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ABSTRACT
Sparse coding aims to find a parsimonious representation of an example given an
observation matrix or dictionary. In this regard, Orthogonal Matching Pursuit (OMP)
provides an intuitive, simple and fast approximation of the optimal solution. However,
itsmain building block is anchored on theminimization of theMean Squared Error cost
function (MSE). This approach is only optimal if the errors are distributed according
to a Gaussian distribution without samples that strongly deviate from the main mode,
i.e. outliers. If such assumption is violated, the sparse code will likely be biased and
performance will degrade accordingly. In this paper, we introduce five robust variants
of OMP (RobOMP) fully based on the theory of M-Estimators under a linear model.
The proposed framework exploits efficient Iteratively Reweighted Least Squares (IRLS)
techniques to mitigate the effect of outliers and emphasize the samples corresponding
to the main mode of the data. This is done adaptively via a learned weight vector that
models the distribution of the data in a robust manner. Experiments on synthetic data
under several noise distributions and image recognition under different combinations
of occlusion and missing pixels thoroughly detail the superiority of RobOMP over
MSE-based approaches and similar robust alternatives. We also introduce a denoising
framework based on robust, sparse and redundant representations that open the door
to potential further applications of the proposed techniques. The five different variants
of RobOMP do not require parameter tuning from the user and, hence, constitute
principled alternatives to OMP.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Data Science
Keywords M-Estimation, Matching Pursuit, Representation-based classifier, Robust
classification, Sparse representation, Outliers

INTRODUCTION
Sparse modeling is a learning framework with relevant applications in areas where
parsimonious representations are considered advantageous, such as signal processing,
machine learning, and computer vision. Dictionary learning, image denoising, image
super–resolution, visual tracking and image classification constitute some of the most
celebrated applications of sparse modeling (Aharon, Elad & Bruckstein, 2006; Elad &
Aharon, 2006; Mallat, 2008; Wright et al., 2009; Elad, Figueiredo & Ma, 2010; Xu et al.,
2011). Strictly speaking, sparse modeling refers to the entire process of designing and
learning a model, while sparse coding, sparse representation, or sparse decomposition is
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an inference process—estimation of the latent variables of such model. The latter formally
emerged as a machine learning adaptation of the sparse coding scheme found in the
mammalian primary visual cortex (Olshausen & Field, 1996).

The sparse coding problem is inherently combinatorial and, therefore, intractable in
practice. Thus, classic solutions involve either greedy approximations or relaxations of the
original `0-pseudonorm. Examples of the former family of algorithms include Matching
Pursuit (MP) and all of its variants (Mallat & Zhang, 1993), while Basis Pursuit (Chen,
Donoho & Saunders, 2001) and Lasso (Tibshirani, 1996) are the archetypes of the latter
techniques. Particularly, Orthogonal Matching Pursuit (OMP) is usually regarded as
more appealing due to its efficiency, convergence properties, and simple, intuitive
implementation based on iterative selection of the most correlated predictor to the current
residual and batch update of the entire active set (Tropp & Gilbert, 2007).

The success of OMP is confirmed by the many variants proposed in the literature.
Wang, Kwon & Shim (2012) introduced Generalized OMP (GOMP) where more than
one predictor or atom (i.e., columns of the measurement matrix or dictionary) are
selected per iteration. Regularized OMP (ROMP) exploits a predefined regularization
rule (Needell & Vershynin, 2010), while CoSaMP incorporates additional pruning steps
to refine the estimate recursively (Needell & Tropp, 2009). The implicit foundation of the
aforementioned variants—and, hence, of the original OMP—is optimization based on
Ordinary Least Squares (OLS), which is optimal under a Mean Squared Error (MSE) cost
function or, equivalently, a Gaussian distribution of the errors. Any deviation from such
assumptions, e.g., outliers, impulsive noise or non–Gaussian additive noise, would result
in biased estimations and performance degradation in general.

Wang, Tang & Li (2017) proposed Correntropy Matching Pursuit (CMP) to mitigate
the detrimental effect of outliers in the sparse coding process. Basically, the Correntropy
Induced Metric replaces the MSE as the cost function of the iterative active set update of
OMP. Consequently, the framework becomes robust to outliers and impulsive noise by
weighing the input samples according to a Gaussian kernel. The resulting non–convex
performance surface is optimized via the Half–Quadratic (HQ) technique to yield fast,
iterative approximations of local optima (Geman & Yang, 1995; Nikolova & Ng, 2005).
Even though the algorithm is successful in alleviating the effect of outliers in practical
applications, the main hyperparameter—the Gaussian kernel bandwidth—is chosen
empirically with no theoretical validation. With this mind, we propose a generalization
of CMP by reformulating the active set update under the lens of robust linear regression;
specifically, we exploit the well known and developed theory of M–Estimators (Andersen,
2008; Huber, 2011) to devise five different robust variants of OMP: RobOMP. Each one
utilizes validated hyperparameters that guarantee robustness up to theoretical limits. In
addition, the HQ optimization technique is reduced to the Iteratively Reweighted Least
Squares (IRLS) algorithm in order to provide an intuitive and effective implementation
while still enjoying the weighing nature introduced in CMP.

For instance, Fig. 1 illustrates the estimated error in a 50–dimensional observation
vector with a 10% rate of missing samples (set equal to zero). While Tukey–Estimator–
based–OMP practically collapses the error distribution after 10 decompositions, the OMP

Loza (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.192 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.192


Figure 1 Illustration of the robustness of the proposed method. (A) y ∈ IR50 constitutes an observation
vector with five missing samples (set to zero, marked in red). (B) eOMP1 and (C) eOMP10 are the resulting
errors after the first and tenth iteration of OMP (with corresponding box plots as insets), respectively. (D)
xOMP10 is the final estimated sparse decomposition after 10 OMP iterations. Their RobOMP counterparts
(Tukey estimator) (F–G) reduce more aggressively the dynamic range of the errors until almost collapsing
to a delta distribution; this results in optimal sparse coding (H). (E) wTukey is the learned weight vector
that assigns values close to one to values around the main mode of the data and small weights to poten-
tial outliers (red marks). Number of iterative sparse decompositions equal to ground truth cardinality of
sparse active set, i.e., K =K0= 10.

Full-size DOI: 10.7717/peerjcs.192/fig-1

counterpart still leaves a remnant that derives in suboptimal sparse coding. Moreover,
RobOMP provides an additional output that effectively weighs the components of the
input space in a [0,1] scale. In particular, the missing samples are indeed assigned weights
close to zero in order to alleviate their effect in the estimation of the sparse decomposition.

We present three different sets of results to validate the proposed robust, sparse
inference framework. First, synthetic data with access to ground truth (support of the
representation) highlights the robustness of the estimators under several types of noise,
such as additive non–Gaussian densities and instance–based degradation (e.g., missing
samples and impulsive noise). Then, a robust sparse representation–based classifier
(RSRC) is developed for image recognition under missing pixels and occlusion scenarios.
The results outperform the OMP–based variants and the CMP–based classifier (CMPC)
for several cases. Lastly, preliminary results on image denoising via sparse and redundant
representations over overcomplete dictionaries are presented with the hope of exploiting
RobOMP in the future for image denoising under non–Gaussian additive noise. The rest
of the paper is organized as follows: Section 2 details the state of the art and related work
concerning greedy approximations to the sparse coding problem. Section 3 introduces the
theory, rationale, and algorithms regarding M–estimation–based Robust OMP: RobOMP.
Section 4 details the results using synthetic data and popular digital image databases, while
Section 5 discusses more in–depth technical concepts, analyzes the implications of the
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proposed framework, and offers potential further work. Lastly, Section 6 concludes the
paper.

STATE OF THE ART AND RELATED WORK
Let y ∈ IRm be a measurement vector with an ideal, noiseless, sparse representation,
x0 ∈ IRn, with respect to the measurement matrix (also known as dictionary), D∈ IRm×n.
The matrix D is usually overcomplete, i.e., m< n, to promote sparse decompositions.
In practice, y is affected by a noise component, n ∈ IRm. This results in the following
constrained, linear, additive model:

y=Dx0+n s.t. ||x0||0=K0 (1)

where K0 indicates the support of the sparse decomposition and || · ||0 represents the `0–
pseudonorm, i.e., number of non–zero components in x0. The sparse coding framework
aims to estimate x0 given the measurement vector and matrix plus a sparsity constraint.

MSE–based OMP
Orthogonal Matching Pursuit (Tropp & Gilbert, 2007) attempts to find the locally optimal
solution by iteratively estimating the most correlated atom in D to the current residual. In
particular, OMP initializes the residual r0= y, the set containing the indices of the atoms
that are part of the decomposition (an active set) 30=∅, and the iteration k = 1. In the
kth iteration, the algorithm finds the predictor most correlated to the current residual:

λk = argmax
i∈�
|〈rk−1,di〉| (2)

where 〈·,·〉 denotes the inner product operator, di represents the ith column of D, and
�={1,2,...,n}. The resulting atom is added to the active set via 3, i.e.:

3k =3k−1∪λk . (3)

The next step is the major refinement of the original Matching Pursuit algorithm (Mallat
& Zhang, 1993)—instead of updating the sparse decomposition one component at the
time, OMP updates all the coefficients corresponding to the active set at once according to
a MSE criterion

xk = argmin
x∈IRn,supp(x)⊂3k

||y−Dx||2 (4)

where supp (x) is the support set of vector x. Equation (4) can be readily solved via OLS
or Linear Regression where the predictors are the columns of D indexed by 3k and the
response is the measurement vector y. Stopping criterion for OMP typically include a set
number of iterations or compliance with a set minimum error of the residue. In the end,
the estimated sparse code, x, is set as the last xk obtained.

In practice, the true sparsity pattern, K0, is unknown and the total number of OMP
iterations, K , is treated as a hyperparameter. For a detailed analysis regarding convergence
and recovery error bounds of OMP, see Donoho, Elad & Temlyakov (2006). A potential
drawback of OMP is the extra computational complexity added by the OLS solver.
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Specifically, each incremental update of the active set affects the time complexity of the
algorithm in a polynomial fashion: O(k2n+k3) where k is the current iteration.

Generalized Orthogonal Matching Pursuit (Wang, Kwon & Shim, 2012) refines OMP by
selecting N0 atoms per iteration. If the indices of the active set columns in the kth iteration
are denoted as Jk[1],Jk[2],...,Jk[N0], then Jk[j] can be defined recursively:

Jk[j] = argmax
i∈�\{Jk [1],...,Jk [j−1]}

|〈rk−1,di〉|, 1≤ j ≤N0 (5)

The index set {Jk[j]}
N0
j=1 is then added to 3k and, likewise OMP, GOMP exploits an OLS

solver to update the current active set. Both OMP and GOMP obtain locally optimal
solutions under the assumption of Gaussianity (or Normality) of the errors. Yet, if such
restriction is violated (e.g., by the presence of outliers), the estimated sparse code, x, will
most likely be biased.

CMP
Themain drawback ofMSE–based cost functions is its weighing nature in terms of influence
and importance assigned to the available samples. In particular,MSE considers every sample
as equally important and assigns a constant weight equal to one to all the inputs. Wang,
Tang & Li (2017) proposed exploiting Correntropy (Liu, Pokharel & Príncipe, 2007) instead
of MSE as an alternative cost function in the greedy sparse coding framework. Basically,
the novel loss function utilizes the Correntropy Induced Metric (CIM) to weigh samples
according to a Gaussian kernel gσ (t )= exp(−t 2/2σ 2), where σ , the kernel bandwidth,
modulates the norm the CIM will mimic, e.g., for small σ , the CIM behaves similar to
the `0-pseudonorm (aggressive non–linear weighing), if σ increases, CIM will mimic the
`1–norm (moderate linear weighing), and, lastly, for large σ , the resulting cost function
defaults to MSE, i.e., constant weighing for all inputs. The main conclusion here is that the
CIM, unlike MSE, is robust to outliers for a principled choice of σ . This outcome easily
generalizes for non–Gaussian environments with long–tailed distributions on the errors.

Correntropy Matching Pursuit (CMP) exploits the CIM robustness to update the active
set in the sparse coding solver. The algorithm begins in a similar fashion as OMP, i.e., r0= y,
30=∅, and k = 1. Then, instead of the MSE–based update of Eq. (4), CMP proceeds to
minimize the following CIM–based expression:

xk = argmin
x∈IRn,supp(x)⊂3k

Lσ (y−Dx) (6)

where Lσ (e)= 1
m
∑m

i=1σ
2(1− gσ (e[i])) is the simplified version (without constant terms

independent of e) of the CIM loss function and e[i] is the ith entry of the vector e. The
Half–Quadratic (HQ) technique is utilized to efficiently optimize the invex CIM cost
function (Geman & Yang, 1995; Nikolova & Ng, 2005). The result is a local minimum of
Eq. (6) alongside a weight vector w that indicates the importance of the components of the
observation vector y:

w(t+1)
[i] = gσ (y[i]− (Dx(t ))[i]), i= 1,2,...,m (7)

where t is the iteration in the HQ subroutine. In short, the HQ optimization performs
block coordinate descent to separately optimize the sparse code, x, and the weight vector,
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w, in order to find local optima. The hyperparameter σ is iteratively updated without
manual selection according to the following heuristic:

σ (t+1)
=

(
1
2m

∥∥∥y−Dx(t+1)∥∥∥2
2

)1/2

. (8)

In Wang, Tang & Li (2017), the authors thoroughly illustrate the advantage of CMP over
many MSE–based variants of OMP when dealing with non-Gaussian error distributions
and outliers in computer vision applications. And even though they mention the improved
performance of the algorithm when σ is iteratively updated versus manual selection
scenarios, they fail to explain the particular heuristic behind Eq. (8) or its statistical
validity. In addition, the HQ optimization technique is succinctly reduced to a weighted
Least Squares problem than can be solved explicitly. Therefore, more principled techniques
that exploit weighted Least Squares and robust estimators for linear regression can readily
provide the needed statistical validity, while at the same time, generalize the concepts of
CMP under the umbrella of M–estimators.

ROBUST ORTHOGONAL MATCHING PURSUIT
MSE–based OMP appeals to OLS solvers to optimize Eq. (4). In particular, let
8 ∈ IRm×k correspond to the active atoms in the dictionary D at iteration k, i.e.,
8= [d3k [1],d3k [2],...,d3k [k]], and β ∈ IR

k be the vector corresponding to the coefficients
that solve the following regression problem:

y=8β+e (9)

where e is an error vector with independent components identically distributed according
to a zero–mean Normal density (e[i] ∼N (0,σ 2)). Then, the least squares regression
estimator, β̂, is the maximum likelihood estimator for β under a Gaussian density prior,
i.e.:

β̂ = argmax
β

m∏
i=1

1
√
2πσ 2

exp
(
−

e[i]2

2σ 2

)
= argmax

β

m∏
i=1

1
√
2πσ 2

exp
(
−

(y[i]− (8β)[i])2

2σ 2

)
(10)

which is equivalent to maximizing the logarithm of Eq. (10) over β:

β̂ = argmax
β

m∑
i=1

(
−

1
2
ln(2πσ 2)−

e[i]2

2σ 2

)
= argmin

β

m∑
i=1

(
e[i]2

2

)
. (11)

Since σ is assumed as constant, β̂ is the estimator that minimizes the sum of squares of the
errors, or residuals. Hence, the optimal solution is derived by classic optimization theory
giving rise to the well known normal equations and OLS estimator:
m∑
i=1

e[i]2= eT e

= (y−8β)T (y−8β)
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= yTy−yT8β−βT8Ty+βT8T8β.

At the minimum:

δ

δβ

m∑
i=1

e[i]2= 0=
δ

δβ
(yTy−yT8β−βT8Ty+βT8T8β)

= 0−8T y−8T y+2(8T8)β.

Consequently when 8T8 is non–singular, the optimal estimated coefficients vector has a
closed–form solution equal to:

β̂OLS= β̂ = (8T8)−18Ty (12)

which is optimal under a Gaussian distribution of the errors. If such assumption is no
longer valid due to outliers or non–Gaussian environments, M–Estimators provide a
suitable alternative to the estimation problem.

M–Estimators
If the errors are not normally distributed, the estimator of Eq. (12) will be suboptimal.
Hence, a different function is utilized to model the statistical properties of the errors.
Following the same premises of independence and equivalence of the optimum under the
log–transform, the following estimator arises:

β̂M−Est = argmin
β

m∑
i=1

ρ
(e[i]

s

)
= argmin

β

m∑
i=1

ρ
((y[i]− (8β)[i])

s

)
(13)

where ρ(e) is a continuous, symmetric function (also known as the objective function)
with a unique minimum at e= 0 (Andersen, 2008). Clearly, ρ(e) reduces to half the sum of
squared errors for the Gaussian case. s is an estimate of the scale of the errors in order to
guarantee scale–invariance of the solution. The usual standard deviation cannot be used
for s due to its non–robustness; thus, a suitable alternative is usually the ‘‘re–scaled MAD’’:

s= 1.4826×MAD (14)

where theMAD (median absolute deviation) is highly resistant to outliers with a breakdown
point (BDP) of 50%, as it is based on the median of the errors (ẽ) rather than their mean
(Andersen, 2008):

MAD=median|e[i]− ẽ|. (15)

The re–scaling factor of 1.4826 guarantees that, for large sample sizes and e[i] ∼N (0,σ 2),
s reduces to the population standard deviation (Hogg, 1979). M–Estimation then, likewise
OLS, finds the optimal coefficients vector via partial differentiation of Eq. (13) with respect
to each of the k parameters in question, resulting in a system of k equations:
m∑
i=1

8ijψ
(y[i]−φTi β

s

)
=

m∑
i=1

8ijψ
(e[i]

s

)
= 0, j = 1,2,...,k (16)
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where φi represents the ith row of the matrix 8 while 8ij accesses the jth component of

the ith row of 8.ψ
(
e[i]
s

)
=

∂ρ

∂ e[i]
s
is known as the score function while the weight function

is derived from it as:

w[i] =w
(e[i]

s

)
=

ψ
(
e[i]
s

)
e[i]
s

. (17)

Substituting Eqs. (17) into (16) results in:
m∑
i=1

8ijw[i]
e[i]
s
=

m∑
i=1

8ijw[i](y[i]−φTi β)
1
s
= 0 j = 1,2,...,k

m∑
i=1

8ijw[i](y[i]−φTi β)
1
s
= 0 j = 1,2,...,k

m∑
i=1

8ijw[i]φiβ =
m∑
i=1

8ijw[i]y[i] j = 1,2,...,k (18)

which can be succinctly reduced in matrix form as:

8TW8β =8TWy (19)

by defining the weight matrix, W, as a square diagonal matrix with non–zero elements
equal to the entries in w, i.e.: W= diag({w[i] : i= 1,2,...,m}). Lastly, if 8TW8 is well-
conditioned, the closed form solution of the robust M–Estimator is equal to:

β̂M−Est = (8TW8)−18TWy. (20)

Equation (20) resembles its OLS counterpart (Eq. (12)), except for the addition of the
matrix W that weights the entries of the observation vector and mitigates the effect of
outliers according to a linear fit. A wide variety of objective functions (and in turn,
weight functions) have been proposed in the literature (for a thorough review, see Zhang
(1997)). For the present study, we will focus on five different variants that are detailed in
Table 1. Every M–Estimator weighs its entries according to a symmetric, decaying function
that assigns large weights to errors in the vicinity of zero and small coefficients to gross
contributions. Consequently, the estimators downplay the effect of outliers and samples,
in general, that deviate from the main mode of the residuals.

Solving the M-Estimation problem is not as straightforward as the OLS counterpart. In
particular, Eq. (20) assumes the optimalW is readily available, which, in turn, depends on
the residuals, which, again, depends on the coefficient vector. In short, the optimization
problem for M–Estimators can be posed as finding both β̂M−Est and ŵM−Est that minimize
Eq. (13). Likewise Half–Quadratic, the common approach is to perform block coordinate
descent on the cost function with respect to each variable individually until local optima are
found. In the robust regression literature, this optimization procedure is the well known
Iteratively Reweighted Least Squares or IRLS (Andersen, 2008). The procedure is detailed
in Algorithm 1. In particular, the routine runs for either a fixed number of iterations
or until the estimates change by less than a selected threshold between iterations. The
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Table 1 Comparison between OLS estimator andM–Estimators. Objective ρ(e) and weight w(e) func-
tions of OLS solution and five different M–Estimators. For M–Estimators, error entries are standardized,
i.e. divided by the scale estimator, s. Each robust variant comes with a hyperparameter c . Exemplary plots
in the last column utilize the optimal hyperparameters detailed in Table 2.

Type ρ(e) w(e) w(e)

OLS 1
2 e

2 1

Cauchy c2
2 log(1+ (

e
c )

2) 1
1+(e/c)2

Fair c2
(
|e|
c − log

(
1+ |e|c

)) 1
1+|e|/c

Huber{if |e| ≤ c
if |e| ≥ c

{ e2
2
c
(
|e|−

c
2
)

{1
c
|e|

Tukey{
if |e| ≤ c
if |e|> c

{ c2
6

(
1−

(
1−

( e
c

)2)3)
c2

6

{(
1− (

e
c
)2
)2

0

Welsch c2
2 (1−exp(−(

e
c )

2)) exp(−( ec )
2)

main hyperparameter is the choice of the robust M–Estimator alongside its corresponding
parameter c . However, it is conventional to select the value that provides a 95% asymptotic
efficiency on the standard Normal distribution (Zhang, 1997). Throughout this work, we
exploit such optimal values to avoid parameter tuning by the user (see Table 2). In this
way, the influence of outliers and non-Gaussian errors are expected to be diminished in
the OMP update stage of the coefficients corresponding to the active set.

M–Estimators–based OMP
Here, we combine the ideas behind greedy approximations to the sparse coding problem
and robust M–Estimators; the result is RobOMP or Robust Orthogonal Matching Pursuit.
We propose five variants based on five different M–Estimators (Table 1). We refer to
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Table 2 Optimal hyperparameter c of M–Estimators according to a 95% asymptotic efficiency on the
standard Normal distribution.

Cauchy Fair Huber Tukey Welsch

2.385 1.4 1.345 4.685 2.985

Algorithm 1 IRLS–based M–Estimation

1: function IRLS(y∈ IRm,8∈ IRm×k,wc(u)) FWeight function w(u) with
hyperparameter c

2: t← 0
3: β(0)

=βOLS← (8T8)−18Ty F OLS initialization
4: e(0)← y−8β(0)

5: MAD←median|e(0)[i]− ẽ(0)|
6: s(0)← 1.4826×MAD
7: w(0)

[i]←wc

(
e(0)[i]
s(0)

)
i= 1,2,...,m F Initial weight vector

8: W(0)
← diag

(
w(0))

9: t← 1
10: while NO CONVERGENCE do
11: β(t )

← (8TW(t−1)8)−18TW(t−1)y F Block coordinate descent
12: e(t )← y−8β(t )

13: MAD←median|e(t )[i]− ẽ(t )|
14: s(t )← 1.4826×MAD
15: w(t )

[i]←wc

(
e(t )[i]
s(t )

)
i= 1,2,...,m F Block coordinate descent

16: W(t )
← diag

(
w(t ))

17: t← t+1
18: return β̂M–Est←β(t ) ŵM–Est←w(t )

F Final estimates

each RobOMP alternative according to its underlaying M–Estimator; for instance, Fair–
Estimator–based–OMP is simply referred to as Fair. As withOMP, the only hyperparameter
is the stopping criterion: either K as the maximum number of iterations (i.e., sparseness
of the solution), or ε, defined as a threshold on the error norm.

For completeness, Algorithm 2 details the RobOMP routine for the case of set maximum
number of iterations (the case involving ε is straightforward). Three major differences are
noted with respect to OMP:
1. The robust M–Estimator–based update stage of the active set is performed via IRLS,
2. The updated residuals are computed considering the weight vector ŵk from IRLS, and
3. The weight vector constitutes an additional output of RobOMP.
The last two differences are key for convergence and interpretability, respectively. The

former guarantees shrinkage of the weighted error in its first and second moments, while
the latter provides an intuitive, bounded, m–dimensional vector capable of discriminating
between samples from the main mode and potential outliers at the tails of the density.
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Algorithm 2 RobOMP
1: function RobOMP(y∈ IRm,D∈ IRm×n,wc(u),K )
2: k← 1 F Initializations
3: r0← y
4: 30←∅

5: while k<K do
6: λk = argmaxi∈� |〈rk−1,di〉| �={1,2,··· ,n}
7: 3k =3k−1∪{λk}

8: 8= [d3k [1],d3k [2],··· ,d3k [k]]

9: {β̂M–Est,ŵk}← IRLS(y,8,wc(u)) F Robust linear fit
10: xk[3k[i]]← β̂M–Est[i] i= 1,2,...,k F Update active set
11: rk[i]← ŵk[i]× (y[i]− (Dxk)[i]) i= 1,2,...,m F Update residual
12: k← k+1
13: return xRobOMP← xK ,w← ŵK F Final Estimates

RESULTS
This section evaluates the performance of the proposed methods in three different settings.
First, sparse coding on synthetic data is evaluated under different noise scenarios. Then,
we present an image recognition framework fully–based on sparse decompositions using a
well known digital image database. Lastly, a denoising mechanism that exploits local sparse
coding highlights the potential of the proposed techniques.

Sparse coding with synthetic data
The dictionary or observation matrix, D∈ IR100×500, is generated with independent entries
drawn from a zero–mean Gaussian random variable with variance equal to one. The ideal
sparse code, x0 ∈ IR500, is generated by randomly selecting ten entries and assigning them
independent samples from a zero–mean, unit–variance Gaussian distribution. The rest
of the components are set equal to zero, i.e., K0 = 10. The resulting observation vector
y∈ IR100 is computed as the linear combination of the dictionary with weights from the
ideal sparse code plus a noise component n∈ IR100:

y=Dx0+n. (21)

The first set of experiments considers different noise distributions. In particular, five
noise cases are analyzed: Gaussian (N (0,2)), Laplacian with variance equal to 2, Student’s
t–distribution with 2 degrees of freedom, Chi–squared noise with 1 degree of freedom,
and Exponential with parameter λ= 1. Then, OMP, GOMP, CMP, and the 5 variants of
RobOMP estimate the sparse code with parameter K = 10. For the active set update stage
of CMP and RobOMP, the maximum allowed number of HQ/IRLS iterations is set to 100.
For GOMP, N0 ∈ {2,3,4,5} where the best results are presented.

The performance measure is defined as the normalized `2–norm of the difference
between the ground truth sparse code, x0, and its estimate. The average results for
100 independent runs are summarized in Table 3. As expected, most of the algorithms
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Table 3 Average norm of sparse code errors of MSE–based OMPs and robust alternatives for different
types of noise. Best results are marked bold. K =K0= 10.

Noise Gaussian Laplacian Student Chi–squared Exponential

OMP 5.92 5.69 7.14 5.22 4.43
GOMP 7.66 7.27 9.37 6.71 5.65
CMP 5.57 4.40 3.87 3.08 3.49
Cauchy 5.88 5.21 4.43 3.95 4.06
Fair 5.92 5.34 5.05 4.45 4.13
Huber 5.80 5.04 4.57 3.92 3.89
Tukey 5.85 4.78 3.80 3.05 3.64
Welsch 5.82 4.84 3.90 3.20 3.70

perform similar under Gaussian noise, which highlights the adaptive nature of CMP and
RobOMP. For the non–Gaussian cases, CMP and Tukey are major improvements over
ordinary OMP. The rest of the RobOMP flavors consistently outperform the state of
the art OMP and GOMP techniques. This confirms the optimality of MSE–based greedy
sparse decompositions when the errors are Normally distributed; yet, they degrade their
performance when such assumption is violated.

The second set of results deals with non–linear additive noise or instance–based
degradation. Once again, D and x0 are generated following the same procedure of the
previous set of results (K0 = 10). Yet now, noise is introduced by means of zeroing
randomly selected entries in y. The number of missing samples is modulated by a rate
parameter ranging from 0 to 0.5. Figure 2 summarizes the average results for K = 10 and
100 independent runs. As expected, the performance degrades when the rate of missing
entries increases. However, the five variants of RobOMP are consistently superior than
OMP and GOMP until the 0.4–mark. Beyond that point, some variants degrade at a
faster rate. Also, CMP achieves small sparse code error norms for low missing entries
rate; however, beyond the 0.25–mark, CMP seems to perform worse than OMP and even
GOMP. This experiment highlights the superiority of RobOMP over MSE–based and
Correntropy–based methods.

Now, the effect of the hyperparameter K is studied. Once again, 100 independent runs
are averaged to estimate the performance measure. The rate of missing entries is fixed to 0.2
while K is the free variable. Figure 3 shows how the average error norm is a non–increasing
function of K for the non–MSE–based variants of OMP (slight deviation in some cases
beyond K = 8 might be due to estimation uncertainty and restricted sample size). On the
other hand, both OMP and GOMP seem to stabilize after a certain number of iterations,
resulting in redundant runs of the algorithm. These outcomes imply that RobOMP is not
only a robust sparse code estimator, but also a statistically efficient one that exploits the
available information in the data in a principled manner. It is also worth noting that CMP
underperforms when compared to most flavors of RobOMP.

Impulsive noise is the other extreme of instance–based contamination. Namely, a rate
of entries in y are affected by aggressive high–variance noise while the rest of the elements
are left intact. The average performance measure of 100 independent runs is reported for
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Figure 2 Average normalized norm of sparse code error of MSE–based OMPs and robust alternatives
for several rates of missing entries in the observation vector. All algorithms use the ground truth sparsity
parameter K =K0= 10.
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Figure 3 Average normalized norm of sparse code error of MSE–based OMPs and robust alternatives
overK (number of iterations) for a 0.2 rate of missing entries in the observation vector. K0= 10.

Full-size DOI: 10.7717/peerjcs.192/fig-3

K =K0= 10. Figure 4A details the results for varying rates of entries affected by −20 dB
impulsive noise. Again, RobOMP and CMP outperform OMP and GOMP throughout the
entire experiment. Tukey and Welsch seem to handle this type of noise more effectively;
specifically, the error associated to the algorithms in question seem to be logarithmic or
radical for OMP and GOMP, linear for Fair, Cauchy, Huber and CMP, and polynomial
for Tukey and Welsch with respect to the percentage of noisy samples. On the other hand,
Figure 4B reflects the result of fixing the rate of affected entries to 0.10 and modulating the
variance of the impulsive noise in the range [−25,0]. RobOMP and CMP again outperform
MSE–based methods (effect visually diminished due to log–transform of the performance
measure for plotting purposes). For this case, CMP is only superior to the Fair version of
RobOMP.

In summary, the experiments concerning sparse coding with synthetic data confirm the
robustness of the proposed RobOMP algorithms. Non–Gaussian errors, missing samples
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Figure 4 Average normalized norm of sparse code error of MSE–based OMPs and robust alternatives
for 2 cases involving impulsive noise in the observation vector. (A) Performance measure for several
rates of noisy entries (−20 dB) in the observation vector. (B) Log–Performance measure for several noise
levels in the observation vector (fixed 0.10 rate). All algorithms use the ground truth sparsity parameter
K =K0= 10.

Full-size DOI: 10.7717/peerjcs.192/fig-4

and impulsive noise are handled in a principled scheme by all the RobOMP variants and,
for most cases, the results outperform the Correntropy–based CMP. Tukey seems to be the
more robust alternative that is able to deal with a wide spectrum of outliers in a consistent,
efficient manner.

RobOMP–based classifier
We introduce a novel robust variant for sparse representation–based classifiers (SRC) fully
based on RobOMP. Let Ai= [ai1,a

i
2,...,a

i
ni] ∈ IR

m×ni be a matrix with ni examples from the
ith class for i= 1,2,...,N . Then, denote the set N={1,2,...,N } and the dictionary matrix
of all training samples A= [A1,A2,...,AN ] ∈ IRm×n where n=

∑N
i=1ni is the number of

training examples from all N classes. Lastly, for each class i, the characteristic function
δi : IRn

→ IRn extracts the coefficients associated with the ith label. The goal of the proposed
classifier is to assign a class to a test sample y∈ IRm given the generative ‘‘labeled’’ dictionary
A.

The classification scheme proceeds as follows: N different sparse codes are estimated via
Algorithm 2 given the subdictionaries Ai for i= 1,2,...,N . The class–dependent residuals,
r i(y) are computed and the test example is assigned to the class with minimal residual
norm. To avoid biased solutions based on the scale of the data, the columns of A are set to
have unit–`2–norm. The result is a robust sparse representation–based classifier or RSRC,
which is detailed in Algorithm 3.

Similar algorithms can be deployed for OMP, GOMP and CMP (Wang, Tang & Li,
2017). In particular, the original SRC (Wright et al., 2009) exploits a `1–minimization
approach to the sparse coding problem; however the fidelity term is still MSE, which is
sensitive to outliers. In this section we opt for greedy approaches to estimate the sparse
representation. Moreover for RobOMP, the major difference is the computation of the
residual—we utilize the weight vector to downplay the influence of potential outlier
components and, hence, reduce the norm of the errors under the proper dictionary. CMP
utilizes a similar approach, but the weight matrix is further modified due to the HQ
implementation (seeWang, Tang & Li (2017) for details). We compare the 7 SRC variants
under two different types of noise on the Extended Yale B Database.
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Algorithm 3 RSRC
Inputs: Normalized matrix of training samples A= [A1,A2,...,AN ] ∈ IRm×n

Test Example, y∈ IRm

M–Estimator weight function, wc(u)
Stopping criterion for RobOMP, K
Output: class(y)

1: (xRobOMP,w)←RobOMP(y,A,wc(u),K ) F Compute robust sparse code and weight
vector

2: r i(y)= ||diag(w)(y−Aiδi(xRobOMP))||2, i∈N F Calculate norm of class–dependent
residuals

3: class(y)← argmini∈N r i(y) F Predict label

Extended Yale B Database
This dataset contains over 2,000 facial images of 38 subjects under different lighting
settings (Lee, Ho & Kriegman, 2005). For each subject, a maximum of 64 frontal–
face images are provided alongside light source angles. The original dimensionality
of the images is 192× 168 or 32,256 in vector form. The database can be found at
http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html. Due to the difference
in lighting conditions, the database is usually segmented into 5 subsets (Wright et al.,
2009). Let θ =

√
A2+E2 where A and E are the azimuth and elevation angles of the single

light source, respectively. The first subset comprises the interval 0≤ θ ≤ 12, the second
one, 13≤ θ ≤ 25, the third one, 26≤ θ ≤ 54, the fourth one, 55≤ θ ≤ 83, and lastly, the
fifth subset includes images with θ ≥ 84. In this way, the subsets increase in complexity
and variability, making the classifier job more challenging, e.g., subset one includes the
cleanest possible examples, while the fifth dataset presents aggressive occlusions in the
form of shadows. The cardinality of the five subsets are (per subject): 7, 12, 12, 14, and 19
images. For all the following experiments, the dictionary matrix A is built from the samples
corresponding to subsets 1 and 2, while the test examples belong to the third subset. This
latter collection is further affected by two kinds of non–linearly additive noise.

Occlusions and missing pixels
Two different types of noise are simulated: blocks of salt and pepper noise, i.e., occlusions,
and random missing pixels. In all the following experiments, the sparsity parameter for
learning the sparse code is set to K = 5 (for GOMP, N0 ∈ {2,3} and the best results are
presented). Also, 10 different independent runs are simulated for each noise scenario.

For the occlusion blocks, a rate of affected pixels is selected beforehand in the range
[0, 0.5]. Then, as in the original SRC (Wright et al., 2009), we downsampled the inputs
mainly for computational reasons. In particular, we utilized factors of 1/2, 1/4, 1/8, and
1/16 resulting in feature dimensions of 8232, 2058, 514, and 128, respectively. Next, every
test example is affected by blocks of salt and pepper noise (random pixels set to either 0 or
255). The location of the block is random and its size is determined by the rate parameter.
Every sample is assigned a label according to SRC variants based on OMP and GOMP,
CMP–based classifier (coined as CMPC by Wang, Tang & Li (2017)), and our proposed
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Figure 5 Average classification accuracy on the Extended Yale B Database over occlusion rate of
blocks of salt and pepper noise. Feature dimension= 2058. K = 5.

Full-size DOI: 10.7717/peerjcs.192/fig-5

RSRC. For simplicity, we use the same terminology as before when it comes to the different
classifiers. The performance metric is the average classification accuracy in the range [0,1].
Figure 5 highlights the superiority of RSRC over OMP and GOMP. Particularly, Huber,
Tukey andWelsch are consistently better than CMP while Fair and Cauchy seem to plateau
after the 0.3–mark.

Next, the effects of the feature dimension and the sparsity parameter are investigated.
Figure 6 confirms the robustness of the proposed discriminative framework. As expected,
when the feature dimension increases, the classification accuracy increases accordingly.
However, the baselines set by OMP and GOMP are extremely low for some cases. On the
other hand, CMP and RSRC outperform both MSE–based approaches, and even more,
the novel M–Estimator–based classifiers surpass their Correntropy–based counterpart.
When it comes to the sparsity parameter, K , it is remarkable how OMP and GOMP do not
improve their measures after the first iteration. This is expected due to the lack of principled
schemes to deal with outliers. In contrast, RSCR shows a non–decreasing relation between
classification accuracy and K , which implies progressive refinement of the sparse code
over iterations. To make these last two findings more evident, Table 4 illustrates the
classification accuracy for a very extreme case: 0.3 rate of occlusion and feature dimension
equal to 128, i.e., each input image is roughly 12×11 pixels in size (the downsampling
operator introduces rounding errors in the final dimensionality). This scenario is very
challenging and, yet, most of RSRC variants achieve stability and high classification after
only four iterations. On the other hand, OMP and GOMP degrade their performance over
iterations. This confirms the robust and sparse nature of the proposed framework.

For the missing pixels case, a rate of affected pixels is selected beforehand in the range
[0, 1]. Then, every test example is affected by randomly selected missing pixels—the
chosen elements are replaced by samples drawn from a uniform distribution over the range
[0,ymax]where ymax is the largest possible intensity of the image in question. Figures 7 and 8
summarize similar experiments as in the occlusion case. Again, the RSRC are superior than
MSE–based methods and consistently increase the performance measure as the sparsity
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Figure 6 Average classification accuracy on the Extended Yale B Database for two cases concerning
blocks of salt and pepper noise at a fixed rate of 0.5. (A) Classification accuracy over feature dimension.
K = 5. (B) Classification accuracy over sparsity parameter. Feature dimension= 2,058.

Full-size DOI: 10.7717/peerjcs.192/fig-6

Table 4 Average classification accuracy on the Extended Yale B Database over K for a fixed rate of 0.3
pixels affected by blocks of salt and pepper noise. Best result for each classifier is marked bold. Feature
dimension = 128.

K OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

1 0.38 0.36 0.59 0.53 0.55 0.53 0.51 0.51
2 0.39 0.34 0.90 0.81 0.83 0.87 0.86 0.87
3 0.39 0.30 0.97 0.88 0.88 0.98 0.98 0.98
4 0.37 0.28 0.97 0.88 0.89 0.99 0.99 0.99
5 0.36 0.28 0.97 0.88 0.88 0.99 0.99 0.99
6 0.34 0.28 0.97 0.88 0.88 0.99 0.99 0.99
7 0.34 0.28 0.97 0.88 0.88 0.98 0.99 0.99
8 0.33 0.28 0.97 0.88 0.88 0.98 0.99 0.99
9 0.32 0.28 0.97 0.88 0.88 0.98 0.99 0.99
10 0.31 0.28 0.97 0.88 0.88 0.98 0.99 0.98

parameter grows. The extreme case here involves a rate of 0.4 affected pixels by distorted
inputs and a feature dimension of 128. Table 5 reinforces the notion that robust methods
achieve higher classification accuracy even in challenging scenarios.

Lastly, it is worth noting that CMP performs better in the missing pixels case; yet, it fails
to surpass the Welsch variant of RSRC which is its equivalent in terms of weight function
of errors. Once again, Tukey is the algorithm with overall best results that is able to handle
both kinds of noise distributions in a more principled manner.

Image denoising via robust, sparse and redundant representations
The last set of results introduces a preliminary analysis of image denoising exploiting
sparse and redundant representations over overcomplete dictionaries. The approach is
based on the seminal paper by Elad & Aharon (2006). Essentially, zero–mean white and
homogeneous Gaussian additive noise with variance σ 2 is removed from a given image via
sparsemodeling. A global image prior that imposes sparsity over patches in every location of
the image simplifies the sparse modeling framework and facilitates its implementation via
parallel processing. In particular, if the unknown image Z can be devised as the spatial (and
possibly overlapping) superposition of patches that can be effectively sparsely represented
given a dictionary D, then, the optimal sparse code, x̂ij , and estimated denoised image, Ẑ,
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Figure 7 Average classification accuracy on the Extended Yale B Database over missing pixels rate.
Feature dimension= 2,058. K = 5.

Full-size DOI: 10.7717/peerjcs.192/fig-7

Figure 8 Average classification accuracy on the Extended Yale B Database for two cases concerning
missing pixels at a fixed rate of 0.7. (A) Classification accuracy over feature dimension. K = 5. (B) Classi-
fication accuracy over sparsity parameter. Feature dimension= 2,058.

Full-size DOI: 10.7717/peerjcs.192/fig-8

are equal to:

{x̂ij,Ẑ}= argmin
xij ,Z

λ||Z−Y||22+
∑
ij

µij ||xij ||0+
∑
ij

||Dxij−RijZ||22 (22)

where the first term is the log–likelihood component that enforces close resemblance (or
proximity in an `2 sense) between the measured noisy image, Y, and its denoised (and
unknown) counterpart Z. The second and third terms are image priors that enforce that
every patch, zij =RijZ, of size

√
n×
√
n in every location of the constructed image Z has

a sparse representation with bounded error. λ and µij are regularization parameters than
can easily be reformulated as constraints.

Block coordinate descent is exploited to solve Eq. (22). In particular, x̂ij is estimated via
greedy approximations of the sparse code of each local block or patch. The authors suggest
OMP with stopping criterion set by ||Dxij −RijZ||22 ≤ (Cσ )2 for all {ij} combinations
(sequential sweep of the image to extract all possible

√
n×
√
n blocks). Then, the estimated

denoised image has the following closed form solution:

Ẑ=
(
λI+

∑
ij

RT
ij Rij

)−1(
λY+

∑
ij

RT
ijDxij

)
(23)
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Table 5 Average classification accuracy on the Extended Yale B Database over K for a fixed rate of 0.4
missing pixels. Best result for each classifier is marked bold. Feature dimension= 128.

K OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

1 0.51 0.54 0.57 0.61 0.62 0.56 0.54 0.54
2 0.54 0.52 0.89 0.87 0.86 0.88 0.88 0.88
3 0.57 0.48 0.95 0.91 0.90 0.93 0.94 0.94
4 0.56 0.45 0.95 0.92 0.90 0.94 0.96 0.95
5 0.55 0.45 0.95 0.92 0.89 0.94 0.96 0.96
6 0.54 0.45 0.95 0.91 0.89 0.94 0.97 0.96
7 0.53 0.45 0.94 0.91 0.89 0.94 0.97 0.96
8 0.52 0.45 0.94 0.91 0.89 0.94 0.96 0.96
9 0.51 0.45 0.94 0.91 0.89 0.94 0.96 0.95
10 0.50 0.45 0.94 0.91 0.89 0.93 0.96 0.95

where I is the identity matrix. The authors go one step further and propose learning the
dictionary, D, as well; this is accomplished either from a corpus of high–quality images
or the corrupted image itself. The latter alternative results in a fully generative sparse
modeling scheme. For more details regarding the denoising mechanisms, refer to Elad &
Aharon (2006).

For our case, we focus on the sparse coding subproblemalone andutilize an overcomplete
Discrete Cosine Transform (DCT) dictionary, D∈ IR64×256, and overlapping blocks of size
8×8. The rest of the free parameters are set according to the heuristics presented in the
original work: λ= 30/σ and C = 1.15. Our major contribution is the robust estimation
of the sparse codes via RobOMP in order to handle potential outliers in a principled
manner. Two types of zero–mean, homogeneous, additive noise (Gaussian and Laplacian)
are simulated with different variance levels on 10 independent runs. Each run comprises
of separate contaminations of 4 well known images (Lena, Barbara, Boats and House)
followed by the 7 different denoising frameworks, each one based on a distinct variant of
OMP. As before, every algorithm is referred to as the estimator exploited in the active set
update stage.

Tables 6 and 7 summarize the average performance measures (PSNR in dB) for 5
different variance levels of each noise distribution. As expected, OMP is roughly the best
denoising framework for additive Gaussian noise. However, in the Laplacian case, Cauchy
achieves higher PSNR levels throughout the entire experiment. This suggests the Cauchy
M–Estimator is more suitable for this type of non–Gaussian environment. It is worth
noting though that the averaging performed in Eq. (23) could easily blur the impact of the
sparse code solvers for this particular joint optimization. Also, no attempt was made to
search over the hyperparameter space of λ andC , which we suspect have different empirical
optima depending on the noise distribution and sparse code estimator. These results are
simply preliminary and highlight the potential of robust denoising frameworks based on
sparse and redundant representations.
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Table 6 Grand average PSNR (dB) of estimated denoised images under zero-mean additive Gaussian
noise exploiting patch-based sparse and redundant representations.

σ OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

5 36.33 36.31 35.62 36.56 36.55 36.52 36.20 36.29
10 32.38 32.36 31.01 32.44 32.22 32.39 32.17 32.17
15 30.35 30.33 28.95 30.25 29.88 30.21 30.01 29.97
20 28.97 28.96 27.85 28.78 28.40 28.76 28.58 28.53
25 27.93 27.92 27.12 27.70 27.39 27.70 27.55 27.51

Table 7 Grand average PSNR (dB) of estimated denoised images under zero-mean additive Laplacian
noise exploiting patch-based sparse and redundant representations.

σ OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

5 36.27 36.25 35.64 36.59 36.56 36.56 36.21 36.30
10 32.22 32.19 31.03 32.44 32.20 32.38 32.15 32.15
15 30.09 30.05 28.97 30.20 29.83 30.15 29.95 29.90
20 28.63 28.58 27.88 28.70 28.33 28.66 28.50 28.45
25 27.51 27.45 27.14 27.60 27.30 27.58 27.45 27.41

DISCUSSION
An example is considered a univariate outlier if it deviates from the rest of the distribution
for a particular variable or component (Andersen, 2008). A multivariate outlier extends this
definition to more than one dimension. However, a regression outlier is a very distinctive
type of outlier—it is a point that deviates from the linear relation followed by most of the
data given a set of predictors or explanatory variables. In this regard, the current work
focuses on regression outliers alone. The active set update stage of OMP explicitly models
the interactions between the observation vector and the active atoms of the dictionary
as purely linear. This relation is the main rationale behind RobOMP: regression outliers
can be detected and weighted when M–Estimators replace the pervasive OLS solver. If the
inference process in sparse modeling incorporates higher–order interactions (as in Vincent
& Bengio (2002)), linear regression outliers become meaningless and other techniques
are needed to downplay their influence. The relation between outliers in the observation
vector and regression outliers is highly complex due to the mixing of sources during the
generative step and demands for further research.

Even though other OMP variants are utilized in practice for different purposes, e.g.,
GOMP, ROMP and CoSaMP, we decided to disregard the last two flavors mainly due
to three factors: space limitations, inherent MSE cost functions, and most importantly,
they both have been outperformed by CMP in similar experiments as the ones simulated
here (Wang, Tang & Li, 2017). The algorithm to beat was CMP due to its resemblance to
an M–Estimator–based OMP. We believe we have provided sufficient evidence to deem
RobOMP (and specifically the Tukey variant) as superior than CMP in a wide variety of
tasks, performance measures and datasets. In this regard, it is worth noting that CMP
reduces to the Welsch algorithm with the `2–norm of the errors as the estimated scale
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parameter (s= ||e||2), and hyperparameter c =
√
m. The main drawback of such heuristic

is the use of a non–robust estimator of the scale, which in turn, will bias the sparse code. The
CMP authors introduce a data–dependent parameter of the exponential weight function
(Gaussian kernel of Correntropy) that relies on the dimensionality of the input, m. The
rationale behind such add–hoc choice is not fully justified, while in contrast, we provide
statistically sound arguments for our choice of the weight function hyperparameter, i.e.,
95% asymptotic efficiency on the standard Normal distribution. We believe this is the
underlying reason behind the superiority of Welsch over CMP on most of the synthetic
data experiments and the entirety of the simulations on the Extended Yale B Database.

M–Estimators are not the only alternative to robust linear regression. S–Estimators
(Rousseeuw & Yohai, 1984) are based on the residual scale of M–Estimators. Namely, S–
estimation exploits the residual standard deviation of the errors to overcome the weakness
of the re–scaled MAD. Another option is the so–called MM–Estimators (Yohai, 1987)
which fuse S–Estimation and M–Estimation to achieve high breakdown points (BDP)
and better efficiency. Optimization for both S–Estimators and MM–Estimators is usually
performed via IRLS. Another common approach is the Least Median of Squares method
(Rousseeuw, 1984) where the optimal parameters solve a non–linear minimization problem
involving the median of squared residuals. Advantages include robustness to false matches
and outliers, while the main drawback is the need for Monte Carlo sampling techniques
to solve the optimization. These three approaches are left for potential further work in
order to analyze and compare performances of several types of robust estimators applied
to sparse coding.

In terms of image denoising via robust, sparse and redundant representations, future
work will involve the use of the weight vector in the block coordinate descent minimization
in order to mitigate the effect of outliers. If sparse modeling is the final goal, K–SVD
(Aharon, Elad & Bruckstein, 2006) is usually the preferred dictionary learning algorithm.
However, in the presence of non–Gaussian additive noise, the estimated dictionary might
be biased as well due to the explicit MSE cost function of the sequential estimation of
generative atoms. Plausible alternatives include Correntropy–based cost functions (Loza &
Principe, 2016) and `1–norm fidelity terms (Loza, 2018).

In the spirit of openness and to encourage reproducibility, the MATLAB (Mathworks)
and Python code corresponding to all the proposed methods and experiments of this paper
are freely available at https://github.com/carlosloza/RobOMP.

CONCLUSION
We investigated the prospect of M–estimation applied to sparse coding as an alternative to
LS–based estimation and found that our hypothesis of exploiting M–estimators for better
robustness is indeed valid.Unlike the originalOrthogonalMatching Pursuit, our framework
is able to handle outliers and non–Gaussian errors in a principled manner. In addition, we
introduce a novel robust sparse representation–based classifier that outperform current
state of the art and similar robust variants. Preliminary results on image denoising confirm
the plausibility of the methods and open the door to future applications where robustness
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and sparseness are advantageous. The proposed five algorithms do not require parameter
tuning from the user and, hence, constitute a suitable alternative to ordinary OMP.
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