id author title date pages extension mime words sentences flesch summary cache txt cord-339752-o6atz33c Xiao, Li ACE2: The Key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel? 2020-04-28 .txt text/plain 3937 257 49 According to a report based on 72,314 cases (test confirmed cases: 44,672 (62%) from the Chinese Center for Disease Control and Prevention, 81% of COVID-19 patients have cold-like symptoms and mild pneumonia, 14% have severe respiratory inflammation, and 5% have critical conditions including respiratory failure, septic shock, and/or multiple organ dysfunction or failure. Similar to SARS (severe acute respiratory syndrome, [2002] [2003] coronavirus (SARS-CoV) [3] , SARS-CoV-2 primarily uses the S protein to invade host cells through ACE2, an enzyme which is known to be important in the renin-angiotensin-aldosterone system (RAAS) [4, 5] . Since TMPRSS2 plays a very important role in SARS-CoV-2 cell entry and ACE2 dysfunction, blocking the activity of TMPRSS2 should be the primary strategy for preventing severe and critical conditions of COVID-19. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) ./cache/cord-339752-o6atz33c.txt ./txt/cord-339752-o6atz33c.txt