s ability to
represent novel faces from this race exceeded its
ability to represent faces from another race. Sec-
ondly, an autoassociative network trained on a ma-
jority race produced codings that were more sim-
ilar to one another for faces of the minority race

than for faces of the majority race. This simulates
the well-known effect of faces of another race all
appearing similar to one another. Finally, by com-
bining a long-term face history experience matrix
with a short-term recognition matrix, we simulated
the other-race effect with majority faces being bet-
ter recognized than minority faces.

While the system produced a number of effects
that are qualitatively similar to those seen in the
psychological literature, we caution that this ap-
proach is perhaps best thought of, not as a model
of face recognition, but as an exploratory tool for
quantifying and processing subtle perceptual infor-
mation in complex images such as faces. It is also,
not the only approach to simulating the other-race
effect. Used in this context, it provides a method
for examining other kinds of codings that might
account for these effects in a similar fashion. Fur-
thermore, its application might give insight into the
constraints that extensive experience with a given
stimulus category place on the processing of stim-
uli from another category. We think that this is
especially important in cases where it is difficult
to quantify the subtle visual information that sepa-
rates the categories.

Finally, we think the model also has potential as
a tool for simulating some other well-known ef-
fects in face memory, such as the relationship be-
tween typicality and recognition memory. Further-
more, it might be useful for giving insight into the
perceptual components of the recognition difficul-
ties encountered with inverted faces and with faces
presented in the photographic negative. For these
effects, it is instructive to pursue some simple per-
ceptual explanations before looking at other more
complicated explanations.
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