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ABSTRACT

Human beings have the remarkable ability to recognize novel visual concepts after
observing only few or zero examples of them. Deep learning, however, often requires
a large amount of labeled data to achieve a good performance. Labeled instances are
expensive, difficult and even infeasible to obtain because the distribution of training
instances among labels naturally exhibits a long tail. Therefore, it is of great interest
to investigate how to learn efficiently from limited labeled data.

This thesis concerns an important subfield of learning from limited labeled data,
namely, low-shot learning. The setting assumes the availability of many labeled
examples from known classes and the goal is to learn novel classes from only a
few (few-shot learning) or zero (zero-shot learning) training examples of them. To
this end, we have developed a series of multi-modal learning approaches to facilitate
the knowledge transfer from known classes to novel classes for a wide range of visual
recognition tasks including image classification, semantic image segmentation and
video action recognition.More specifically, this thesis mainly makes the following
contributions. First, as there is no agreed upon zero-shot image classification
benchmark, we define a new benchmark by unifying both the evaluation protocols
and data splits of publicly available datasets. Second, in order to tackle the labeled
data scarcity, we propose feature generation frameworks that synthesize data in
the visual feature space for novel classes. Third, we extend zero-shot learning and
few-shot learning to the semantic segmentation task and propose a challenging
benchmark for it. We show that incorporating semantic information into a semantic
segmentation network is effective in segmenting novel classes. Finally, we develop
better video representation for the few-shot video classification task and leverage
weakly-labeled videos by an efficient retrieval method.
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ZUSAMMENFASSUNG

Menschen haben die bemerkenswerte Fähigkeit, neuartige visuelle Konzepte zu
erkennen, nachdem sie nur wenige oder gar keine Beispiele davon beobachtet haben.
Tiefes Lernen erfordert jedoch oft eine große Menge an beschrifteten Daten, um
eine gute Leistung zu erzielen. Etikettierte Instanzen sind teuer, schwierig und
sogar undurchführbar, weil die Verteilung der Trainingsinstanzen auf die Etiketten
naturgemäß einen langen Schwanz aufweist. Daher ist es von großem Interesse zu
untersuchen, wie man effizient aus begrenzten gelabelten Daten lernen kann.

Diese These betrifft einen wichtigen Teilbereich des Lernens aus begrenzt gela-
belten Daten, nämlich das Low-Shot-Lernen. Das Setting setzt die Verfügbarkeit
vieler gelabelter Beispiele aus bekannten Klassen voraus, und das Ziel ist es, neuar-
tige Klassen aus nur wenigen (few-shot learning) oder null (zero-shot learning)
Trainingsbeispielen davon zu lernen. Zu diesem Zweck haben wir eine Reihe
von multimodalen Lernansätzen entwickelt, um den Wissenstransfer von bekannten
Klassen zu neuartigen Klassen für ein breites Spektrum von visuellen Erkennungsauf-
gaben zu erleichtern, darunter Bildklassifizierung, semantische Bildsegmentierung
und Videoaktionserkennung. Genauer gesagt, leistet diese Arbeit hauptsächlich
die folgenden Beiträge. Da es keinen vereinbarten Benchmark für die Zero-Shot-
Bildklassifikation gibt, definieren wir zunächst einen neuen Benchmark, indem wir
sowohl die Evaluierungsprotokolle als auch die Datensplits öffentlich zugänglicher
Datensätze vereinheitlichen. Zweitens schlagen wir zur Bewältigung der etiket-
tierten Datenknappheit einen Rahmen für die Generierung von Merkmalen vor, der
Daten im visuellen Merkmalsraum für neuartige Klassen synthetisiert. Drittens
dehnen wir das Zero-Shot-Lernen und das few-Shot-Lernen auf die semantische
Segmentierungsaufgabe aus und schlagen dafür einen anspruchsvollen Benchmark
vor. Wir zeigen, dass die Einbindung semantischer Informationen in ein seman-
tisches Segmentierungsnetz bei der Segmentierung neuartiger Klassen effektiv ist.
Schließlich entwickeln wir eine bessere Videodarstellung für die Klassifizierungsauf-
gabe ”few-shot video” und nutzen schwach markierte Videos durch eine effiziente
Abrufmethode.
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1I N T R O D U C T I O N

Contents
1.1 Challenges of learning from limited labeled data . . . . . . . . . . . 3

1.1.1 Zero-shot image classification . . . . . . . . . . . . . . . . . . 4

1.1.2 Few-shot image classification. . . . . . . . . . . . . . . . . . . 5

1.1.3 Zero-shot and few-shot learning tasks beyond image classi-
fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Contributions to zero-shot image classification . . . . . . . . 6

1.2.2 Contributions to few-shot image classification . . . . . . . . 8

1.2.3 Contributions to zero-shot and few-shot tasks beyond image
classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The demand for automated understanding of visual data (videos and images)
has became more urgent than ever. Billions of images and videos uploaded on
the internet demand autonomous analysis and understanding. Self-driving

vehicles need a visual perception system to detect pedestrians, traffic signs and other
obstacles. Hospitals need automated analysis of medical imaging data to improve the
clinical efficiency. Robotics need to understand complex visual scenes for interacting
with the environment.

In general, solving a computer vision task consists of two necessary steps: en-
coding and decoding. Given an image or video as input, the encoding step extracts
features from the input and represents them as a compact vector. A lot of previous
computer vision studies focus on designing hand-crafted features to encode an
image or video. The decoding step extracts “patterns” from the feature vector and
produces a decision depending on what the end task is. Machine learning is often
applied in this step to learn the patterns in a principled way. Recent advances in
computer vision are mainly due to the success of deep learning, which proposes to
learn encoding and decoding simultaneously by a deep neural network optimized
with task-specific losses. Despite the substantial progress, current computer vision
algorithms still fail to generalize to the variety of visual environments in real-world
applications.

A limitation of deep learning is that it requires massive amounts of labeled data
to achieve high performance. However, labeled instances are expensive, difficult
and even infeasible to obtain. As shown in Figure 1.1, in almost all scenarios,
there is an exponential decay in terms of number of samples per class i.e., only a
few classes contain a large number of samples whereas most classes are sparsely

1
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Figure 1.1: In almost all real-wold settings, the number of samples per category
follows a skewed distribution i.e. a few categories have a large number of samples
while most of categories have only a small number of samples (as shown in the
left figure). The scarcity of samples results in poor generalization performance of
the powerful deep learning methods which often require a huge number of labeled
data to train. In this thesis, we address the challenges when learning with limited
labeled data in the scenarios of image classification (e.g. He et al., 2016), semantic
segmentation (e.g. Long et al., 2015) and video classification (e.g. Tran et al., 2018).

populated. It becomes almost impossible to collect enough training examples for
every class, leading to the inferior performance of deep neural networks. Consider
a real-world example in the autonomous driving field. In order to train a reliable
visual perception system for self-driving cars, current algorithms need to collect a
vast amount of labeled examples that cover all the road condition, weather condition,
time of driving, and obstacles. This is obviously infeasible because there are many
circumstances that rarely occur e.g., big rocks on the snowy roads. As a consequence,
the self-driving car is very likely to make wrong decisions when it encounters the
rare circumstances. On the contrary, humans naturally possess the ability of learning
novel concepts from a small number of examples. This is not only attributed to the
computational power of the human brain, but also to its ability of re-using previous
learned knowledge. Attaining such ability of rapid learning is particularly appealing
for artificial intelligence (AI) and will push AI one step further towards human-level
intelligence.

The goal of this thesis is thus to address the labeled data scarcity by developing
machine learning methods that can be trained with limited labeled data. Our key
idea is to re-use information from related tasks, transfer knowledge across different
modalities , and leverage unlabeled data to minimize the human supervision on
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novel tasks. More specifically, we aim to enable deep neural networks to generalize
to novel concepts with as few labeled examples as possible. In order to mimic the
way that human learns new concepts i.e., by re-using previous gained knowledge, we
divide classes of interests into disjoint base and novel classes. Each of the base classes
has enough training examples and plays a role as previous learned knowledge. On
the contrary, the novel classes have only limited training examples and the task is to
develop methods that generalize well to unseen examples from those novel classes.
This thesis concerns both few-shot learning where each novel class possesses a few
examples (up to 10 examples per class), and zero-shot learning where novel class has
no labeled example at all. In this section, we will discuss the challenges in zero-shot
image classification, few-shot image classification, and their applications in other
computer vision tasks e.g., semantic segmentation and video action recognition.
Finally, we summarize how this thesis contributes to the fields of zero-shot and
few-shot learning.

1.1 challenges of learning from limited labeled data

Machine learning methods, typically deep neural networks, rely on a large labeled
dataset for achieving a good performance, which makes it difficult to apply AI into
real-world settings because collecting labeled data is not always possible (e.g., the
skewed distribution for number of available samples in Figure 1.1). It is thus of
great importance to develop machine learning methods that can learn from limited
labeled data.

A fundamental problem of learning from a small dataset is the risk of overfitting
i.e., a model fits too closely to the limited training examples and fails to generalize to
unseen test samples. When the training data is limited, smart sampling of training
data, regularization and data augmentation are three classical ways to improve
the generalization performance according to the statistical learning theory (Bishop,
2006). While conventional machine learning methods draw training examples
uniformly, smart sampling aims to select the “best” instances to reduce the amount
of required training data. An example of smart sampling is active learning where
the learning algorithms select the most uncertain samples to annotate given a fixed
budget of labeling cost. Recent advancements in active learning show that deep
learning models can be built with limited labeled data if training examples are
smartly selected. However, active learning still requires a huge pool of data to select
training examples. Another principled way to reduce overfitting is regularization,
which refers to technics that prevent learning algorithms from fitting too closely to
the training examples. Typical regularization techniques achieve this by reducing
the model complexity e.g., L2 regularizer. For deep neural networks, popular
regularizers include dropout that averages multiple models, pretraining on ImageNet
that provides good initialization and early stopping of optimization that avoids fitting
the noise in the dataset. In addition, data augmentation addresses the labeled data
scarcity by automatically generating more training data without manually collecting
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them. For visual understanding tasks of images, it has been shown that simple
horizontal flipping and cropping of images can successfully increase the diversity of
the training data and significantly improve the performance. Unfortunately, those
simple techniques are still insufficient to obtain a good performance in the extreme
case of lacking labeled data e.g., there is only 1 example per class.

In addition to those classical approaches, emerging directions for learning with
limited labeled data include weakly supervised learning and self-supervised learning.
Those directions do not directly tackle the overfitting issue on the small training set
like the classical approaches. Instead, they aim to learn from a big dataset that is
weakly annotated or not annotated such that human supervision is reduced. For
example, (Oquab et al., 2015) proposes an object detection approach with image-
level labels, avoiding the expensive bounding box annotation. Self-supervised
learning (Chen et al., 2020) completely eliminate human supervision by learning
from an unlabeled dataset.

In this thesis, we are mainly focusing on data augmentation and regulariza-
tion approaches. Weakly supervised and self-supervised learning are promising
directions to explore in the future but not the scope of this thesis. In the following
subsections we identify the specific challenges of the tasks we want to solve and also
discuss how we tackle those challenges in this thesis.

1.1.1 Zero-shot image classification

Zero-shot learning refers to the ability to predict novel classes without accessing
any of their training examples. In the context of image classification, the task is to
predict the class label of a given image from one of the novel classes. For simplicity,
this thesis will only study the case where each image consists of only one object
class. This problem can be highly valuable in the fine-grained classification where
annotating labeled data requires expert knowledge. Here are a few challenges we
aim to address in the thesis.

Multi-modal learning. In order to associate novel classes with base classes, we
assume every class has some semantic information available e.g., attributes and
textual description. Therefore, zero-shot learning is naturally a multi-modal learning
problem. How to learn the correlation between two or even more modalities becomes
a challenging research topic. Previous works (Akata et al., 2015b, 2013) often learn a
bilinear compatibility function which is limited to capture the complex correlation
between vision and language modalities. The zero-shot learning performance will
rely on the efficiency of knowledge transfer via multi-modal learning methods.

Limitation of current zero-shot benchmarks. Although the number of publi-
cation in zero-shot learning is steadily increasing, there is no agreed evaluation
protocol, leading to incomparable results. In addition, novel classes in existing
benchmarks are present in ImageNet which is used for feature pretraining, violat-
ing the principle of zero-shot learning. Finally, current benchmark only evaluates
on novel classes and ignores base classes at the testing time, which is unrealistic.
Real-world applications require the models to perform well on both base and novel
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classes. There is an urgent demand for a better zero-shot learning benchmark.
Domain shift. Zero-shot learning models are trained on the examples of base

classes and evaluated on novel classes without any training examples. Therefore,
there is no generalization guarantee on novel classes because their distribution is
totally unknown. Zero-shot learning can be particularly challenging if there is a
domain gap between distributions of novel and base classes. How to solve the
domain shift issue becomes an important challenge in zero-shot learning.

Extreme class imbalance Zero-shot learning suffers from the extreme case of data
imbalance i.e., base classes have a lot of training examples and novel classes have
no training data at all. Existing zero-shot methods essentially fail when evaluated
on both base and novel classes because classifiers have a strong tendency to predict
seen classes. One way to address this class imbalance problem is to employ a
cost-sensitive loss (Chawla et al., 2004) or over-sampling (Chawla et al., 2002) the
minority classes. However, these prior solutions are fundamentally not in line with
deep learning and zero-shot learning methods.

1.1.2 Few-shot image classification.

In zero-shot learning, there is no training example for novel classes, which might be
too extreme. In real-world scenarios, it is often more realistic to consider few-shot
learning where a few labeled examples are available for novel classes. Despite those
additional training data, few-shot learning remains to be a difficult task because the
number of training examples is still far from enough to learn a deep neural network.
In addition to the classical regularization techniques, how can we encourage the
models to share knowledge across related tasks?

Risk of overfitting. Due to the small number of training examples from novel
classes, directly fine-tuning a deep neural network will result in overfitting i.e., the
model fits exactly to the small training set of novel classes and fails to generalize to
unseen examples of novel classes. Techniques that work well in supervised learning
will probably fail in the few-shot learning setting because of the overfitting. How
to regularize the networks to avoid overfitting when fine-tuning the deep neural
networks remains an open problem.

Imbalanced classes. In few-shot learning, the number of training examples from
base classes is much larger than that of novel classes, resulting in an imbalanced
learning problem. Many few-shot learning papers avoid this issue by ignoring the
base classes at the evaluation time. However, we argue that such evaluation setting
is unrealistic and consider the imbalanced issue as one of the challenges we would
like to tackle.

Representation learning for few-shot learning. In the supervised learning set-
ting, the goal is to learn a model that generalizes well to unseen examples from
the same training task. The underlying assumption is that the distribution of test
data follows that of training data. Its generalization error is guaranteed theoretically.
However, few-shot learning aims for a model that generalizes well to novel tasks with
a few training examples. Although conventional representation learning framework
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works well for the known tasks, it might not generalize well to novel tasks. How
to develop efficient representation for few-shot learning remains unknown. What
principles make the representation generalize better to novel tasks?

1.1.3 Zero-shot and few-shot learning tasks beyond image classification

The long-tail issue does not only occur in the image classification tasks but also
in other computer vision tasks. In this thesis, we additionally study the semantic
segmentation and video classification tasks in the context of zero-shot and few-shot
learning.

Semantic segmentation. The image semantic segmentation task aims to predict
a class label for every pixel in the image. This is a challenging structural output
learning problem and requires expensive pixel-level labeling. Ordinary semantic
segmentation methods fail to handle the images which contain novel classes. In
order to tackle the long-tail issue, this thesis is interested in a semantic segmentation
frame that can make zero-shot prediction on novel classes and few-shot learning on
novel classes with limited labeled data. Since this is a new task, we face the challenge
of how to formally define the problem. In addition, how to transfer knowledge from
known classes to novel classes is another challenge as well.

Video classification. The task of the video classification is to assign an action
class label to a trimmed video. The few-shot learning setting becomes practical
in the video domain because annotating videos is more time-consuming and the
class distribution is also skewed. In addition to learn the spatial information, we
have to model temporal information which is particularly critical for some video
applications. A common challenge in few-shot video learning as well as in ordinary
video learning is how to learn representation that encodes both temporal and spatial
information. In addition, the overfitting risk becomes higher comparing to the few-
shot image classification task because the video models often have larger capacity
than the image models.

1.2 contributions of the thesis

In this section, we summarize the contributions of this thesis in three different fields.

1.2.1 Contributions to zero-shot image classification

To tackle the multi-modal learning challenges of zero-shot learning, we propose
a novel compatibility learning framework by incorporating latent variables in the
compatibility function. Instead of learning a single bilinear function like previous
works, we propose to learn a collection of bilinear models while allowing each
image-class pair to choose from them. This effectively makes our model non-linear,
as in different local regions of the space the decision boundary, while being linear, is
different. In addition, we propose a fast and effective method for model selection by
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successive pruning of an over-complete initialization. We show that such a strategy
is competitive compared to standard cross-validation based model selection, while
being much faster to train. We extensively evaluate our novel piece-wise linear
model for zero-shot and generalized zero-shot learning settings on various aspects
such as stability, interpretability, generalizability to seen and unseen classes.

We define a new benchmark by unifying both the evaluation protocols and
data splits of publicly available datasets used for this task. This is an important
contribution as published results are often not comparable and sometimes even
flawed due to, e.g. pre-training on zero-shot test classes. Our evaluation protocol
emphasizes the necessity of tuning hyperparameters of the methods on a validation
class split that is disjoint from training classes as improving zero-shot learning
performance via tuning parameters on test classes violates the zero-shot assumption.
We point out that extracting image features via a pre-trained deep neural network
(DNN) on a large dataset that contains zero-shot test classes also violates the zero-
shot learning idea as image feature extraction is a part of the training procedure.
We recommend to abstract away from the restricted nature of zero-shot evaluation
and make the task more practical by including training classes in the search space,
i.e. generalized zero-shot learning setting. Moreover, we propose a new zero-shot
learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make
publicly available both in terms of image features and the images themselves. We
systematically evaluate zero-shot learning across a significant number of datasets
and methods. The crux of the matter for all zero-shot learning methods is to associate
observed and non observed classes through some form of auxiliary information
which encodes visually distinguishing properties of objects. We thoroughly evaluate
zero-shot learning approaches, by using multiple splits of several small, medium
and large-scale datasets (Patterson and Hays, 2012; Welinder et al., 2010; Lampert
et al., 2013; Farhadi et al., 2009; Deng et al., 2009). Therefore, we argue that our work
plays an important role in advancing the zero-shot learning field by analyzing the
good and bad aspects of the zero-shot learning task as well as proposing ways to
eliminate the ugly ones.

Our benchmark paper demonstrates that almost all the zero-shot methods fail
in the generalized zero-shot learning setting where the model has to predict both
base and novel classes. In order to tackle the imbalance challenge in this setting,
we propose a novel conditional generative model f-CLSWGAN that synthesizes
CNN features of novel classes from their semantic embeddings. Once trained, the
feature generator will be able to synthesize arbitrarily many features for any class
which lacks training examples. We show that data generation in the feature space
works much better than in the image space because generating realistic images from
semantic embeddings is a much harder task. Across five datasets with varying
granularity and sizes, we consistently improve upon the state of the art in both
the ZSL and GZSL settings. We demonstrate a practical application for adversarial
training and propose GZSL as a proxy task to evaluate the performance of generative
models. Our model is generalizable to different deep CNN features, e.g., extracted
from GoogleNet or ResNet, and may use different class-level auxiliary information,
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e.g., sentence, attribute, and word2vec embeddings.

1.2.2 Contributions to few-shot image classification

The success of our feature generation approach encourages us to extend it to the
few-shot learning setting, which also suffers from the imbalance issue. To this end,
we propose the f-VAEGAN-D2 model that consists of a conditional encoder, a shared
conditional decoder/generator, a conditional discriminator and a non-conditional
discriminator. The first three networks aim to learn the conditional distribution of
CNN image features given class embeddings optimizing VAE and WGAN losses
on labeled data of seen classes. The last network learns the marginal distribution
of CNN image features on the unlabeled features of novel classes. Once trained,
our model synthesizes discriminative image features that can be used to augment
softmax classifier training. Our empirical analysis on CUB, AWA2, SUN, FLO, and
large-scale ImageNet shows that our generated features improve the state-of-the-art
in low-shot regimes, i.e., (generalized) zero- and few shot learning in both the
inductive and transductive settings. We demonstrate that our generated features are
interpretable by inverting them back to the raw pixel space and by generating visual
explanations.

1.2.3 Contributions to zero-shot and few-shot tasks beyond image classification

We introduce novel (generalized) zero-label and few-label semantic image segmenta-
tion tasks in a realistic settings inspired by zero-shot learning for image classification.
In zero-label semantic segmentation (ZLSS), our aim is to segment previously unseen,
i.e. novel, classes, in few-label semantic segmentation (FLSS) these novel classes
have a small number of labeled training examples. In this work, we also aim for
learning without forgetting the previously seen classes, i.e. generalized ZLSS and
FLSS. To this end, we propose semantic projection network (SPNet), an end-to-end
semantic segmentation model which maps each image pixel to a semantic word
embedding space where it is projected with a fixed word embedding to class proba-
bilities optimizing the cross-entropy loss. We create a benchmark for (generalized)
zero- and few-label semantic image segmentation with two challenging datasets, i.e.
COCO-Stuff and PASCAL-VOC. Our analysis shows that the SPNet model achieves
impressive results both quantitatively and qualitatively in (generalized) zero-label
and few-label tasks. Furthermore, as a side-product, our model improves the state of
the art in zero-shot image classification demonstrating that it successfully generalizes
to other tasks.

We push the progress of few-shot video classification in three aspects: 1) To learn
the temporal information, we revisit spatiotemporal CNNs in the few-shot video clas-
sification regime. We develop a 3D CNN baseline that maintains significant temporal
information within short clips; 2) We propose to retrieve relevant tag-labeled videos
from a large video dataset, i.e. YFCC100M, to circumvent the need for class-labeled
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videos of novel classes; 3) We extend current few-shot video classification evaluation
by introducing two challenging experimental settings. In generalized few-shot video
classification task, the search space has no restriction in terms of classes. In few-shot
video classification with more ways, the search space goes beyond five towards all
classes. Our extensive experimental results demonstrate that on existing settings
spatiotemporal CNNs outperform the state-of-the-art by a large margin, and on our
proposed settings weakly-labeled videos retrieved using tags successfully tackles
both of our new few-shot video classification tasks.

1.3 outline of the thesis

In this section, we provide an overview of the thesis by briefly summarizing each
chapter and draw a connection between them. We also note the respective publica-
tions and collaborations with other researchers.

Chapter 2: Related work. This chapter surveys related work which tackles chal-
lenges of learning with limited labeled data with a focus on the three directions
of the thesis i.e., zero-shot image classification, few-shot image classification
and zero- and few-shot tasks beyond image classification. We discuss how
these works relate to the approaches and contributions presented in this thesis.
A discussion of related work specific to the following chapters is provided
within each chapter.

Chapter 3: Latent Embedding for Zero-Shot Image Classification. In this chapter,
we tackle the zero-shot image classification problem by developing a novel
compatibility function that learns non-linear relationship between the image
and semantic class embedding spaces.

The content of this chapter is an extension of Yongqin Xian’s Master Thesis,
which was published in CVPR 2016 with the title Latent Embedding for Zero-
Shot Image Classification (Xian et al., 2016). The following significant changes
have been made in our extension: comparing with four other SOTA methods,
evaluating in generalized zero-shot and few-shot settings, and combining
multiple class embeddings for better performance. Yongqin Xian was the lead
author of this paper. It is a collaboration with Gaurav Sharma, and the Machine
Learning Group of Saarland University.

Chapter 4: Zero-Shot Learning: the Good, the Bad and the Ugly. In this chapter,
we show that existing zero-shot learning evaluation protocols adopted by
Chapter 3 and other works are limited. Therefore, we introduce a new zero-
shot learning benchmark which resolves the issues of previous protocols. Our
new benchmark involves 5 datasets and includes both zero-shot learning set-
ting that only predicts novel classes and generalized zero-shot learning which
predicts both base and novel classes. We provide a better summarization of
existing approaches by classifying them into groups and evaluating them under
the unified evaluation protocol.
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The content of this chapter was published in TPAMI 2019 with the title zero-
shot learning - a comprehensive evaluation of the good the bad and the ugly (Xian
et al., 2019b), which is an extension of our CVPR 2017 publication Zero-Shot
Learning-the Good, the Bad and the Ugly (Xian et al., 2017). Yongqin Xian was the
lead author of both papers. It is also a collaboration with Christoph Lampert
from IST Austria.

Chapter 5: Feature Generating Networks for Zero-Shot Image Classification. In this
chapter, we tackle the issues we observe in Chapter 4. More specifically, we
found that almost all the zero-shot learning approaches fail to achieve good
performance on novel classes in the generalized zero-shot learning setting due
to the extreme imbalanced dataset. To this end, we propose a novel generative
model that synthesizes visual features for novel classes from their semantic
class embeddings. The generative model is learned on base class data and
can be used to synthesize arbitrarily many visual features for novel classes,
alleviating the data imbalance issue.

The content of this chapter corresponds to the CVPR 2018 publication Feature
Generating Networks for Zero-Shot Learning (Xian et al., 2018). Yongqin Xian
was the lead author of this paper, while Tobias Lorenz contributed the image
generation part. Tobias Lorenz’s bachelor thesis at MPI Informatics was co-
supervised by Yongqin Xian and Bernt Schiele.

Chapter 6: Enhanced Feature Generation Frameworks for Low-Shot Learning. Based
on the success of feature generation technique described in Chapter 5 on zero-
shot learning tasks, we improve the generative model in Chapter 5 in two
aspects. First, we combine GANs and VAE to obtain a stronger generative
model that attains the strength of adversarial and non-adversarial learning.
Second, we additionally add a discriminator that learns the marginal distribu-
tion of novel classes when their unlabeled data is available. We also propose to
interpret generated features by inverting them back into the image pixel space.

The content of this chapter corresponds to the CVPR 2019 publication f-
VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning (Xian et al.,
2019c). Yongqin Xian was the lead author of this paper while Saurab Sharma
contributed the feature explanation part.

Chapter 7: Zero-Label and Few-Label Semantic Segmentation. Previous chapters
are all about image classification. In this chapter, we introduce a novel image
semantic segmentation task that aims to segment novel classes that have zero
or very few training examples. We propose an approach called SPNet that
projects each pixel into a semantic embedding space such that knowledge can
be transferred from base classes to novel classes. We show that our method
can tackle both zero-label and few-label semantic segmentation tasks.

The content of this chapter corresponds to the CVPR 2019 publication Sematic
Projection Network for Zero-Label and Few-Label Semantic Segmentation (Xian et al.,
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2019a). Yongqin and Subhabrata Choudhury were the first co-authors of
this paper. Yongqin Xian contributed to the main ideas, zero-shot image
classification experiments, and writting of the paper. Subhabrata Choudhury
implemented the approach and conducted most of the experiments. It is also a
collaboration with Yang He.

Chapter 8: Generalized Many-Way Few-Shot Video Classification. In this chapter,
we shift from image classification tasks to the video classification task which
predict the action label of each video in the context of few-shot learning. We
show that a simple linear classifier baseline with 3D CNNs as the backbone sur-
passes existing few-shot video classification benchmark. Therefore we propose
a more realistic and challenging evaluation setting called generalized few-shot
video classification involving more classes. We develop an efficient retrieval-
based few-shot learning approach that leverages weakly-labeled videos from a
large-scale video dataset.

The content of this chapter is still under review for a conference by the time of
submitting this thesis. The lead author of this project was Yongqin Xian. This
is his internship project done at Facebook AI together with Lorenzo Torresani,
Bruno Korbar and Matthijs Douze

Chapter 9: Conclusions and future perspectives. This chapter concludes the thesis
by summarizing the contributions and highlighting their current limitations
and possible directions to overcome them. We provide an outlook on our
ongoing and future work and discuss future directions for the field.
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The field of learning with limited labeled data covers a wide range of topics
including semi-supervised learning, unsupervised learning, self-supervised
learning, weakly-supervised learning, few-shot learning and zero-shot learn-

ing. This thesis will mainly focus on few-shot and zero-shot learning tasks. In this
chapter, we formally define the research problems chosen in this thesis. We present
the most relevant and recent developments in the fields and relate them to the contri-
butions of this thesis in the conclusion of each section. The following chapters also
discuss related work, but targeted to the respective topic of the respective chapter.

2.1 zero-shot image classification

The ability of predicting previously unseen classes, called zero-shot learning, is
an extreme case of learning with limited labeled data. In object recognition or
image classification, the task of zero-shot learning is to predict the label of an image
belonging to one of novel object classes that do not appear during training time. The
only available information on novel classes is the semantic information that describes
those classes. Humans are able to predict unseen objects by combining their prior
knowledge and textual description of novel classes. For instance, given an image of
Scarlet Tanager (we probably have never seen before), we will have a high chance
to make a correct prediction after reading the textual description of Scarlet Tanager.
Inspired by the human brains, zero-shot object recognition can be addressed by

13
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performing multi-modal learning from both image and semantic information. In the
following, we will first formally define zero-shot learning. Different modalities of
data and evaluation protocols will be discussed next. Then we will try to give an
overview of existing zero-shot learning approaches by grouping them. Finally, the
relationship between this thesis and existing works will be discussed.

2.1.1 Problem definition

Let T = {(x, y)|x, y ∈ S} be the training set where x denotes an image instance
and y is its class label belonging to one of seen classes S . We are interested in
predicting a disjoint set of classes U (S ∩ U = ∅), called unseen classes, without any
observed examples. Clearly, this task can not be solved without any information of
unseen classes. So additionally, we assume some auxiliary information, e.g., textual
description, about each class i.e. seen and unseen classes, is provided to allow
knowledge transfer from the seen classes to unseen classes.

2.1.1.1 Image embedding

For a visual recognition task, one of the most important components is to extract
features from images. The image feature is in the form of a vector in some arbitrary
feature space and should ideally capture discriminative characteristics of an image
i.e., shape, color, texture etc. The features are then fed into machine learning
algorithms to learn classifiers that distinguish between different objects. In this
thesis, we call the image features as image embedding. Formally, we define the
image embedding of a given image x as φ(x) where φ(•) is a function that maps an
image x to a dx-dimensional feature space. Before the success of deep learning, image
features are often manually designed by computer vision researchers. There have
been a lot of studies on how to build robust image features or descriptors manually.
Deep learning takes a brave new perspective to learn image representation together
with the end task from a big amount of training data. Deep image representation
quickly revolutionized the fields and become the standard way to extract image
feature. Next, I will briefly review this two groups of image features.

Hand-crafted image representation. Typical hand-crafted image features aggre-
gate some image descriptors extracted from local image regions, which is obtained
by interest region detection algorithms e.g., Harris-affine detector(Mikolajczyk and
Schmid, 2004). A simple image descriptor is the histogram of pixel intensities. In or-
der to achieve the illumination invariant, (Zabih and Woodfill, 1994) have proposed to
use histograms of ordering and reciprocal relations between pixel intensities. A more
widely used image descriptor is the scale invariant feature transform (SIFT)(Lowe,
1999), which computes a gradient histogram over local regions obtained by a scale
invariant region detector. (Bay et al., 2008) further proposes the speeded up robust
features (SURF) which is stronger and faster than the SIFT. A comprehensive review
of image descriptors can be found in (Mikolajczyk and Schmid, 2005). A popular way
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to aggregate image descriptors extracted from local image regions is Bag-of-visual-
words (BOV) which assigns each descriptor to the closest visual vocabulary obtained
by k-means clustering (Arandjelovic and Zisserman, 2013). (Sánchez et al., 2013)
proposes Fisher Vector that extends BOV to use a Gaussian mixture model. BOV
ignores the spatial relationship between image patches, therefore, Spatial Pyramid
Matching (Yang et al., 2009) was proposed to address this issue.

Deep image representation In contrast to aforementioned hand-crafted image fea-
tures that adopt a manually designed extraction pipeline, deep image representation
directly learns the image embedding function φ(•) via a deep convolutional neural
network (CNN or ConvNet) (LeCun et al., 2015). A simple example of neural network
is the multi-layer perceptron (MLP) which stacks multiple fully connected (FC) layers
with a non-linear operation e.g. ReLU, after each layer. The FC layers connect each
neuron in current layer to all the neurons in the next layer with different learnable
weights. This is obviously prone to overfit because of such huge number of model
parameters. Therefore, ConvNet regularizes the neural network by considering only
local connection of neurons and sharing weight parameters across different local
neighborhood. Such regularizer can be efficiently implemented by the convolution
operation. The first convolutional neural network architecture , called LeNet(LeCun
et al., 1989), was introduced by Yann Lecun. A 5-Layer LeNet architecture follows
CONV-POOL-CONV-POOL-FC-FC where CONV represents the convolutional layer
followed by a non-linear function, POOL is the max pooling that subsamples the
feature maps, and FC is the fully connected layer. AlexNet (Krizhevsky et al., 2012)
improves LeNet by stacking more CONV layers without pooling and won the Ima-
geNet ILSVRC challenge in 2012. GoogLeNet (Szegedy et al., 2015) introduces the
inception module and replaces FC layers with the global average pooling, dramati-
cally reducing the number of parameters compared to AlexNet. VGG (Simonyan
and Zisserman, 2014b) shows that depth of the network plays an important role for
good performance. Current popular CNN architecture is ResNet which introduces
skip-connection and makes the network as deep as 152 layers. There are also a few
extensions of ResNet proposed like DenseNet (Huang et al., 2019), ResNeXt, etc.
Recently, Neural Architecture Search(Zoph and Le, 2016), which aims to learn the
network architecture automatically, has obtained increasing attention. The CNN
networks are often learned with the backpropagation algorithm with a task specific
loss such as the cross-entropy loss for multi-class image classification. The object
function of learning CNN is non-convex because of its highly non-linear structure.
But empirically, SGD-based algorithms are sufficient for a good performance. The-
oretical studies about the optimization of CNN can be found in (Nguyen et al.,
2019).

2.1.1.2 Class embedding

Zero-shot image classification is a multi-modal learning problem where image
examples of unseen classes are not available and learning of unseen classes relies
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on another modality of data. This modality often comes from some high-level
semantic information such as human annotated attributes or text descriptions. The
semantic information is usually assumed to be in the class level. Therefore, we
call it class embedding. One can consider the class embedding as the prototype
that represents the abstract of a class. The class embedding plays an important
role in the zero-shot learning image classification. Good class embeddings should
capture visual similarities between classes. One can refer to (Akata et al., 2015b)
for a comprehensive evaluation of different class embeddings in zero-shot learning.
In this section, we discuss four different class embeddings that are widely used in
zero-shot learning.

Attribute Attributes describe the visual properties of an object, such as “red” ,
“spotted” or “striped”. The appearance of an object class can often be represented by
combinations of different colors, shapes, and patterns. Therefore, they are useful
cues to recognize objects. Most importantly, attributes are shared among objects
such that knowledge learned from seen classes can be transferred to unseen classes.
In order to annotate attributes, we have to first define attribute vocabularies that
are discriminative enough to distinguish the object classes of our interests. For
instance, on the Caltech-UCSD Birds-200-2011 Dataset (CUB), a vocabulary of 312

binary attributes e.g., eye color yellow, beak shape sharp, was selected based on an
online tool for bird species identification1. Then each bird image is annotated with
those 312 binary attributes i.e., check if this attribute appear in the image or not,
with Mechanical Turk. Such annotation provides image-level attributes, while class
embedding is defined for each class. Class embeddings are often produced by
averaging image-level attributes of the images belonging to each class.

Word embedding Attribute provides accurate visual properties of objects, but it
requires expensive manual annotation. An alternative to avoid annotation is the
word embedding, which is a technique that maps each word from a vocabulary to a
vector of real numbers. This mapping can be learned with a neural network in an
unsupervised way on large text corpus e.g., Wikipedia. Popular word embeddings
include word2vec(Mikolov et al., 2013a), glove(Pennington et al., 2014), fasttext(Joulin
et al., 2016a), etc. Word2vec is a language model parameterized with a neural
network. In its continuous bag-of-words architecture, the model predicts the current
word from a window of surrounding context words. By learning the word co-
occurrence, the resulting word embedding captures semantic similarities between
different words i.e., word embeddings of semantically related words are close in the
embedding space. For zero-shot learning, we employ the word embeddings of class
names as their class embeddings. Such strategy is inexpensive, but word embeddings
often lead to poor zero-shot learning results because they often do not reflect visual
similarities between classes. Therefore, there are some works that try to inject visual
information into word embeddings. Moreover, one word could represent multiple
meanings such that its word embedding is ambiguous. Bert provides a solution for

1https://www.whatbird.com/



2.1 zero-shot image classification 17

that by incorporating context to word embeddings.

Class hierarchy Object categories are naturally in a hierarchical structure. For
instance, “albatross” and “crow” are subordinate of “bird” which is again subordi-
nate of “animal”. Such class hierarchy provides relatedness between object classes
as well. WordNet is a database of English words and it defines such a hierarchy
where words are linked together by their semantic relationships in a tree structure.
Standard neural network cannot be directly applied to the class hierarchy as the
tree structure is not Euclidean data. In order to use the class hierarchy for zero-shot
learning, we could either derive word embedding for each node or directly apply
graph convolution on top of the class hierarchy.

Text description The word embeddings of class names are often insufficient to
describe a class category because they are trained on noisy text corpus. As we
discussed before, we prefer class embeddings that could capture visual similarities
between classes. This motivates us to consider annotating text description for images.
More specifically, for each image, we could write several sentences to describe the
visual content in the image. The class embedding can then be learned via a language
model i.e., LSTM.

2.1.2 Evaluation protocol

In contrast to the supervised image classification where the model is trained and
evaluated on the same label space, zero-shot learning methods should be trained
and evaluated on different label spaces. Therefore we have to first define disjoint
class sets for training and testing respectively. The data split is usually generated
within one dataset i.e., classes of a dataset are divided into two disjoint sets i.e., seen
classes for training and unseen classes for testing. Next we produce a training set
including images of all the seen classes and a test set including hold-out images
of the unseen classes. If we are interested in seen classes at the test time, the test
set should also include hold-out images of the seen classes. In this section, we will
only discuss several existing zero-shot learning evaluation protocol in a high-level.
Details of the protocols will be introduced in Section .

Lampert et al. (2013) introduce the first evaluation protocol for zero-shot image
classification. The authors propose a dataset called AWA consisting of 50 classes in
total. Those classes are randomly split into 40 seen and 10 unseen classes. A model
is trained on the images of seen class and evaluated on unseen classes with the top-1
classification accuracy. Rohrbach et al. (2012) define another zero-shot data split on
the ImageNet where they split 1000 classes into 800 seen and 200 unseen classes.
Elhoseiny et al. introduce zero-shot splits on CUB (Welinder et al., 2010) and Oxford
Flowers (Nilsback and Zisserman, 2008) datasets. Classes of CUB are randomly split
into 160 seen and 40 unseen classes on CUB, while Oxford flowers are divided into
82 seen and 10 unseen classes. Akata et al. (2013) introduce another data split on
CUB with 150 seen and 50 unseen classes. Besides, Socher et al. (2013) generate a



18 chapter 2. related work

zero-shot split on CIFAR10. Finally, Lampert et al. (2013) extends their work into a
journal by extending their evaluation on SUN (Xiao et al., 2010) and aPY (Farhadi
et al., 2009).

2.1.3 A literature review of zero-shot approaches

Zero-shot learning has attracted increasing attention since the first paper published
by (Lampert et al., 2013). Given such a big number of zero-shot learning publications,
it is difficult to discuss all of them. Instead, we summarize popular zero-shot
learning approaches published in top conferences or journals by grouping them
into five categories i.e., Attribute-based methods, compatibility learning, generative
models, direct classifier prediction, transductive zero-shot learning. Chapter of this
thesis describes our survey paper about zero-shot learning where we discuss many
zero-shot learning works. This section is complementary to that by introducing
additional reference and more recent papers.

Attribute-based methods Early works tackle zero-shot learning by first solving
the attribute prediction problem. Attribute predictions are then aggregated to
make a prediction on unseen classes. To this end, Lampert et al. (2013) proposes
direct attribute prediction and indirect attribute prediction methods. Jayaraman and
Grauman (2014) argue that annotated attributes are not always and adopt a random
forest to address this issue. Al-Halah et al. (2016) propose to predict the attribute
class embedding of unseen classes without manual annotation.

Compatibility learning Instead of learning attribute classifiers, compatibility
learning frameworks directly learn a compatibility function that measures the simi-
larity between two modalities i.e., image embedding and class embedding. Because
of its efficiency and flexibility, many recent works follow this direction. ALE (Akata
et al., 2013) and CONSE (Norouzi et al., 2014) learn linear compatibility function
with the ranking loss. Similarly, SJE (Akata et al., 2015b) adopts the multi-class
max-margin loss. ESZSL (Romera-Paredes et al., 2015) proposes a loss that has
a closed-form solution. Semantic autoencoder (Kodirov et al., 2017) for zero-shot
learning regularizes the model by auto-encoder loss. Zhang et al. (2017b) argue that
semantic embedding space has hubness problem and propose to learn a non-linear
embedding function that maps the semantic embedding into the image embedding
space. Recently, Ji et al. (2018b) propose to learn feature representation with attention
conditioned on the semantic embedding. Similarly, Xie et al. (2019) propose to learn
attention on local regions for more generalized representation.

Generative models The aforementioned methods are discriminative approaches
where they directly model the posterior probability distribution of labels given the
input i.e., p(y|x). Generative approaches instead model the joit distribution of input
and output i.e., p(x, y). An advantage of generative model is that arbitrarily many
samples can be synthesizing for unseen classes, addressing the issues of lacking data.
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Verma and Rai (2017) assume p(x|y) to be Gaussian distribution. Kumar Verma et al.
(2018a) learn to synthesize features of unseen classes via a VAE. Similarly, Zhu et al.
(2018a) proposes a GAN framework to generate features from noisy text descriptions.
Both Schonfeld et al. (2019) and Mishra et al. (2018) learn a VAE to generate features.
Felix et al. (2018b) use cycle-consistency loss to regularize the GANs.

Direct classifier prediction Instead of synthesizing samples, SYNC (Changpinyo
et al., 2016) proposes to directly synthesize the classifier weights of unseen classes.
Elhoseiny et al. (2013) take a similar approach with textual description as the class
embedding. Changpinyo et al. (2017) apply kernel methods to synthesize the visual
prototype of unseen classes. Lei Ba et al. (2015) apply a neural network to predict the
classifier weights of unseen classes. Wang et al. (2018a) leverage the class hierarchy
and learn to regress classifier weights of unseen classes with a graph convolutional
neural network. Kampffmeyer et al. (2019) extend Wang et al. (2018a) by constructing
a better graph.

Transductive zero-shot learning Conventional zero-shot learning setting is often
inductive i.e., images of unseen classes are not available during training. In the
real-world scenario, it is possible that unlabeled images from unseen classes are
available and we aim to label them. This motivates us to study the transductive
learning setting where labeled images from seen classes and unlabeled images from
unseen classes are available. Fu et al. (2014) construct a graph with both labeled and
unlabeled images and performs label propagation. Kodirov et al. (2015) leverage the
unlabeled data to reduce the domain gap between seen and unseen classes. In order
to address the biased prediction towards seen classes, Song et al. (2018) propose to
minimize the probability of predicting unseen class images as seen classes. Liu et al.
(2018) introduce a neural network that calibrates the predicted probabilities with
unlabeled images from unseen classes.

2.1.4 Relations to our work

In Chapter 1, we introduce a novel compatibility learning framework for zero-shot
learning. In contrast to previous works that learn a linear compatibility function, we
propose to learn a non-linear function by learning multiple linear transformations
with the selection of which transformation to use being a latent variable.

In Chapter 2, we take a step back and analyze the status quo of the area. We find
that there exist inconsistent evaluation protocols for zero-shot learning and some of
them are even flawed, leading to incomparable or incorrect results. Therefore, the
main purpose of our work is to define an unified evaluation protocol for zero-shot
learning and re-evaluate existing approaches under the same protocol to show the
true progress of the field. Our benchmark is built on (Lampert et al., 2013), but
we extend its evaluation protocol to cover more datasets and the more realistic
generalized zero-shot learning setting where the model has to predict both seen and
unseen classes. Our work is also inspired by ?. where they empirically show the
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challenges of generalized zero-shot learning. But the main contribution of our work
is not only to advocate the generalized zero-shot learning, but also to introduce a
unified zero-shot learning benchmark for future research.

In Chapter 3, in order to tackle generalized zero-shot learning, we propose to
generate visual features of unseen classes conditioned on class embeddings. There
are two concurrent works that share similar ideas with us. Bucher et al. (2017)
adopt a GMMN (Li et al., 2015) to generate feature and Mishra et al. (2018) apply
a VAE (Kingma and Welling, 2014). Our paper takes the powerful GANs (e.g.
Goodfellow et al., 2014; Arjovsky and Bottou, 2017; Arjovsky et al., 2017) and improve
it by including a classification loss that enforces generated features can be better
suited for the classification task. In addition, our work shows that our generated
feature can be applied to improve many popular zero-shot methods, which is more
generalizable. There have been a group of papers which follows our ideas and
improve the feature generation process by regularizing the generators, proposing
more complicated generative networks, and using different class embeddings.

In Chapter 4, we extend our feature generating networks in Chapter 3 to any-shot
and transductive learning settings. We improves our f-CLSWGAN by combining
VAE (e.g. Kingma and Welling, 2014) and GANs (e.g. Goodfellow et al., 2014; Ar-
jovsky and Bottou, 2017; Arjovsky et al., 2017), leveraging the strength of adversarial
and non-adversarial generative models. In order to learn from unlabeled data, we
propose to add an additional discriminator for learning the marginal probability
distribution of unseen classes. Previous transductive zero-shot learning (e.g. Fu
et al., 2014; Kodirov et al., 2015) is often solved by the label propagation technique.
Our approach improves the feature generator by modeling the marginal distribution
of unlabeled images. Besides, comparing to other feature generating papers (e.g.
Kumar Verma et al., 2018a; Zhu et al., 2018a; Schonfeld et al., 2019; Felix et al., 2018b),
our proposed framework is more flexible and can be applied to solve inductive zero-
shot learning where there is no image from unseen classes, transductive zero-shot
learning where unlabeled images from unseen classes are available, and few-shot
learning where there are a few images per unseen classes.

2.2 few-shot image classification

In general, few-shot learning aims to learn a model e.g., deep neural network, with
limited labeled data. Learning a deep neural network from scratch with a small
amount of data is not possible because of its massive number of model parameters.
Therefore, few-shot learning setting assumes the availability of some base classes
which have enough labeled data. The task becomes how we learn a model from
those base classes such that it generalizes well to novel classes with only few labeled
data. This is an important problem to solve because the numbers of labeled data per
category follow a long-tail distribution i.e., there are a small number of classes with
a lot of data while most of classes have limited training data. In this section, we first
formally define the few-shot image classification problem and introduce the existing
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evaluation protocols. Then we discuss popular few-shot approaches in Section 2.2.3
and the relations between those and our proposed approaches.

2.2.1 Problem definition

Let Tb = {(x, y)|x ∈ X , y ∈ Cb} be a labeled training set for base classes where x
denotes an image instance in the RGB image space X and y is its class label belonging
to one of base classes Cb. Each base class has enough training data (typically larger
than 30 images). We are interested in a disjoint set of classes Cn (Cn ∩Cb = ∅), called
novel classes. Similarly, we define its training set as Tn = {(x, y)|x ∈ X , y ∈ Cn}. In
contrast to base classes, we assume each novel class consists of only few training
data (usually less than 10 images). Therefore, the size of the training set of base
classes is much larger than that of the novel classes i.e., |Tb| � |Tn|. Given training
sets Tb and Tn, the task of few-shot learning is to learn a model that generalizes well
to the hold-out test set of novel classes Cn.

2.2.2 Evaluation protocols

In order to evaluate few-shot learning approaches, the first step is to produce a
data split that consists of a training set Tb of base classes and a training set Tn of
novel classes. However, there exist multiple different protocols that define how to
evaluate few-shot learning approaches on the novel classes. Most of papers focus on
the constrained meta-learning setting, while some papers also follows the low-shot
setting which is relatively more realistic. Here we will mainly discuss the most
popular three protocols i.e., low-shot learning setting, meta-learning setting and
improved meta-learning setting.

Low-shot learning setting. In this setting, all the novel classes and base classes are
evaluated simultaneously. Qi et al. (2018) introduce a data split on CUB where 100

classes are base and the rest 100 classes are novel. For a k-shot learning problem,
they randomly draw k samples per novel class to form the training set Tn where
k ∈ {1, 2, 5, 10, 20}. The performance is then evaluated on the hold-out test set
of the novel classes. To make it more realistic, they also evaluate on all classes
including both base and novel classes. In this case, there will be a hold-out test set
for base and novel classes respectively. The top-1 image classification accuracy will
be reported. CUB is a relatively small-scale and fine-grained dataset with only 10K
images. To evaluate few-shot approaches in a large-scale setting, Hariharan and
Girshick (2017) propose a low-shot data split on the ImageNet. The 1000 ImgeNet
classes are divided into 389 base categories and 611 novel categories. For the purpose
of cross-validation, they further construct two disjoint sets of classes by dividing
the base categories into two subsets C1

b (193 classes) and C2
b (196 classes) and the

novel categories into C1
n (300 classes) and C2

n (311 classes). While C1
b and C1

n are
used for tuning hyperparameters, the final results are reported on C2

b and C2
n for

k-shot problems where k ∈ {1, 2, 5, 10, 20}. Finally, our f-VAEGAN-D2 extends the
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zero-shot splits into few-shot splits by randomly drawing k examples from each
unseen class to form the training set Tn.

Meta-learning setting. The meta-learning setting (e.g. Vinyals et al., 2016; Snell
et al., 2017; Finn et al., 2017) has gained increasing attention recently. Instead of
treating all the novel classes as a big task, this setting generates many small tasks by
randomly sampling subsets from the novel classes. More specifically, the evaluation
is conducted in the episodic manner where each episode constructs a k-shot, n-way
classification task with a training set Tn and a test set. The final results are obtained
by averaging the test accuracy over multiple episodes. Existing papers mainly
consider the following four tasks: 1-shot 5-way, 5-shot 5-way, 1-shot 20-way, and
5-shot 20-way. Matching Networks (Vinyals et al., 2016) introduce the meta-learning
setting and propose data splits on the Omniglot and the miniImageNet datasets.

Improved meta-learning setting. Triantafillou et al. (2019) argues that current meta-
learning benchmarks (e.g. Vinyals et al., 2016; Snell et al., 2017; Finn et al., 2017) do
not have sufficient complexity to access the few-shot learning process. Therefore,
they propose the meta-dataset, a new large-scale, benchmark that is more realistic.
Meta-dataset improves current meta-learning setting in three aspects: 1) evaluate
the cross-dataset generalization performance with 10 different datasets 2) vary the
number of classes and examples per class 3) consider the relationships between
classes when forming episodes.

2.2.3 A literature review of few-shot approaches

Few-shot learning is challenging because novel classes have limited labeled data.
Directly fine-tuning a deep CNN on the novel classes will inevitably lead to over-
fitting. On the other hand, due to the domain gap between base and novel classes,
directly applying the pretrained model would suffer from domain shift issues. A
group of papers investigate ways that efficiently adapt a model pretrained on base
classes to novel classes with only a few training examples. In this case, few-shot
learning problem is treated as a transfer learning problem. This direction is usually
evaluated in the low-shot learning setting. In addition, there are also a significant
number of papers that propose novel training strategies that learn fast from few
labeled examples. In this senario, the meta-learning setting is adopted to evaluate
the performance.

2.2.3.1 Low-shot learning.

Low-shot learning approaches mainly focus on how to adapt a pretrained model
to novel classes without finetuning the whole deep neural network. Qi et al. (2018)
propose to normalize the classifier weights and directly produce the weights of novel
classes by averaging the image their image embeddings. Qiao et al. (2018) learn a
MLP that regresses classifier weights from its training samples. Wang et al. (2019a)
rely on class embedding to generate task-aware feature embedding. Chen et al. (2019)
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aim to reduce intra-class variations by adopting cosine distance on learned classifier
weights. On the other hand, synthesizing data has been a classical way to address the
small data problem. In the scenario of few-shot learning, it is natural to investigate
how we generate synthetic data for novel classes. Therefore Hariharan and Girshick
(2017) propose to generate features from a data point and predefined transformation.
Wang et al. (2018c) extend this idea by meta-learning the feature generator.

2.2.3.2 Meta-learning approaches.

This field is also called learning to learn. The main idea is to learn a “learning
algorithm” that can learn from few examples. One can think the “learning algorithm”
as a function that takes input as a training set and outputs the classifiers. They (e.g.
Vinyals et al., 2016; Snell et al., 2017) argue that it is beneficial to mimic the few-shot
learning scenario on base classes. Therefore, the episode learning scheme is applied
on the base class training as well. More specifically, in every training episode, a
support set of k-shot, n-way classification problem and a query set including test
samples of n classes are sampled. Multi-class classifiers are constructed from the
support set (by a “learning algorithm” ) and then evaluated on the query set to
compute the loss. Matching networks (Vinyals et al., 2016) meta-learns weighted
neareast neighbor classifiers. Prototypical networks (Snell et al., 2017) meta-learns the
class prototype and adopt the nearest neighbor classifier as well. Ravi and Larochelle
(2016) parameterize the optimization algorithm (SGD) as a LSTM and meta-learns
how to optimize the objective function. MAML (Finn et al., 2017) proposes to learn
how to initialize the network such that the optimization only takes few steps. Sung
et al. (2018) meta-learn a siameses network that predict similarities of two images.
Triantafillou et al. (2017) define a training objective that optimizes over all relative
orderings of the batch points simultaneously.

2.2.4 Relations to our work

In Chapter 4, we propose a unified feature generation framework that works both
for zero-shot and few-shot learning. Although our method shares similar idea
with other feature generation papers (e.g. Hariharan and Girshick, 2017; Wang
et al., 2018c), our feature generator is quite different from existing papers. While
hallucinate paper (e.g. Hariharan and Girshick, 2017; Wang et al., 2018c) only
generate features from image data, our approaches learns a multi-modal feature
generator that synthesizes features from semantic embeddings, which allows better
knowledge transfer. In addition, our framework can be applied to the transductive
learning setting when the unlabeled examples from novel classes are available.
Therefore, our method is more versatile.
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2.3 zero-shot and few-shot tasks beyond image classifica-
tion

Most of zero-shot and few-shot learning papers focus on the image classification
problem. However, the limitation of labeled data arises in almost all the computer
vision tasks, e.g. semantic segmention (e.g. Long et al., 2015; Zhang et al., 2018a;
Caesar et al., 2016), obeject detection (e.g. Girshick, 2015; He et al., 2017; Redmon
et al., 2016), video action recognition (e.g. Karpathy et al., 2014; Feichtenhofer et al.,
2016b), 3D vision (e.g. Riegler et al., 2017; Qi et al., 2017), etc.

Although those tasks are as important as the image classification, they are
relatively unexplored. While the image classification task is a good starting point
to study the zero-shot and few-shot learning problems, it is not always true that
few-shot or zero-shot technics for image classification can be directly applied to
other vision tasks, for instance, semantic segmentation and video classification. 3D
reconstruction is naturally a few-shot problem because it is difficult to acquire 3D
data. Wallace and Hariharan (2019) propose a novel method that leverages category-
specific priors for few-shot single-image 3D reconstruction problem. For object
detection tasks, Bansal et al. (2018) introduce an approach that can localises novel
categories in an image. Kang et al. (2019) proposes a feature reweighting technic
to address the few-shot object detection task. This section will mainly discuss the
applications of zero-shot and few-shot learning in the context of semantic image
segmentation and video action recognition.

2.3.1 Semantic image segmentation

In contrast to the image classification task which predicts a single label for an entire
image, the goal of semantic image segmentation is to assign a class label for each
pixel in an image. Popular semantic segmentation methods include FCN (Long et al.,
2015), deeplab (Chen et al., 2018), and U-Net (Ronneberger et al., 2015). Learning
those models often requires pixel-wise annotations which are expensive and hard to
obtain. In order to reduce the annotation efforts, weakly supervised learning with
bounding box annotation (Khoreva et al., 2017) has been proposed. We are interested
in an orthogonal direction that learns from only a few examples, avoiding collecting
and annotating data. The main idea behind that is few-shot learning that aims to
achieve generalization on novel classes with only a few examples. The extreme case
of few-shot learning is zero-shot learning where novel classes have no example at
all. In this section, we will introduce some papers that tackle few-shot and zero-shot
semantic segmentation problems.

Rakelly et al. (2018) proposes a novel conditional FCN (fully convolutional net-
work) learned by the end-to-end optimization. The network takes an annotated
support set of images as conditions and performs inference on an unannotated query
image. Dong and Xing (2018) propose to learn class prototypes via metric learning.
Shaban et al. (2017) introduce a two-branched approach to address the one-shot
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semantic image segmentation. While the first branch generates parameters from an
image, the second branch takes both these parameters and a new image as input
and produces a segmentation mask of the image for the new class as output. In
the extreme zero-shot learning case, there is no training images for novel classes.
Instead, the models rely on semantic class embedding to transfer knowledge from
base to novel classes. Zhao et al. (2017a) propose to learn a joint embedding function
between visual features per pixel and word2vec embedding per class. Bucher et al.
(2019) extend the feature generation idea to image semantic segmentation.

2.3.2 Video action recognition

Video understanding is another important field in computer vision. It is challenging
because the model has to learn the temporal information in addition to the spatial
context. Typical video understanding tasks include video action recognition (e.g.
Feichtenhofer et al., 2016b, 2017), video captioning (e.g. Gao et al., 2017), self-driving
cars (e.g. Geiger et al., 2012), robotics (e.g. Kemp et al., 2007) etc. While the
ResNet (He et al., 2016) has been the widely used image representation network,
there is no such “ResNet” in video domain. Representation learning for videos is still
an open problem. Similarly, few-shot learning in the context of video understanding
is unexplored. In this thesis, we mainly focus on the video action recognition which
predicts a single label for a trimmed video. Xu et al. (2015) propose a zero-shot action
recognition approach that constructs a mapping from video feature space to the
semantic class embedding space. Zhu and Yang (2018) adopt a memory network that
stores multiple prototypes for each class. Cao et al. (2019) propose to learn temporal
information by solving an video frames alignment problem.

2.3.3 Relations to our work

In Chapter 5, we introduce a semantic projection network (SPNet) that handles both
zero-label and few-label semantic segmentation tasks. While Zhao et al. (2017a)
propose open-vocabulary scene parsing task that segments novel objects by perform-
ing hierarchical parsing, we leverage word embeddings to predict the exact unseen
classes and address the few-label problem in a unified framework. For few-shot
semantic segmentation, previous approaches (e.g. Shaban et al., 2017; Dong and
Xing, 2018) follow the meta-learning setup (e.g. Vinyals et al., 2016; Snell et al., 2017),
which uses a support set to predict an query image. However, those approaches
are restricted to output a binary mask and fail to segment an image with multiple
classes. In contrast, our approach is operating in the more realistic (generalized)
few-label semantic segmentation setting, i.e. pixel-level labeling of an image where
labels come from both base and novel classes.

In Chapter 6, we propose a strong model based on 3D CNNs for few-shot video
action recognition and introduce more challenging evaluation settings for future
research. Comparing to previous approaches (e.g. Zhu and Yang, 2018; Cao et al.,
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2019) which extract frame-level features, our model extract clip-level features via 3D
CNNs such that temporal information is better captured. In addition, our evaluation
is more challenging and realistic than previous ones. We observe that our model
saturates previous evaluation settings and therefore introduce more challenging
many-way few-shot learning and generalized few-shot learning settings for future
research.
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In this chapter, we present an approach for learning a compatibility function
between image and class embedding spaces for image classification when labeled
training data is scarce. The proposed method augments the state-of-the-art

bilinear compatibility methods (e.g. Akata et al., 2015a,b; Frome et al., 2013) by
by incorporating latent variables. Instead of learning a single bilinear map, our
novel latent embedding model learns a collection of bilinear maps with the selection
of which map to use being a latent variable for the current image-class pair. We
empirically demonstrate the strength of our model with respect to six state-of-the-art
models (e.g. Akata et al., 2015b; Romera-Paredes et al., 2015; Zhang and Saligrama,
2015; Socher et al., 2013; Zhang and Saligrama, 2016) on three challenging datasets i.e.
AWA (Lampert et al., 2013), CUB (Welinder et al., 2010) and Dogs (Khosla et al.) using
four different class embeddings. In addition to zero-shot learning experiments, we
provide an extensive analysis of our method on few-shots and generalized zero-shot
learning settings.

This chapter takes the first step towards the few-shot learning and more realistic
generalized zero-shot learning setting. In Chapter 4, we evaluate the approaches
introduced in this chapter as well as other SOTA approaches under the same evalua-
tion protocol. In Chapter 5, we show that feature generation is an effective way to
address generalized zero-shot learning. In Chapter 6, we demonstrate that unlabeled
data improves the feature generation, leading to significantly better any-shot learning
performance i.e., zero-shot and few-shot learning.

27
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3.1 introduction

Humans are highly capable of recognizing novel object categories using some form
of external information, without seeing any actual visual example of that category.
Enabling computers with this capability has been recently introduced as zero-shot
learning task in the intersection of computer vision and machine learning. Zero-
shot learning (e.g. Bart and Ullman, 2005; Palatucci et al., 2009; Lampert et al.,
2013; Larochelle et al., 2008; Yu and Aloimonos, 2010) has been formally posed
as follows: labeled images are provided for certain visual classes during training
and the task is to learn a model that can make predictions for novel classes at
test time. As training and test class sets are disjoint, namely there are no visual
examples are provided for some classes during training, the standard supervised
image classification frameworks that use class labels cannot be employed. Although
object class labels are not available, a list of attributes (e.g. Ferrari and Zisserman,
2007; Farhadi et al., 2009; Lampert et al., 2013), a set of easily recognizable properties
of objects such as furry, spotted etc. provide a structured relationships between class
labels that facilitates the required induction.

Substantial progress has been made for zero-shot learning task (e.g. Duan
et al., 2012; Farhadi et al., 2010; Ferrari and Zisserman, 2007; Kankuekul et al., 2012;
Lampert et al., 2013; Parikh and Grauman, 2011; Papadopoulos et al., 2014; Akata et al.,
2015c). This progress can be attributed to two recent advances. First, representation
learning using deep neural networks (e.g. Krizhevsky et al., 2012; Szegedy et al.,
2015) provides image embeddings which perform well across a range of visual
classification tasks (e.g. Razavian et al., 2014). Second, multi-modal structured
embedding frameworks (e.g. Akata et al., 2015a,c; Frome et al., 2013; Romera-Paredes
et al., 2015) provide a means to measure the compatibility between image and class
representations. While noting the parallel progress in image representations, i.e.
via deep neural networks (He et al., 2016), in this work, we focus on improving the
compatibility learning framework.

Compatibility learning frameworks (e.g. Akata et al., 2015a,c; Frome et al., 2013;
Hastie et al., 2008; Palatucci et al., 2009; Romera-Paredes et al., 2015; Socher et al.,
2013; Xian et al., 2016; Fu and Sigal, 2016; Qiao et al., 2016; Akata et al., 2016; Bucher
et al., 2016; Mensink et al., 2014; Fu et al., 2015b; Kodirov et al., 2015) are generally
based on the idea of representing both the images and the classes in (respective) multi-
dimensional vector spaces. Image embeddings are obtained from state-of-the-art
image representations e.g. those from deep convolutional neural networks (e.g.
Krizhevsky et al., 2012; Szegedy et al., 2015). Class embeddings can be obtained
using manually specified side information e.g. attributes (Lampert et al., 2013),
extracted automatically from an large but unlabeled large text corpora (e.g. Mikolov
et al., 2013b; Pennington et al., 2014) etc. A compatibility function is then learned
with a discriminative objective that decreases the distance, in the embedded space,
between images from the same class while increasing that between images from
different classes. Once learned, such a compatibility function can be used to predict
the class (more precisely, the class embedding) of any given image. The predicted
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Figure 3.1: Compatibility learning frameworks that use a linear projection, e.g.
SJE Akata et al. (2015c) (figure on the left) may lead to a large projection error,
however learning a piece-wise linear model (figure on the right) leads to more
precise projections. Here, crosses represent image embeddings and their projections
on the class embedding space, W are the parameters of the compatibility function,
solid circles represent the ground truth class embedding.

embedding vector might not correspond to a known class label. Therefore in practice,
the nearest embedding corresponding to a class label is taken as the class prediction.
Advantageously, this can then be done for images belonging to both seen and unseen
classes, hence enabling zero-shot classification.

State-of-the-art compatibility learning frameworks for zero-shot learning (e.g.
Akata et al., 2015a,c; Frome et al., 2013; Romera-Paredes et al., 2015) use a linear
compatibility function to learn the model. However, learning a linear compatibility
function is not sufficient for the challenging fine-grained classification problem. A
model that can automatically group objects with similar properties together and
then learn different compatibility models, adapted for different groups, is expected
to perform better for fine-grained classification. For instance, two different linear
functions that separate blue birds with brown wings and from other blue birds
with blue wings can be learned separately. With such motivation, we propose a
novel model for zero-shot classification which incorporates latent variables to learn
a piecewise linear compatibility function between image and class embeddings. The
approach is inspired by many recent advances in visual recognition that utilize
latent variable models, e.g. object detection (e.g. Felzenszwalb et al., 2010; Hussain
and Triggs, 2010), human pose estimation (Yang and Ramanan, 2011) and face
detection (Zhu and Ramanan, 2012).

Our contributions are as follows. First, we propose a novel method for zero-shot
learning. By incorporating latent variables in the compatibility function our method
achieves factorization over such (possibly complex combinations of) variations in
pose, appearance and other factors. Instead of learning a single linear function, we
propose to learn a collection of linear models while allowing each image-class pair
to choose from them. This effectively makes our model non-linear, as in different
local regions of the space the decision boundary, while being linear, is different. We
use an efficient stochastic gradient descent (SGD) based learning method. Second,
we propose a fast and effective method for model selection by successive pruning
of an over-complete initialization. We show that such a strategy is competitive
compared to standard cross-validation based model selection, while being much
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faster to train. Third, we evaluate our novel piece-wise linear model for zero-shot
and generalized zero-shot learning setting with various class embeddings (e.g.
Mikolov et al., 2013b; Pennington et al., 2014; Miller, 1995) on three challenging
datasets, i.e. Caltech-UCSD Birds 200-2011 (CUB) (Welinder et al., 2010), Animals
With Attributes (AWA) (Lampert et al., 2013) and Stanford Dogs 2 (Dogs) (Khosla
et al.). We compare our method on all these configurations with several related
existing embedding methods. We show that incorporating latent variables in the
compatibility learning framework consistently improves the state-of-the-art for zero-
shot learning setting. Fourth, we extensively evaluate our novel piecewise linear
model for zero-shot and generalized zero-shot learning settings on various aspects
such as stability, interpretability, generalizability to seen and unseen classes. We
raise awareness for the challenge of transferring information from zero-shot setting
to full multi-class setting and aim to inspire further research in this direction.

In section 4.2, we present an extensive discussion of related work. In section 3.2
we give details of the bilinear compatibility learning framework that our method
is based on. In section 4.3 we present our novel Latent Embedding framework
which extends the bilinear compatibility learning framework to nonlinearity through
learning several piece-wise linear models that each capture a different latent aspect
of the data. In section 3.4 we evaluate our Latent Embedding framework with respect
to several criteria both on zero-shot and on generalized zero-shot learning settings.
In section 3.5 we conclude with a discussion and potential future directions.

3.2 background: bilinear joint embeddings

In this section, we describe the bilinear joint embedding framework (e.g. Akata et al.,
2015c,a; Weston et al., 2011), on which we build our Latent Embedding Model that
will be detailed in section 4.3.

We work in a supervised setting where we are given an annotated training set

T = {(x, y)|x ∈ X ⊂ Rdx , y ∈ Y ⊂ Rdy}, (3.1)

where x is the image embedding defined in an image feature space X , e.g. CNN
features (Krizhevsky et al., 2012), and y is the class embedding defined in a label
space Y that models the conceptual relationships between classes, e.g. attributes (e.g.
Farhadi et al., 2009; Lampert et al., 2013). The goal is to learn a function f : X → Y
to predict the correct class for the query images. In previous work (e.g. Weston
et al., 2011; Akata et al., 2015a,c), this is done via learning a function F : X ×Y → R

that measures the compatibility between a given input embedding x ∈ X and an
output embedding y ∈ Y . The prediction function then chooses the class with the
maximum compatibility, i.e.

f (x) = arg max
y∈Y

F(x, y). (3.2)

2We use the 113 class subset of the Stanford Dogs dataset as in (Akata et al., 2015c)
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In general, the class embeddings reflect the common and distinguishing properties of
different classes using side-information that is extracted independently of images e.g.
attributes of classes. Using these embeddings, the compatibility can be computed
even with those unknown classes which have no corresponding images in the
training set. Therefore, this framework can be applied to zero-shot learning (e.g.
Akata et al., 2015a,c; Palatucci et al., 2009; Romera-Paredes et al., 2015; Socher et al.,
2013). In previous work, the compatibility function takes a simple form,

F(x, y) = x>Wy (3.3)

with the matrix W ∈ Rdx×dy being the parameter to be learnt from training data.
Due to the bilinearity of F in x and y, previous workg (e.g. Akata et al., 2015a,c;
Weston et al., 2011) refer to this model as a bilinear model, however one can also
view it as a linear one since F is linear in the parameter W. In the following, these
two terminologies will be used interchangeably depending on the context.

3.3 latent embeddings model (latem)

In general, the linearity of the compatibility function in Equation 3.3 is a limitation as
the problem of image classification is usually a complex nonlinear decision problem.
Linear decision functions can be extended to nonlinear ones through the use of
piecewise linear decision functions. Achieving non-linearity through piece-wise
linearity has been used successfully in various models for solving computer vision
tasks such as mixture of templates (Hussain and Triggs, 2010) and deformable parts-
based model (Felzenszwalb et al., 2010) for object detection, mixture of parts for
pose estimation (Yang and Ramanan, 2011) and face detection (Zhu and Ramanan,
2012). The main idea in most of such models, along with modeling parts, is that of
incorporating latent variables, e.g. the different templates in the mixture of templates
Hussain and Triggs (2010) and the different ‘components’ in the deformable parts
model (Felzenszwalb et al., 2010). Therefore, the model becomes a collection of
linear models. The test images then pick one of these linear models, with the
selection being latent and image specific. Intuitively, this factorizes the decision
function into components which focus on distinctive ‘clusters’ in the data, e.g. one
component may focus on the profile view while another on the frontal view of the
object. Incorporating nonlinearity in this way has been shown (e.g. Felzenszwalb
et al., 2010; Hussain and Triggs, 2010; Yang and Ramanan, 2011; Zhu and Ramanan,
2012) to improve performance.

In the following subsections, we will detail our novel LatEm model that extends
bilinear joint embedding model to nonlinearity through a piece-wise linear formu-
lation. We discuss our optimization algorithm, model selection and finalize with a
discussion.
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3.3.1 Objective

We propose to construct a nonlinear, albeit piecewise linear, compatibility function.
Parallel to the latent SVM formulation, we propose a non-linear compatibility
function as follows.

F(x, y) = max
1≤i≤K

w̃>i (x⊗ y), (3.4)

where i = 1, . . . , K, with K ≥ 2, indexes over the latent choices and w̃i ∈ Rdxdy are
the parameters of the individual linear components of the model. This equation can
be reformulated as a mixture of bilinear compatibility functions (Equation 3.3),

F(x, y) = max
1≤i≤K

x>Wiy. (3.5)

Our goal here is to learn the set of parameters {Wi} of the above compatibility
funtion that minimizes the empirical risk given as

1
N

|T |

∑
n=1

L(xn, yn). (3.6)

where L : X ×Y → R is the loss function defined for a particular example (xn, yn)
as

L(xn, yn) = ∑
y∈Y

[∆(yn, y) + F(xn, y)− F(xn, yn)]+ , (3.7)

with ∆(yn, y) being the zero-one loss defined as,

∆(y, yn) =

{
1 if y 6= yn
0 otherwise (3.8)

and [a]+ = max(0, a) bounds the Equation 3.6 from above. This ranking-based loss
function has been previously used in Akata et al. (2015a); Frome et al. (2013); Weston
et al. (2011) such that the model is trained to produce a higher compatibility between
the matching image and class embedding than the mismatching image and class
embedding. Note that by setting K = 1, our LatEm framework generalizes to bilinear
joint embedding framework as each of the Wi leads to a bilinear compatibility defined
in Equation 3.3, while the full compatibility function becomes nonlinear owing to
the max operator.

3.3.2 Optimization

Even though F is convex, we first observe that the ranking loss function L from
Equation 3.7 is not jointly convex in all the Wi’s. Thus, finding a globally optimal
solution, which was practical due to convexity in the previous linear models (e.g.
Akata et al., 2015a,c), is difficult now. To minimize the empirical risk in Equation 3.6,
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Algorithm 1 SGD optimization for LatEm

T = {(x, y)|x ∈ Rdx , y ∈ Rdy}
1: for all t = 1 to T do
2: for all n = 1 to |T | do
3: Draw (xn,yn) ∈ T and y ∈ Y \ {yn}
4: if F(xn, y) + 1 > F(xn, yn) then
5: i∗ ← argmax

1≤k≤K
x>n Wky

6: j∗ ← argmax
1≤k≤K

x>n Wkyn

7: if i∗ = j∗ then
8: Wt+1

i∗ ←Wt
i∗ − ηtxn(y− yn)

>

9: end if
10: if i∗ 6= j∗ then
11: Wt+1

i∗ ←Wt
i∗ − ηtxny>

12: Wt+1
j∗ ←Wt

j∗ + ηtxny>n
13: end if
14: end if
15: end for
16: end for

we propose a simple SGD-based method that works in the same fashion as in the
convex setting. Our LatEm method, while possibly leading to only local minima,
performs well in practice as shown in section 3.4.

The details of the SGD optimization of our LatEm method (Algorithm 1) are as
follows. Given a training set T = {(x, y)|x ∈ Rdx , y ∈ Rdy} of image embeddings,
i.e. x and their associated class embeddings, i.e. y, we loop through all our samples
for a certain number of epochs T. For each sample (xn, yn) in the training set, we
randomly select a y that is different from yn (step 3 of Algorithm 1). If the randomly
selected y violates the margin condition (step 4 in Algorithm 1), then we update the
Wi matrices following the steps 5− 13 in Algorithm 1. In particular, we find the Wi
that leads to the maximum score for y (step 5) and the Wj that gives the maximum
score for y (step 6). If the same matrix gives the maximum score, the condition on
step 7 in Algorithm 1 has been satisfied so we update that matrix. If two different
matrices lead to the maximum score which corresponds to the condition formulated
on step 9 in Algorithm 1, we update both matrices, i.e. Wi∗ and Wj∗ using the
sub-gradient based updates formulated on steps 11 and 12.

3.3.3 Model selection

The number of matrices K in the model is a free parameter. We use two strategies to
select the number of matrices. As the first method, we use a standard cross-validation
strategy, i.e. we split the dataset randomly into disjoint parts (in a zero-shot setup)
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and choose the K with the best cross-validation performance. We denote this strategy
as CV in the following sections. While this is a well established strategy which we
find to work well in practice, we also propose a pruning based strategy which is
competitive while being faster to train. In pruning based strategy, we start with
a relatively large number of matrices and prune them as follows. As the training
proceeds, each sampled training examples chooses one of the matrices for scoring –
we keep track of this information and build a histogram over the number of matrices
counting how many times each matrix was chosen by any training example. In
particular, this is done by increasing the counter for Wj∗ by 1 after step 6 of Algorithm
1. With this information, after five passes over the training data, we prune out the
matrices which were chosen by less than 5% of the training examples, so far. This is
based on the intuition that if a matrix is being chosen only by a very small number
of examples, it is probably not critical for performance. With this model pruning
approach we have to train only one model which adapts itself, instead of training
multiple models for cross-validating K and then training a final model (with full
training data) for the chosen K.

3.3.4 Discussion

In the zero-shot learning setting, during training, we have a set of seen classes
Ytr+val = {y1, . . . , yN1} and a set of unseen classes Yts = {yN1+1, . . . , yN1+N2} with
Ytr+val ∩ Yts = φ. In addition, all the classes have been assumed to be embedded
into a multidimensional real space which connects them via some form of semantics.
For example, each class may be written as a binary vector indicating the presence
of absence of predefined attributes e.g. furry, has tail, can swim. During training
we are provided with annotated training images belonging to the classes in Ytr+val,
while at testing we are required to make predictions for images belonging to the
classes in Yts.

Zero-shot learning can be achieved by using any compatibility learning model,
such as the bilinear compatibility based model presented in section 3.2, as there
is no class specific parameter being learnt (cf. multi-class SVM models) but only
a global parameter W which maps the image embeddings to class embeddings
(and vice-versa). We build upon the SJE model presented in section 3.2 for the task
of zero-shot learning and now discuss the differences between LatEm and SJE to
emphasize our technical contributions.

LatEm learns a piecewise linear compatibility function through multiple Wi ma-
trices whereas SJE (Akata et al., 2015c) is linear. With multiple Wi’s the compatibility
function has the freedom to treat different types of images differently. Let us consider
a fixed class ŷ and two substantially visually different types of images x1, x2, e.g.
the same bird flying and swimming. In SJE (Akata et al., 2015c) these images will
be mapped to the class embedding space with a single mapping W>x1, W>x2. On
the other hand, LatEm will have learned two different matrices for the mapping
i.e. W>1 x1, W>2 x2. In the former case, a single W has to map two visually, and hence
numerically, very different vectors (close) to the same point. In the latent case as two
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different mappings are factorized separately, therefore the “flying” and “swimming”
bird will be mapped to two separate points. Such factorization is also expected
to be advantageous when two classes that share partial visual similarity are to be
discriminated. For instance, while blue birds could be relative easily distinguished
from red birds, to do so for different types of blue birds is harder. In such cases, one
of the Wi’s could focus on color while another one could focus on the beak shape
(in section 3.4 we show that this effect is visible). The task of discrimination against
different bird species would then be handled only by the second one. This way of
factorizing enables for a more disctiminative classification model.

LatEm uses the ranking based loss (Weston et al., 2011) in Equation 3.7 whereas
SJE (Akata et al., 2015c) uses the multiclass loss of Crammer and Singer (Crammer
and Singer, 2002) which replaces the ∑ in Equation 3.7 with max. The SGD algorithm
for multiclass loss of Crammer and Singer (Crammer and Singer, 2002) requires at
each iteration a full pass over all the classes to search for the maximum violating
class. Therefore it can happen that some matrices will not be updated frequently.
On the other hand, the ranking based loss in Equation 3.7 used by our LatEm model
ensures that different latent matrices are updated frequently. Thus, the ranking
based loss in Equation 3.7 is better suited for our piecewise linear LatEm model.

3.4 experiments

In this section, first we detail our experimental setup in our evaluation procedure and
finally report experimental results on zero-shot and generalized zero-shot learning
settings.

Datasets. Caltech-UCSD Birds (CUB) (Welinder et al., 2010) and Stanford Dogs
(Dogs) (Khosla et al.) are fine-grained datasets (e.g. Duan et al., 2012; Deng et al.,
2013) and Animals With Attributes (AWA) (Lampert et al., 2013) is a coarse-grained
dataset. All the three datasets have been used for zero-shot learning (e.g. Akata
et al., 2015c; Rohrbach et al., 2011; Kankuekul et al., 2012; Yu and Aloimonos, 2010) in
the literature. As shown on Table 3.1, the set of classes are divided into three disjoint
sets of train (Ytr), val (Yv) and test (Yts) classes. For a fair comparison with previous
works, we follow the same train, val, test set split used by (Akata et al., 2015c).

In zero-shot learning, i.e. Ytr+v ∩ Yts = 0, to get a more stable estimate of our
own results, we make four more splits by randomly sampling the same number
of classes as before. Unless indicated otherwise, e.g. in comparison with previous
methods, we average results over five splits. We account for the imbalance in the
number of images in AWA and Dogs datasets and measure per-class averaged Top-1
accuracy, unless stated otherwise.

In generalized zero-shot learning setting as shown on Table 3.2, the set of images
that belong to Ytr+v and Yts is first divided equally into tr+v and ts sets. Namely,
following the same seen (Ytr+v) and unseen (Yts) class split as the zero-shot learning
setting, we build tr+v and ts sets of images that belong to seen and unseen classes.
This way we can evaluate our model on images that belong to only ts or both tr+v
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Total train+val test
img Y img Ytr Yv img Yts

CUB 11788 200 8855 100 50 2931 50
AWA 30475 50 24293 30 10 6180 10
Dogs 19499 113 14681 57 28 4818 28

Table 3.1: The statistics of CUB, AWA and Dogs datasets in zero-shot setting. CUB
and Dogs are fine-grained datasets whereas AWA is a more general concept dataset.
Ytr+v and Yts are seen and unseen class embeddings respectively.

img cls img cls
tr+v ts Ytr+v tr+v ts Yts

CUB 4495 4360 150 1499 1434 50
AWA 12176 12119 40 3062 3118 10
Dogs 7317 7364 85 2433 2385 28

Table 3.2: The statistics of CUB, AWA and Dogs datasets in the generalized zero-shot
learning setting.

and ts classes.

Image and class embeddings. For direct comparison with the state-of-the-art,
we use embeddings provided by (Akata et al., 2015c). Briefly, as image embed-
dings we use the 1024 dimensional top-layer pooling units of the pre-trained
GoogleNet (Szegedy et al., 2015) extracted from the whole image. We do not do any
task specific pre-processing on images such as cropping foreground objects. As class
embeddings we evaluate four different alternatives, i.e. attributes (att) (Lampert et al.,
2013), word2vec (w2v) (Mikolov et al., 2013b), glove (glo) (Pennington et al., 2014)
and hierarchies (hie) (Miller, 1995). Note that, CUB contains 312 and AWA contains
85 attributes. Our att embedding for a class is a vector measuring the strength of
each attribute for that class, based on human judgment. On the other hand, w2v and
glo are 400 dimensional whereas hie is ≈ 200 dimensional.

Implementation details. Our image features are z-score normalized such that
each dimension has zero mean and unit variance. All the class embeddings are `2
normalized. The matrices Wi are initialized at random with zero mean and standard
deviation 1√

dx
(Akata et al., 2015a). The number of epochs is fixed to be 150. The

learning rates for the CUB, AWA and Dog datasets are chosen as ηt = 0.1, 0.001, 0.01,
respectively, and kept constant over iterations. For each dataset, these parameters
are tuned on the validation set of the default dataset split and kept constant for
all other dataset splits and for all class embeddings. We use two strategies for
selecting the number of latent matrices K, i.e either cross-validation or pruning. For
cross-validation, K is varied in {2, 4, 6, 8, 10} and the optimal K is chosen based the
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CUB AWA Dogs
att w2v glo hie att w2v glo hie w2v glo hie

ESZSL 30.5 23.7 7.1 2.1 65.3 29.3 38.4 52.2 10.0 6.5 21.3
ESZSL* 47.1 33.7 33.3 23.2 68.8 57.4 61.7 55.1 21.6 20.0 22.1
CMT 29.4 24.8 25.8 17.9 54.9 46.6 47.6 40.1 13.7 16.7 14.8
SSE 42.1 28.4 24.9 21.4 64.8 60.4 65.8 55.8 20.5 18.9 29.9
JLSE 37.6 28.4 29.9 20.3 67.5 49.7 56.4 39.3 26.2 16.4 23.7
SJE 50.1 28.4 24.2 20.6 66.7 51.2 58.8 51.2 19.6 17.8 24.3
LatEm (Ours) 45.5 31.8 32.5 24.2 71.9 61.1 62.9 57.5 22.6 20.9 25.2

Table 3.3: Average per-class top-1 accuracy in zero-shot setting on AWA, CUB and
Dogs datasets. We compare ESZSL (Romera-Paredes et al., 2015), ESZSL* (Romera-
Paredes et al., 2015), CMT (Socher et al., 2013), SSE (Zhang and Saligrama, 2015),
JLSE (Zhang and Saligrama, 2016), SJE (Akata et al., 2015c) and Latent Embedding
model (K is cross-validated) using the same splits, image and class embeddings as
in (Akata et al., 2015c).

accuracy on a validation set. For pruning, unless stated otherwise, K is initially set
to be 16 and then at every fifth epoch during training, we prune all matrices that
support less than 5% of the data points.

3.4.1 Zero-shot Learning Experiments

In this section, we provide results on zero-shot learning setting where Ytr ∩ Yv ∩
Yts = 0. In this setting, at training time, LatEm has access to labeled images of Ytr+v
and the search space at test time is Yts. We either use the splits provided by (Akata
et al., 2015c) or report the average performance of five splits to show stability. We
specify the splits we used for each experiment in their respective sections.

Comparison with State-of-the-Art. We start our experimental evaluation with an
analysis of (Lampert et al., 2013) and quantitative comparisons with ESZSL (Romera-
Paredes et al., 2015), CMT (Socher et al., 2013), SSE (Zhang and Saligrama, 2015),
JLSE (Zhang and Saligrama, 2016), and SJE (Akata et al., 2015c) which are among
the most relevant related work to ours. Note that we fairly re-evaluate all seven
state-of-the-art methods using the same four class embeddings, the same image
embeddings and the same evaluation criteria on three challenging zero-shot learning
datasets. Therefore, ours is one of the most comprehensive re-evaluation of zero-shot
state-of-the-art.

Among competing state-of-the-art methods, (Lampert et al., 2013) proposes a
two-step method that follows a different principle than ours: (1) Learning attribute
classifiers and (2) Combining the scores of these attribute classifiers to make a
class prediction. Typically, the positive/negative samples used to train the attribute
classifiers are obtained by binarizing the class-attribute matrix wrt. a threshold,
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CUB AWA Dogs
PR CV PR CV PR CV

att 3 4 7 2 n/a
w2v 8 10 8 4 6 8
glo 6 10 7 6 9 4
hie 8 2 7 2 11 10

Table 3.4: Number of matrices selected using pruning (PR) and using cross-validation
(CV). PR is obtained by K0 = 16.

that leads to loss of information. As it is not clear how to extend this idea to
unsupervised class embeddings, we compare (Lampert et al., 2013) and LatEm
using attributes on AWA where (Lampert et al., 2013) obtains 56.2% whereas LatEm
obtains 71.9% accuracy which is mostly due to binary attributes. On the other
hand, we emphasize that we focus on unsupervised class embeddings that do not
require human supervision. Additionally, we re-implemented (Romera-Paredes et al.,
2015) following the paper because their method is embarrassingly simple. (Romera-
Paredes et al., 2015) define a binary matrix Y of size m× z to denote the ground-truth
labels of m training instances belonging to any of the z classes. The scale of this
matrix has been given as Y ∈ {−1, 1}m×z in (Romera-Paredes et al., 2015) which is a
parameter to tune. Therefore, we also validate our results with Y ∈ {0, 1}m×z. We
denote the experiment that uses Y ∈ {0, 1}m×z as (Romera-Paredes et al., 2015)*. For
our experiments, we got the code from the authors of (Socher et al., 2013), (Zhang
and Saligrama, 2015), and (Zhang and Saligrama, 2016) and we use the publicly
available implementation of SJE (Akata et al., 2015c). We ran the experiments using
our image and class embeddings by carefully validating all the parameters of all the
methods on the validation set.

We present results in Table 3.3. Our LatEm consistently outperforms (Socher
et al., 2013) and (Romera-Paredes et al., 2015) on all three datasets for all four class
embeddings. We observe a significant increase in accuracy from ESZSL (Romera-
Paredes et al., 2015) to ESZSL* (Romera-Paredes et al., 2015) in all cases. However,
even with Y ∈ {0, 1}m×z, our LatEm still outperforms ESZSL*(Romera-Paredes
et al., 2015) in 8 out of 11 cases. On the other hand, our LatEm outperforms
(Zhang and Saligrama, 2015) in 9 out of 11 cases and (Zhang and Saligrama, 2016)
in 10 out of 11 cases. For (Zhang and Saligrama, 2015) λ1, λ2, γ are the three
regularization parameters, also the number of iterations and number of sample pairs
are hyperparameters to tune whereas (Zhang and Saligrama, 2016) requires the
regularization λs, dictionary size, number of sample pairs and number of iterations
to be tuned. Note that, apart from doing an extensive parameter validation, we used
exactly the same SVM solver and quadratic programming solver with (Zhang and
Saligrama, 2015) and (Zhang and Saligrama, 2016) to obtain the results in Table 3.3.
Being a competitive state-of-the-art and the closest work related to ours, we now
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CUB AWA Dog
att w2v glo hie SJE LatEm SJE LatEm SJE LatEm

cnc
X X X

45.1 42.0 71.3 64.5 n/a n/a
cmb 51.0 46.2 73.5 73.6 n/a n/a
cnc

X X X
42.2 39.7 73.3 70.7 n/a n/a

cmb 51.7 46.6 73.9 75.7 n/a n/a
cnc

X X
28.2 30.7 53.9 59.7 23.5 30.0

cmb 29.4 33.2 55.5 62.2 26.6 33.8
cnc

X X
28.5 31.3 60.1 71.1 23.5 25.9

cmb 29.9 32.6 59.5 64.8 26.7 26.8

Table 3.5: Class embeddings combined as in (Akata et al., 2015c) (cnc: early fusion of
class embeddings, cmb: late fusion of scores).

provide a detailed comparison with SJE (Akata et al., 2015c) and our LatEm.
Using att, LatEm improves over SJE on AWA (71.9% vs. 66.7%) significantly.

However, as our aim is to reduce the accuracy gap between supervised and unsuper-
vised class embeddings, therefore we focus on w2v, glo and hie embeddings. Here,
on all datasets, LatEm improves the SJE (Akata et al., 2015c) (section 3.2) significantly.
With w2v, LatEm achieves 31.8% (vs. 28.4%) on CUB, 61.1% (vs. 51.2%) on AWA
and finally 22.6% (vs 19.6%) accuracy on Dogs. Similarly, using glo, LatEm achieves
32.5% (vs 24.2%) on CUB, 62.9% (vs. 58.8%) on AWA and 20.9% (vs. 17.8%) accuracy
on Dogs. Finally, while LatEm with hie on Dogs improves the result to 25.2% from
24.3%, the improvement is more significant on CUB (24.2% from 20.6%) and on AWA
(57.5% from 51.2%). These results place our LatEm in the context with most recent
and relevant methods as well as establish it as another competitive state-of-the-art
method for zero-shot learning on three datasets. The results are encouraging, as
they quantitatively show that learning piece-wise linear latent embeddings indeed
capture latent semantics on the class embedding space.

Here, we emphasize two disadvantages of attributes. First, since fine-grained
object classes share many common properties we need a large number of attributes
which is costly to obtain. Second, attribute annotations need to be done on a dataset
basis, i.e. the attributes collected for birds do not work with dogs. Therefore, we
stress the importance of the unsupervised class embeddings i.e. w2v, glo, hie.

Pruning versus cross-validation for model selection. Our aim is to determine if
our LatEm selects different number of models through pruning and through cross-
validation. Pruning (PR) selects matrices based on the data itself, on the other
hand, cross-validation (CR) validates the number of matrices necessary to obtain
the highest accuracy on the validation set. Table 3.4 presents the results of this
experiment on splits provided by (Akata et al., 2015c).

We set the initial number of embeddings K0 to 16 and pruning threshold to 1/K0
which assumes that samples are equally distributed to each embedding. In terms
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of the model size, cross validation seems to have a slight advantage. It selects a
smaller model in 7 cases out of 11 which is more space and time efficient. The
trend is consistent for all the class embeddings for the AwA dataset but is mixed for
CUB and Dogs. The advantage of pruning over cross-validation is that it is much
faster to train. While cross validation requires training and testing with multiple
models (once each for every possible choice of K), pruning just requires training once.
We measure the sensitivity of K0 and corresponding pruning thresholds by setting
K0 = [10, 12, 14, 16, 18, 20, 22] and th = 1/10, 1/12, 1/14, . . . , 1/22. Mean accuracy
with standard deviation with att, w2v, glo, hie on CUB are 44.9% (0.6), 32.4% (0.7),
31.6% (1.3), 22.8% (0.9) which shows that the results we reported with K0 = 16 is
stable.

Combination of class embeddings. Here, we provide results with direct comparison
with (Akata et al., 2015c) where class embeddings are combined using two strategies:
(1) through early fusion (cnc), i.e. concatenating class embeddings and (2) through
late fusion (cmb) of compatibility scores, i.e. averaging the scores obtained with
different class embeddings. We use the same combination of class embeddings,
image features and zero-shot splits as (Akata et al., 2015c) for a fair comparison. The
results are presented in Table 3.5.

First, we combine att with w2v, glo and hie for AWA and CUB. LatEm improves
the results over SJE significantly on AWA (75.7% vs 73.9%). On the other hand,
LatEm does not improve over the state-of-the-art (46.6% vs 51.7%) on CUB. This
observation is in line with the results reported in Table 3.3 where LatEm does not
provide a significant advantage over SJE on CUB with human-annotated attributes.

Second, we combine unsupervised class embeddings w2v, glo and hie. LatEm
consistently improves over SJE in this setting. On CUB combining w2v, glo and hie
achieves 34.9% (vs. 29.9%), on AWA it achieves 66.2% (vs. 60.1%) and on Dogs it
obtains 36.3% (vs. 35.1%). These experiments show that unsupervised class embed-
dings contain complimentary information and, therefore, the results tend to improve
by combining them. Another observation is late fusion of classification scores, i.e.
cmb, leads to higher accuracy compared to early fusion of class embeddings, i.e. cnc.
In cnc, a single Wi, learned with all the class embeddings concatenated together, fails
to address the confusion that is introduced by each class embedding. On the other
hand, in cmb, each Wi prefers to assign a different class label to an image based
on the score, i.e. F(x, y). This way, different Wis that are learned with different but
complimentary class embeddings get weighted accordingly and, hence, class labels
are more accurate.

Finally, on CUB and Dogs by combining w2v and hie we obtain better results than
by combining glo and hie. This is due to the fact that glo uses only class-relevant
articles while w2v uses the entire wikipedia. As a conclusion, wikipedia articles that
are not directly related to our classes, i.e. the context, lead to more descriptive class
embeddings individually (see w2v results in Table 3.3) and in combination as well
(see results in Table 3.5 that include w2v).

Stability of zero-shot learning results. As during training time in zero-shot learning
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CUB AWA Dogs
SJE LatEm SJE LatEm SJE LatEm

att 49.5 45.6 70.7 72.5 n/a
w2v 27.7 33.1 49.3 52.3 23.0 24.5
glo 24.8 30.7 50.1 50.7 14.8 20.2
hie 21.4 23.7 43.4 46.2 24.6 25.6

Table 3.6: Average per-class top-1 accuracy on unseen classes (the results are averaged
on five folds). SJE: (Akata et al., 2015c), LatEm: Latent embedding model (K is cross-
validated).

CUB AWA Dogs
PR CV PR CV PR CV

att 43.8 45.6 63.2 72.5 n/a
w2v 33.9 33.1 48.9 52.3 25.0 24.5
glo 31.5 30.7 51.6 50.7 18.8 20.2
hie 23.8 23.7 45.5 46.2 25.2 25.6

Table 3.7: Average per-class top-1 accuracy on unseen classes (averaged over five
zero-shot splits that we used in the stability experiments). PR: proposed model
learnt with pruning using K0 = 16, CV: with cross validation.

neither images nor class relationships of test classes are seen, methods suffer from
the difficulty in parameter selection. The standard way is to use disjoint train,
val and test classes. In addition to the standard splits, we experimented on four
more independently and randomly chosen data splits to get stable estimates of
our predictions. Both with our LatEm and the publicly available implementation
of SJE (Akata et al., 2015c) we repeat these experiments five times and report the
average.

For all datasets Table 3.6 shows that all the result comparisons between SJE and
LatEm hold and therefore conclusions are the same. Although SJE outperforms
LatEm with supervised attributes on CUB, LatEm outperforms the SJE results with
supervised attributes on AWA and consistently outperforms all the SJE results
obtained with unsupervised class embeddings. Using attributes, on AWA LatEm
obtains an impressive 72.5% (vs. 70.5%) and using unsupervised class embeddings
the highest accuracy is observed with w2v with 52.3% (vs. 49.3%). On CUB, LatEm
with w2v obtains the highest accuracy with 33.1% (vs. 27.7%) On Dogs, LatEm
with hie obtains the highest accuracy, i.e. 25.6% (vs 24.6%). These results insure
that our accuracy improvements reported in Table 3.3 were not due to a bias in the
dataset split. By augmenting the datasets with four more splits, our LatEm obtains a
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Figure 3.2: Effect of latent variable K on CUB, AWA and Dogs datasets. We measure
Top-1 Accuracy (in %) with the increasing number of latent models, i.e. K, learned
with unsupervised class embeddings, i.e. w2v, glo, hie.

consistent improvement on all the class embeddings on all datasets over the state-of-
the-art. On the other hand, these results helped us notice one crucial difference of
doing zero-shot learning on fine-grained and on coarse-grained datasets. The results
reported on the original split of AWA (Lampert et al., 2013) that is being widely used
in the literature has been constructed in a way that seen and unseen class splits have
visually similar classes e.g. while gorilla is in the seen classes, chimpanzee is in the
unseen classes. This insures that by using gorilla images, the methods will generalize
to images of the the visually similar chimpanzee class whose images were not seen
on training. When we build another split that places both gorilla and chimpanzee
classes in the unseen/test set, there is no means of distinguishing these objects, as
there is no visually closely similar class left in the seen/train set. We observe a
significant drop in accuracy for the weaker unsupervised class embeddings on AWA
when we randomly select the class splits, as given in Table 3.6, in addition to the
original split (Lampert et al., 2013). However, this drop effects our LatEm as well
as the state-of-the-art SJE method. Our conclusion from this observation is that the
zero-shot learning setting may be better suited for fine-grained classification task.

We also evaluate the accuracy of LatEm when the number of matrices in the model
is obtained with pruning versus when it is obtained with cross-validation. Table 3.7
presents the performance of LatEm when the model selection is done by pruning
(PR) or by cross-validation (CR) on the three datasets. In terms of performance,
both methods are equally competitive. Pruning outperforms cross validation on five
cases and is outperformed on the remaining six cases. The performance gaps are
usually within 1-2% absolute, with the exception of AWA dataset with att and w2v
with 72.5% vs. 70.7% and 52.3% vs. 49.3%, for CV and for PR respectively. Hence,
neither of the methods has a clear advantage in terms of performance, however cross
validation in general performs slightly better and is faster.

Effect of K. In this section, we investigate the experiments performed using five-
folds on the CUB, AWA and Dogs datasets and provide further analysis for a varying
number of K. For completeness of the analysis, we also evaluate the single latent
embedding case, namely K ∈ {1, 2, 4, 6, 8, 10} using unsupervised embeddings, i.e.
w2v, glo and hie for consistency.
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small bird with mostly yellow plumage

sea bird with red eyes

blue plumage with brown wings

Glove Word2vec 

long and pointy beak

brown head, light breast, small bird

completely black plumage
Hierarchy 

          small bird with yellow belly 

          pointy beak, spotted and climbing tree trunks

          sea bird with curved beak 

Attribute 

              black  wings

          pattern on head-eye region

black region on the head

Figure 3.3: Top images ranked by the matrices using word2vec, glove, hierarchy and
attribute class embeddings on CUB dataset, each row corresponds to different matrix
in the model. Qualitative examples support our intuition – each latent variable
captures certain visual aspects of the bird. Note that, while the images may not
belong to the same fine-grained class, they share common visual properties.

In Figure 3.2 we present the performance of the model with a different number
of matrices on CUB, AWA and Dogs datasets. For CUB, we observe that the
performance generally increases with increasing K, initially, and then the patterns
differ with different embeddings. With w2v the performance keeps increasing until
K = 6 and then starts decreasing, probably due to model overfitting. With glo the
performance increases until K = 10 where the final accuracy is ≈ 5% higher than
with K = 1. With the hie embedding the standard errors do not increase significantly
in any of the cases, are similar for all values of K and there is no clear trend in the
performance. For AWA, although glo results decrease with the increasing number
of K, for w2v and hie the results do not vary significantly but they pick the values
10 and 4 respectively. For Dogs, this time w2v results decrease slightly with the
increasing number of K for K > 2. In this dataset, K = 2, 8, 10 seems to be the best
options for w2v, hie and glo respectively.

Interpretability of latent embeddings. As we demonstrated previously, our novel
LatEm model improves the state-of-the-art SJE model for zero-shot classification on
two fine-grained datasets, i.e. CUB and Dogs, and one coarse-grained dataset, i.e.
AWA. In this section, we take a closer look at the results on the challenging CUB
dataset and investigate if individual Wi’s learn visually consistent and interpretable
latent relationships between images and classes. Figure 7.7 shows the top scoring
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CUB AWA Dogs
T1 T5 T10 T1 T5 T10 T1 T5 T10

att 12.4 46.8 67.4 4.8 65.6 90.6 n/a
w2v 0.7 29.2 46.3 0.0 31.2 63.5 0.0 6.6 20.5
glo 0.5 26.0 40.5 0.0 36.1 66.2 0.0 6.1 21.3
hie 0.0 19.7 36.3 0.0 40.0 62.1 1.3 15.0 31.8

Table 3.8: Average per-class top-1, 5 and 10 accuracy, i.e. T1, T5 and T10 respectively,
in generalized zero-shot learning setting when we have no samples from Yts during
training, however the search space during testing includes all the available labels, i.e.
namely Y = Ytr ∪ Yv ∪ Yts.

images retrieved by three different Wi for w2v, glo, hie and att.
For w2v, the images in the first row are of birds which have long and pointy

beaks. Note that they belong to different classes; having a long and pointy beak is
one of the shared aspect of those different bird species. Similarly, for the second row
images are of small birds with brown head and light-colored breast and the last row
contains large birds with completely black plumage. These results are interesting
because they show that, our LatEm is able to (i) infer hidden common properties of
classes and (ii) support them with visual evidence, leading to a clustering which is
optimized for classification, and also performs well in retrieval.

For glo, similar to the results with w2v, the top-scoring images of the same Wi
consistently show distinguishing visual properties of classes. The first row shows
that blue birds from different species are clustered together which indicates that
this matrix captures the “blue”ness of the birds. The second row has exclusively
aquatic birds, i.e. surrounded by water. Finally, the third row shows yellow birds
only. Similar to w2v, for glo our LatEm is able to bring out the latent information
that reflect object attributes and support this with its visual counterpart.

For completion, we also include qualitative results with hie and att class embed-
dings. The first row with hie shows small yellow birds with yellow belly, the second
row shows different species of birds with a pointy beak climbing on tree trunks and
the third row shows sea birds with curved beaks. Similarly, the first row with att
shows different birds with a common property of having “black wings”, the second
row shows a distinctive pattern on the head region and the third row shows birds
with different amount of blackness on their heads. These results clearly demonstrate
that our model factorizes the space with visually interpretable relations between
classes, also with hie and att.

3.4.2 Generalized Zero-shot Learning Setting

Most existing works on zero-shot learning assume that all the images are from
unseen classes during the test phase, which simplifies the problem as the classifiers
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Figure 3.4: Left: Confusion matrix of all the classes on AWA dataset based on
the latent factors learned using LatEm in the general setting (we use glo as class
embedding). 10 unseen classes are shown at the top of the confusion matrix. Right:
t-SNE visualization of the confusion matrix with seen and unseen classes marked
with blue and red respectively. Visually similar classes such as chimpanzee and
gorilla are embedded close to each other, hence being confused by the classifier.

only need to distinguish between unseen classes. In this section, we evaluate our
LatEm in a more challenging yet realistic setting, here the prediction function is:

f (x) = argmax
y∈{Yu∪Ys}

F(x, y). (3.9)

As shown in Equation 3.9, in the generalized zero-shot learning setting (e.g. ?Socher
et al., 2013) the search space includes all the class embeddings both at training
time and at test time. Similar to the zero-shot learning setting, the extreme case of
generalized zero-shot learning setting assumes no availability of visual samples from
test classes during training. As we do not have access to any images of Yts during
training, class embeddings of Yts do not get coupled with any visual information,
hence act only as distractors. In the following sections, we first evaluate the extreme
case of generalized zero-shot learning setting, i.e. when we have no visual samples
from test classes during training, and then we gradually increase the number of
images from Yts during training.

No samples from Yts during training. In this setting, during training although we
do not have access to any visual samples from test classes, our scoring function
takes a max over all the available class embeddings. As the class embeddings of test
classes never get any supervision signal, they act as distractors. We present results
obtained in this setting on CUB, AWA and Dogs using all four class embeddings
on Table 3.8.

Our observation from Table 3.8 is that with Top-1 accuracy LatEm gives poor
results even with expert annotated attributes. Note that, a similar behavior was
observed in (Rohrbach et al., 2011, 2013; Socher et al., 2013). These results show that
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Figure 3.5: Generalized zero- and few-shots learning settings evaluated on all for
CUB, AWA and Dogs using att (where available), w2v, glo and hie embeddings. We
show the Top-1, Top-5 and top-10 Accuracy (in%) with the increasing number of
images per unseen class used during training.

evaluating the model on both seen and unseen classes is a harder problem and it
requires more attention. Although solving this problem is out of the scope of this
chapter, we provide further analysis on understanding the problem itself.

Our hypothesis is that the classes that are similar in context, i.e. chimpanzee
and gorilla, are separated into different sets in terms of seen and unseen classes.
To evaluate this hypothesis, after learning the LatEm model on AWA using glo
embedding, we build a confusion matrix of the test images that belong to both
seen and unseen classes. Figure 3.4 plots the confusion matrix and t-SNE (van der
Maaten and Hinton, 2008) visualization of the confusion matrix. We observe that
the classifier is indeed able to embed images of chimpanzees close to the chimpanzee
and gorilla. However, without having seen sufficient examples of the unseen class
chimpanzee, it is not able to distinguish between a chimpanzee and a gorilla. Same
phenomenon is observed for other visually similar class pairs, e.g. blue-whale and
humpback-whale, polar-bear and giant-panda, mouse and rat, which are visually similar
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animals belonging to seen and unseen classes respectively.
Following this analysis, we argue that in the presence of seen and unseen classes

for testing, evaluating Top-5 or Top-10 accuracy may be a more suitable way to
measure performance. Indeed, Top-5 accuracy has been the evaluation criteria of
image classification challenge (Berg et al.) of ImageNet (Deng et al., 2009). We present
results with Top-5 accuracy on Table 3.8. Our immediate observation is that for all
datasets the results improve by 6 to 40% compared to the results with Top-1 accuracy.
This shows that 6− 40% of the time, the images of unseen classes are incorrectly
assigned to the second closest class among the seen classes, e.g. chimpanzee versus
gorilla, or vice versa. This outcome follows our intuition that LatEm confuses two
similar classes especially when they belong to disjoint sets of seen and unseen classes.
Finally, our results with Top-10 accuracy shows a similar tendency to the difference
between Top-5 and Top-1 accuracy. We observe another accuracy increase of 15 to
30% compared to the Top-5 accuracy depending on the dataset and class embedding.
Moreover, as expected the Top-10 accuracy results are higher than Top-1 and Top-5
accuracy while the relative difference between different class embeddings remain
similar in all cases. We also observe from these results that supervised attributes
remain important with the lack of training data in the extreme case.

In CUB and AWA, top-10 accuracy obtained with unsupervised class embeddings
extracted from wikipedia, i.e. w2v and glo perform similarly to the top-5 accuracy
obtained with attribute class embeddings. On the other hand, the human supervision
signal that comes from attributes leads to an accuracy boost of almost 30% when we
measure top-5 or top-10 accuracy.

Finally in Dogs, hie class embeddings perform higher than w2v and glo that are
extracted from wikipedia. It is interesting to note that this observation is unique to
this dataset and it is in line with our observations in the classic zero-shot learning
setting. This shows that finding the most suitable class embedding is an important
aspect of tackling the zero-shot learning task.

Generalized zero-shot to generalized few-shots setting. As shown in the previous
section, the presence of all class embeddings, i.e. generalized zero-shot setting, in
its extreme case, i.e. no visual samples from test classes during training, result
in a significant loss in accuracy compared to the classic zero-shot learning setting.
This is expected since during training the test class embedding act as distractors
since they are not coupled with any visual examples. In this section, we investigate
the generalized zero-shot and generalized few-shot learning settings, namely the
settings with the presence of either no or a few examples from test classes for training,
respectively. We present the stability of our LatEm in this setting by running it on
five dataset folds with the error bars in Figure 3.5. We report per-class averaged
Top-1, Top5 and Top-10 accuracy results with all four class embeddings, i.e. att
(on CUB and AWA), w2v, glo and hie. We show the importance of visual data by
increasing the number of images from 0 to 25, 100 and 50 on CUB, AWA and Dogs
respectively.

On CUB, although att class embedding obtains the highest top-1, top-5 and top-10

accuracy on both the generalized zero-shot and generalized 2− 5-shots settings, it
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is interesting to observe that glo embedding reaches the same accuracy after the
presence of 10 samples on Top-5 and Top-10 accuracies and obtains the highest
accuracy in all cases, i.e. Top-1,5 and 10, when all 25 images are used for training.
Another observation from CUB results is that the results are stable in all five folds of
the data.

On AWA, a striking observation is how well glo class embedding performs for
Top-1, Top-5 and Top-10 accuracy on generalized few-shots learning setting. With
the presence of 100 images per class, Top-1 accuracy between att and glo embeddings
is 20% for both Top-1 and Top-5 accuracy. Also, on AWA, the accuracy difference
between different class embeddings is quite high. This may be because AWA is a
coarse-grained dataset as the similar observation does not hold for CUB and Dogs.

On Dogs, unlike the classical and generalized zero-shot learning results, hie
embedding is not the best performing class embedding in generalized few-shot
learning setting. In this dataset, w2v is the best performing embedding on all
evaluation metrics. i.e. Top-1, Top-5 and Top-10 accuracy. Another observation from
Dogs results is that with the presence of 50 images per-class during training, all class
embeddings converge to the same value, i.e. class embeddings lose their importance.

As a conclusion, with the increasing the number of additional training samples
from unseen classes the results improve significantly in all cases until the accuracy
improvements flatten out gradually. These results show that with the availability
of a large number of images from both seen and unseen classes, the importance
of the contribution of class embeddings has been reduced. (Akata et al., 2015a)
has shown that using hand-crafted image features, the one-vs-rest SVM strategy
becomes more favourable compared to embedding-based methods only with the
availability of a large number of annotated images. Here, we show that leveraging
deep image features with even a few additional samples, i.e. 2, 5, 10, we improve
over human annotated attributes and increase zero-shot accuracy by approximately
20%, demonstrated by the results obtained with AWA.

3.5 conclusions

We presented a novel latent variable model, Latent Embeddings (LatEm), for learn-
ing a nonlinear (piecewise linear) compatibility function for the task of zero-shot
classification. LatEm is a multi-modal method, it uses images and class-level side-
information either obtained through human annotation or in an unsupervised way
from a large text corpus. LatEm incorporates multiple linear compatibility units and
allows each image to choose one of them – such choices being the latent variables.
We proposed a ranking based objective to learn the model using an efficient and
scalable SGD based solver.

We empirically validated our model on three challenging benchmark datasets
for zero-shot classification of Birds, Dogs and Animals. We improved the state-
of-the-art for zero-shot learning using unsupervised class embeddings on AWA
up to 71.1% (vs. 60.1%) and on two fine-grained datasets, achieving 33.2% (vs.
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29.9%) on CUB as well as achieving 33.8% (vs. 26.7%) on Dogs. On AWA, we
also improve the accuracy obtained with supervised class embeddings, obtaining
75.7% (vs. 73.9%). This demonstrates quantitatively that our method learns a latent
structure in the embedding space through multiple compatibility units. We also
presented a qualitative analysis of our results and showed that the latent embeddings
learned with our method leads to visual consistencies. Our stability analysis on
five dataset folds for all three benchmark datasets showed that our method can
generalize well and does not overfit to the current dataset splits. We proposed a new
method for selecting the number of latent variables automatically from the data by
pruning. Such pruning based method speeds up the training and leads to models
with competitive space-time complexities compared to the cross-validation based
method.

We further extended our application domain to generalized zero-shot and gener-
alized few-shot learning setting where at training time we assume the availability of
either no or a few labeled samples from unseen classes. On the other hand, both at
training and test time the search space includes all the class embeddings from seen
and unseen classes. As expected, our evaluation on generalized zero-shot learning
setting showed a significant loss of accuracy compared to the standard zero-shot
learning setting which we analyzed through visualizations and quantitative results.
Through these experiments we raised awareness that even state-of-the-art methods
confuse two visually similar classes if one of them is an unseen class, i.e. the method
has seen no samples from that class. Our evaluation on generalized few-shots setting
showed that with as few as two to ten samples from unseen classes, unsupervised
class embeddings can outperform the supervised attributes. Therefore, with increas-
ing number of additional training samples, the difference between different class
embeddings are reduced. As a future work, we plan to investigate the challenging
however realistic generalized zero-shot and generalized few-shots settings further.
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In the previous chapter, we propose a non-linear embedding function for better
zero-shot learning performance. However, we realize that evaluation settings
of previous works are inconsistent, leading to incomparable results. Therefore,

in this chapter, we introduce a better zero-shot image classification benchmark and
evaluate SOTA approaches under the same evaluation protocols. Our new evaluation
protocol includes the convention zero-shot learning that predicts only novel classes
and the realistic generalized zero-shot learning where both base and novel classes
should be evaluated. We also propose correct class splits where novel classes are not
present in the pretraining dataset e.g. ImageNet.

In Chapter 5, we adopt the evaluation setting introduced in this chapter and
propose an efficient feature generation approach for the challenging generalized
zero-shot learning task. In Chapter 6, we follow the same evaluation protocol,
introduce a stronger feature generator by combining VAE and GANs, and show
unlabeled data significantly improves quality of generated features. Chapter 7 and
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Chapter 8 demonstrate our efforts in advancing zero-shot and few-shot learning for
the semantic segmentation and video classification tasks.

4.1 introduction

Zero-shot learning aims to recognize objects whose instances may not have been
seen during training (e.g. Lampert et al., 2013; Larochelle et al., 2008; Rohrbach et al.,
2011; Yu and Aloimonos, 2010; Xu et al., 2017; Ding et al., 2017). The number of
new zero-shot learning methods proposed every year has been increasing rapidly,
i.e. the good aspects as our title suggests. Although each new method has been
shown to make progress over the previous one, it is difficult to quantify this progress
without an established evaluation protocol, i.e. the bad aspects. In fact, the quest
for improving numbers has lead to even flawed evaluation protocols, i.e. the ugly
aspects. Therefore, in this work, we propose to extensively evaluate a significant
number of recent zero-shot learning methods in depth on several small to large-scale
datasets using the same evaluation protocol both in zero-shot, i.e. training and test
classes are disjoint, and the more realistic generalized zero-shot learning settings,
i.e. training classes are present at test time. Figure 8.1 presents an illustration of
zero-shot and generalized zero-shot learning tasks.

We benchmark and systematically evaluate zero-shot learning w.r.t. three aspects,
i.e. methods, datasets and evaluation protocol. The crux of the matter for all zero-
shot learning methods is to associate observed and non observed classes through
some form of auxiliary information which encodes visually distinguishing properties
of objects. Different flavors of zero-shot learning methods that we evaluate in this
work are linear (e.g. Frome et al., 2013; Akata et al., 2013, 2015c; Romera-Paredes et al.,
2015) and nonlinear (e.g. Xian et al., 2016; Socher et al., 2013) compatibility learning
frameworks which have dominated the zero-shot learning literature in the past few
years whereas an orthogonal direction is learning independent attribute (Lampert
et al., 2013) classifiers and finally others (e.g. Zhang and Saligrama, 2015; Changpinyo
et al., 2016; Norouzi et al., 2014) propose a hybrid model between independent
classifier learning and compatibility learning frameworks which have demonstrated
improved results over the compatibility learning frameworks both for zero-shot and
generalized zero-shot learning settings.

We thoroughly evaluate the second aspect of zero-shot learning, by using multiple
splits of several small, medium and large-scale datasets (e.g. Patterson and Hays,
2012; Welinder et al., 2010; Lampert et al., 2013; Farhadi et al., 2009; Deng et al., 2009).
Among these, the Animals with Attributes (AWA1) dataset (Lampert et al., 2013)
introduced as a zero-shot learning dataset with per-class attribute annotations, has
been one of the most widely used datasets for zero-shot learning. However, as AWA1

images does not have the public copyright license, only some image features, i.e.
SIFT (Lowe, 2004), DECAF (Donahue et al., 2014), VGG19 (Simonyan and Zisserman,
2014b) of AWA1 dataset is publicly available, rather than the raw images. On the
other hand, improving image features is a significant part of the progress both
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Figure 4.1: Zero-shot learning (ZSL) vs generalized zero-shot learning (GZSL): At
training time, for both cases the images and attributes of the seen classes (Y tr) are
available. At test time, in the ZSL setting, the learned model is evaluated only on
unseen classes (Y ts) whereas in GZSL setting, the search space contains both training
and test classes (Y tr ∪ Y ts). To facilitate classification without labels, both tasks use
some form of side information, e.g. attributes. The attributes are annotated per class,
therefore the labeling cost is significantly reduced.

for supervised learning and for zero-shot learning. In fact, with the fast pace of
deep learning, everyday new deep neural network models improve the ImageNet
classification performance are being proposed. Without access to images, those new
DNN models can not be evaluated on AWA1 dataset. Therefore, with this work, we
introduce the Animals with Attributes 2 (AWA2) dataset that has roughly the same
number of images all with public licenses, exactly the same number of classes and
attributes as the AWA1 dataset. We will make both ResNet (He et al., 2016) features
of AWA2 images and the images themselves publicly available.

We propose a unified evaluation protocol to address the third aspect of zero-shot
learning which is one of the most important ones. We emphasize the necessity of
tuning hyperparameters of the methods on a validation class split that is disjoint from
training classes as improving zero-shot learning performance via tuning parameters
on test classes violates the zero-shot assumption. We argue that per-class averaged
top-1 accuracy is an important evaluation metric when the dataset is not well
balanced with respect to the number of images per class. We point out that extracting
image features via a pre-trained deep neural network (DNN) on a large dataset that
contains zero-shot test classes also violates the zero-shot learning idea as image
feature extraction is a part of the training procedure. Moreover, we argue that
demonstrating zero-shot performance on small-scale and coarse grained datasets,
i.e. aPY (Farhadi et al., 2009) is not conclusive. On the other hand, with this work
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we emphasize that it is hard to obtain labeled training data for fine-grained classes
of rare objects recognizing which requires expert opinion. Therefore, we argue that
zero-shot learning methods should be also evaluated on least populated or rare
classes. We recommend to abstract away from the restricted nature of zero-shot
evaluation and make the task more practical by including training classes in the
search space, i.e. generalized zero-shot learning setting. Therefore, we argue that our
work plays an important role in advancing the zero-shot learning field by analyzing
the good and bad aspects of the zero-shot learning task as well as proposing ways to
eliminate the ugly ones.

4.2 related work

A more comprehensive literature review can be found in Chapter 2. Here we only
discuss the relation of our benchmark to existing zero-shot learning evaluation
protocols.

Zero-shot learning has been criticized for being a restrictive set up as it comes
with a strong assumption of the image used at prediction time can only come from
unseen classes. Therefore, generalized zero-shot learning setting (Scheirer et al.,
2013) has been proposed to generalize the zero-shot learning task to the case where
both seen and unseen classes are used at test time. (Jain et al., 2014) argues that
although ImageNet classification challenge performance has reached beyond human
performance, we do not observe similar behavior of the methods that compete at the
detection challenge which involves rejecting unknown objects while detecting the
position and label of a known object. (Frome et al., 2013) uses label embeddings to
operate on the generalized zero-shot learning setting whereas (Zhang et al., 2016a)
proposes to learn latent representations for images and classes through coupled
linear regression of factorized joint embeddings. On the other hand, (Bendale
and Boult, 2016) introduces a new model layer to the deep net which estimates
the probability of an input being from an unknown class and (Socher et al., 2013)
proposes a novelty detection mechanism.

Although zero-shot vs generalized zero-shot learning evaluation works ex-
ist (Rohrbach et al., 2011; Chao et al., 2016) in the literature, our work stands out in
multiple aspects. For instance, (Rohrbach et al., 2011) operates on the ImageNet 1K
by using 800 classes for training and 200 for test. One of the most comprehensive
works, (Chao et al., 2016) provides a comparison between five methods evaluated on
three datasets including ImageNet with three standard splits and proposes a metric
to evaluate generalized zero-shot learning performance. On the other hand, we
evaluate ten zero-shot learning methods on five datasets with several splits both for
zero-shot and generalized zero-shot learning settings, provide statistical significance
and robustness tests, and present other valuable insights that emerge from our
benchmark. In this sense, ours is the most extensive evaluation of zero-shot and
generalized zero-shot learning tasks in the literature.
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4.3 evaluated methods

We start by formalizing the zero-shot learning task and then we describe the zero-
shot learning methods that we evaluate in this work. Given a training set S =
{(xn, yn), n = 1...N}, with yn ∈ Y tr belonging to training classes, the task is to learn
f : X → Y by minimizing the regularized empirical risk:

1
N

N

∑
n=1

L(yn, f (xn; W)) + Ω(W) (4.1)

where L(.) is the loss function and Ω(.) is the regularization term. Here, the mapping
f : X → Y from input to output embeddings is defined as:

f (x; W) = argmax
y∈Y

F(x, y; W) (4.2)

At test time, in zero-shot learning setting, the aim is to assign a test image to an
unseen class label, i.e. Y ts ⊂ Y and in generalized zero-shot learning setting, the
test image can be assigned either to seen or unseen classes, i.e. Y tr+ts ⊂ Y with the
highest compatibility score.

4.3.1 Learning Linear Compatibility

Attribute Label Embedding (ALE) (Akata et al., 2015a), Deep Visual Semantic Em-
bedding (DEVISE) (Frome et al., 2013) and Structured Joint Embedding (SJE) (Akata
et al., 2015c) use bi-linear compatibility function to associate visual and auxiliary
information:

F(x, y; W) = θ(x)TWφ(y) (4.3)

where θ(x) and φ(y), i.e. image and class embeddings, both of which are given.
F(.) is parameterized by the mapping W, that is to be learned. Given an image,
compatibility learning frameworks predict the class which attains the maximum
compatibility score with the image.

Among the methods that are detailed below, ALE (Akata et al., 2015a), DE-
VISE (Frome et al., 2013) and SJE (Akata et al., 2015c) do early stopping to implicitly
regularize Stochastic Gradient Descent (SGD) while ESZSL (Romera-Paredes et al.,
2015) and SAE (Kodirov et al., 2017) explicitly regularize the embedding model as
detailed below. In the following, we provide a unified formulation of these five
zero-shot learning methods.

DEVISE (Frome et al., 2013) uses pairwise ranking objective that is inspired from
unregularized ranking SVM (Joachims, 2002):

∑
y∈Y tr

[∆(yn, y) + F(xn, y; W)− F(xn, yn; W)]+ (4.4)
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where ∆(yn, y) is equal to 1 if yn = y, otherwise 0. The objective function is convex
and is optimized by Stochastic Gradient Descent.

ALE (Akata et al., 2015a) uses the weighted approximate ranking objective (Usunier
et al., 2009) for zero-shot learning in the following way:

∑
y∈Y tr

lr∆(xn ,yn)

r∆(xn,yn)
[∆(yn, y) + F(xn, y; W)− F(xn, yn; W)]+ (4.5)

where lk = ∑k
i=1 αi and r∆(xn,yn) is defined as:

∑
y∈Y tr

1(F(xn, y; W) + ∆(yn, y) ≥ F(xn, yn; W)) (4.6)

Following the heuristic in (Weston et al., 2011), (Akata et al., 2015a) selects αi = 1/i
which puts a high emphasis on the top of the rank list.

SJE (Akata et al., 2015c) gives the full weight to the top of the ranked list and is
inspired from the structured SVM (Tsochantaridis et al., 2005):

[max
y∈Y tr

(∆(yn, y) + F(xn, y; W))− F(xn, yn; W)]+ (4.7)

The prediction can only be made after computing the score against all the classifiers,
i.e. so as to find the maximum violating class, which makes SJE less efficient than
DEVISE and ALE.

ESZSL (Romera-Paredes et al., 2015) applies a square loss to the ranking formula-
tion and adds the following implicit regularization term to the unregularized risk
minimization formulation:

γ‖Wφ(y)‖2 + λ‖θ(x)TW‖2 + β‖W‖2 (4.8)

where γ, λ, β are regularization parameters. The first two terms bound the Euclidean
norm of projected attributes in the feature space and projected image feature in the
attribute space respectively. The advantage of this approach is that the objective
function is convex and has a closed form solution.

SAE (Kodirov et al., 2017) also learns the linear projection from image embedding
space to class embedding space, but it further constrains that the projection must be
able to reconstruct the original image embedding. Similar to the linear auto-encoder,
SAE optimizes the following objective:

min
W
||θ(x)−WTφ(y)||2 + λ||Wθ(x)− φ(y)||2, (4.9)

where λ is a hyperparameter to be tuned. The optimization problem can be trans-
formed such that Bartels-Stewart algorithm (Bartels and Stewart, 1972) is able to
solve it efficiently.
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4.3.2 Learning Nonlinear Compatibility

Latent Embeddings (LATEM) (Xian et al., 2016) and Cross Modal Transfer (CMT) (Socher
et al., 2013) encode an additional non-linearity component to linear compatibility
learning framework.

LATEM (Xian et al., 2016) constructs a piece-wise linear compatibility:

F(x, y; Wi) = max
1≤i≤K

θ(x)TWiφ(y) (4.10)

where every Wi models a different visual characteristic of the data and the selection of
which matrix to use to do the mapping is a latent variable and K is a hyperparameter
to be tuned. LATEM uses the ranking loss formulated in Equation 4.4 and Stochastic
Gradient Descent as the optimizer.

CMT (Socher et al., 2013) first maps images into a semantic space of words, i.e.
class names, where a neural network with tanh nonlinearity learns the mapping:

∑
y∈Y tr

∑
x∈Xy

‖φ(y)−W1 tanh(W2.θ(x)‖2 (4.11)

where (W1, W2) are weights of the two layer neural network. This is followed by
a novelty detection mechanism that assigns images to unseen or seen classes. The
novelty is detected either via thresholds learned using the embedded images of the
seen classes or the outlier probabilities are obtained in an unsupervised way. As
zero-shot learning assumes that test images are only from unseen classes, in our
experiments when we refer to CMT, that means we do not use the novelty detection
component. On the other hand, we name the CMT with novelty detection as CMT*
when we apply it to the generalized zero-shot learning setting.

4.3.3 Learning Intermediate Attribute Classifiers

Although Direct Attribute Prediction (DAP) (Lampert et al., 2013) and Indirect
Attribute Prediction (IAP) (Lampert et al., 2013) have been shown to perform poorly
compared to compatibility learning frameworks (Akata et al., 2015a), we include
them to our evaluation for being historically the most widely used methods in the
literature.

DAP (Lampert et al., 2013) learns probabilistic attribute classifiers and makes a class
prediction by combining scores of the learned attribute classifiers. A novel image is
assigned to one of the unknown classes using:

f (x) = argmax
c

M

∏
m=1

p(ac
m|x)

p(ac
m)

. (4.12)

with M being the total number of attributes, ac
m is the m-th attribute of class c,

p(ac
m|x) is the attribute probability given image x which is obtained from the attribute
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classifiers whereas p(ac
m) is the attribute prior estimated by the empirical mean of

attributes over training classes. We train binary classifiers with logistic regression
that gives probability scores of attributes with respect to training classes.

IAP (Lampert et al., 2013) indirectly estimates attributes probabilities of an image
by first predicting the probabilities of each training class, then multiplying the class
attribute matrix. Once the attributes probabilities are obtained by the following
equation:

p(am|x) =
K

∑
k=1

p(am|yk)p(yk|x), (4.13)

where K is the number of training classes, p(am|yk) is the predefined class attribute
and p(yk|x) is training class posterior from multi-class classifier, the Equation 4.12 is
used to predict the class label for which we train a multi-class classifier on training
classes with logistic regression.

4.3.4 Hybrid Models

Semantic Similarity Embedding (SSE) (Zhang and Saligrama, 2015), Convex Com-
bination of Semantic Embeddings (CONSE) (Norouzi et al., 2014) and Synthesized
Classifiers (SYNC) (Changpinyo et al., 2016) express images and semantic class
embeddings as a mixture of seen class proportions, hence we group them as hybrid
models.

SSE (Zhang and Saligrama, 2015) leverages similar class relationships both in image
and semantic embedding space. An image is labeled with:

argmax
u∈U

π(θ(x))Tψ(φ(yu)) (4.14)

where π, ψ are mappings of class and image embeddings into a common space
defined by the mixture of seen classes proportions. Specifically, ψ is learned by
sparse coding and π is by class dependent transformation.

CONSE (Norouzi et al., 2014) learns the probability of a training image belonging
to a training class:

f (x, t) = argmax
y∈Y tr

ptr(y|x) (4.15)

where y denotes the most likely training label (t=1) for image x. Combination of
semantic embeddings (s) is used to assign an unknown image to an unseen class:

1
Z

T

∑
i=1

ptr( f (x, t)|x).s( f (x, t)) (4.16)

where Z = ∑T
i=1 ptr( f (x, t)|x), f (x, t) denotes the tth most likely label for image x

and T controls the maximum number of semantic embedding vectors.
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SYNC (Changpinyo et al., 2016) learns a mapping between the semantic class
embedding space and a model space. In the model space, training classes and a set
of phantom classes form a weighted bipartite graph. The objective is to minimize
distortion error:

min
wc
‖wc −

R

∑
r=1

scrvr‖2
2. (4.17)

Semantic and model spaces are aligned by embedding classifiers of real classes (wc)
and classifiers of phantom classes (vr) in the weighted graph (scr). The classifiers for
novel classes are constructed by linearly combining classifiers of phantom classes.

GFZSL (Verm and Rai, 2017) proposes a generative framework for zero-shot learning
by modeling each class-conditional distribution as a multi-variate Gaussian with
mean vector µ and diagonal covariance matrix σ. While the parameters of seen
classes can be estimated by MLE, that of unseen classes are computed by learning
the following two regression functions:

µy = fµ(φ(y)) and σy = fσ(φ(y)) (4.18)

with an image x, its class is predicted by searching the class with the maximum
probability, i.e. argmaxy p(x|σy, µy).

4.3.5 Transductive Zero-Shot Learning Setting

In zero-shot learning, transductive setting (Chapelle et al., 2009; Zhou et al., 2004)
implies that unlabeled images from unseen classes are available during training.
Using unlabeled images are expected to improve performance as they possibly
contain useful latent information of unseen classes. Here, we mainly focus on two
state-of-the-art transductive approaches(Verm and Rai, 2017; Ye and Guo, 2017) and
show how to extend ALE (Akata et al., 2015a) into the transductive learning setting.

GFZSL-tran (Verm and Rai, 2017) uses an Expectation-Maximization (EM) based
procedure that alternates between inferring the labels of unlabeled examples of
unseen classes and using the inferred labels to update the parameter estimates of
unseen class distributions. Since the class-conditional distribution is assumed to be
Gaussian, this procedure is equivalent to repeatedly estimating a Gaussian Mixture
Model (GMM) with the unlabeled data from unseen classes and use the inferred
class labels to re-estimate the GMM.

DSRL (Ye and Guo, 2017) proposes to simultaneously learn image features with
non-negative matrix factorization and align them with their corresponding class
attributes. This step gives us an initial prediction score matrix S0 in which each
row is one instance and indicates the prediction scores for all unseen classes. To
improve the prediction score matrix by transductive learning, a graph-based label
propagation algorithm is applied. Specifically, a KNN graph is constructed with the
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projected instances of unseen classes in the class embedding space,

Mij =

{
exp(− d(xi,xj)

2σ2 ) if i ∈ KNN(j) or j ∈ KNN(i)
0 otherwise

(4.19)

where KNN(i) denotes the k-nearest neighbor of i-th instance and d(xi, xj) measures
the Euclidean distance between xi and xj. Given the affinity matrix M, a normalized
Laplacian matrix L can be computed as L = Q−1/2MQ−1/2 where Q is a diagonal
matrix with Qii = ∑j Mij. Finally, the standard label propagation (?) gives the
closed-form solution:

S = (I − αL)−1 × S0 (4.20)

where α ∈ [0, 1] is a regularization trade-off parameter and S is the score matrix. The
class label of an instance is predicted by searching the class with the highest score,
i.e. argmaxy Siy.

ALE-tran Any compatibility learning method that explicitly learns cross-modal
mapping from image feature space to class embedding space can be extended to
transductive setting following the label propagation procedure of DSRL (Ye and Guo,
2017). Taking the ALE (Akata et al., 2015a) as an example, after learning the linear
mapping W, instances of unseen classes can be projected into the class embedding
space and a score matrix S0 can be computed similarly.

4.4 datasets

Among the most widely used datasets for zero-shot learning, we select two coarse-
grained, one small (aPY (Farhadi et al., 2009)) and one medium-scale (AWA1 (Lampert
et al., 2013)), and two fine-grained, both medium-scale, datasets (SUN (Patterson
and Hays, 2012), CUB (Welinder et al., 2010)) with attributes and one large-scale
dataset (ImageNet (Deng et al., 2009)) without. Here, we consider between 10K
and 1M images, and, between 100 and 1K classes as medium-scale. Details of
dataset statistics in terms of the number of images, classes, attributes for the attribute
datasets are in Table 5.1. Furthermore, we introduce our Animals With Attributes 2

(AWA2) dataset and position it with respect to existing datasets.

4.4.1 Attribute Datasets

Attribute Pascal and Yahoo (aPY) (Farhadi et al., 2009) is a small-scale coarse-grained
dataset with 64 attributes. Among the total number of 32 classes, 20 Pascal classes
are used for training (we randomly select 5 for validation) and 12 Yahoo classes are
used for testing. The original Animals with Attributes (AWA1) (Lampert et al., 2013)
is a coarse-grained dataset that is medium-scale in terms of the number of images, i.e.
30, 475 and small-scale in terms of number of classes, i.e. 50 classes. (Lampert et al.,
2013) introduces a standard zero-shot split with 40 classes for training (we randomly
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Figure 4.2: Comparing AWA1 (Lampert et al., 2013) and our AWA2 in terms of
number of images (Left) and t-SNE embedding of the image features (the embedding
is learned on AWA1 and AWA2 simultaneously, therefore the figures are comparable).
AWA2 follows a similar distribution as AWA1 and it contains more examples.

select 13 classes for validation) and 10 classes for testing. AWA1 has 85 attributes.
Caltech-UCSD-Birds 200-2011 (CUB) (Welinder et al., 2010) is a fine-grained and
medium scale dataset with respect to both number of images and number of classes,
i.e. 11, 788 images from 200 different types of birds annotated with 312 attributes.
(Akata et al., 2015a) introduces the first zero-shot split of CUB with 150 training
(50 validation classes) and 50 test classes. SUN (Patterson and Hays, 2012) is a
fine-grained and medium-scale dataset with respect to both number of images and
number of classes, i.e. SUN contains 14340 images coming from 717 types of scenes
annotated with 102 attributes. Following (Lampert et al., 2013) we use 645 classes of
SUN for training (we randomly select 65 classes for validation) and 72 classes for
testing.

Animals with Attributes2 (AWA2) Dataset. One disadvantage of AWA1 dataset
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is that the images are not publicly available. As having highly descriptive image
features is an important component for zero-shot learning, in order to enable vision
research on the objects of the AWA1 dataset, we introduce the Animals with At-
tributes2 (AWA2) dataset. Following (Lampert et al., 2013), we collect 37, 322 images
for the 50 classes of AWA1 dataset from public web sources, i.e. Flickr, Wikipedia,
etc., making sure that all images of AWA2 have free-use and redistribution licenses
and they do not overlap with images of the original Animal with Attributes dataset.
The AWA2 dataset uses the same 50 animal classes as AWA1 dataset, similarly the
85 binary and continuous class attributes are common. In total, AWA2 has 37, 322
images compared to 30, 475 images of AWA1. On average, each class includes 746
images where the least populated class, i.e. mole, has 100 and the most populated
class, i.e. horse has 1645 examples. Some example images from polar bear, zebra, otter
and tiger classes along with sample attributes from our AWA2 dataset are shown in
Figure 8.1.

In Figure 4.2, we provide some statistics on the AWA2 dataset in comparison
with the AWA1 dataset in terms of the number of images and also the distribution
of the image features. Compared to AWA1, our proposed AWA2 dataset contains
more images, e.g. horse and dolphin among the test classes, antelope and cow among
the training classes. Moreover, the t-SNE embedding of these test classes with more
training data, e.g. horse, dolphin, seal etc. shows that AWA2 leads to slightly more
visible clusters of ResNet features. The images, their labels and ResNet features of
our AWA2 are publicly available in http://cvml.ist.ac.at/AwA2.

4.4.2 Large-Scale ImageNet

We also evaluate the performance of methods on the large scale ImageNet (Deng
et al., 2009) which contains a total of 14 million images from 21K classes, each one
labeled with one label, and the classes are hierarchically related as ImageNet follows
the WordNet (Miller, 1995).

ImageNet is a natural fit for zero-shot and generalized zero-shot learning as
there is a large class imbalance problem. Moreover, ImageNet is diverse in terms of
granularity, i.e. it contains a collection of fine-grained datasets, e.g. different vehicle
types, as well as coarse-grained datasets. The highest populated class contains 3, 047
images whereas there are many classes that contains only a single image. A balanced
subset of ImageNet with 1K classes containing about 1000 images each is used to
train CNNs.

Previous works (Rohrbach et al., 2011) proposed to split the balanced subset
of 1K classes into 800 training and 200 test classes. In this work, from the total
of 21K classes, we use 1K classes for training (among which we use 200 classes
for validation) and the test split is either all the remaining 20K classes or a subset
of it, e.g. we determine these subsets based on the hierarchical distance between
classes and the population of classes. The details of these splits are provided in the
following section.

http://cvml.ist.ac.at/AwA2
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Number of Classes
Number of Images

At Training Time At Evaluation Time
SS PS SS PS

Dataset Att Y Y tr Y ts Total Y tr Y ts Y tr Y ts Y tr Y ts Y tr Y ts

SUN 102 717 580 + 65 72 14340 12900 0 10320 0 0 1440 2580 1440
CUB 312 200 100 + 50 50 11788 8855 0 7057 0 0 2933 1764 2967
AWA1 85 50 27 + 13 10 30475 24295 0 19832 0 0 6180 4958 5685
AWA2 85 50 27 + 13 10 37322 30337 0 23527 0 0 6985 5882 7913
aPY 64 32 15 + 5 12 15339 12695 0 5932 0 0 2644 1483 7924

Table 4.1: Statistics for SUN (Patterson and Hays, 2012), CUB (Welinder et al., 2010),
AWA1 (Lampert et al., 2013), proposed AWA2, aPY (Farhadi et al., 2009) in terms of
size, granularity, number of attributes, number of classes in Y tr and Y ts, number of
images at training and test time for standard split (SS) and our proposed splits (PS).

4.5 evaluation protocol

In this section, we provide several components of previously used and our proposed
ZSL and GZSL evaluation protocols, e.g. image and class encodings, dataset splits
and the evaluation criteria3.

4.5.1 Image and Class Embedding

We extract image features, namely image embeddings, from the entire image for
SUN, CUB, AWA1, our AWA2 and ImageNet, with no image pre-processing. For
aPY, following the original publication in (Farhadi et al., 2009), we crop the images
from bounding boxes. Our image embeddings are 2048-dim top-layer pooling units
of the 101-layered ResNet (He et al., 2016) as we found that it performs better than
1, 024-dim top-layer pooling units of GoogleNet (Szegedy et al., 2015). We use the
original ResNet-101 that is pre-trained on ImageNet with 1K classes, i.e. the balanced
subset, and we do not fine-tune it for any of the mentioned datasets. In addition to
the ResNet features, we re-evaluate all methods with their published image features.

In zero-shot learning, class embeddings are as important as image features. As
class embeddings, for aPY, AWA1, AWA2, CUB and SUN, we use the per-class
attributes between values 0 and 1 that are provided with the datasets as binary
attributes have been shown (Akata et al., 2015a) to be weaker than continuous
attributes. For ImageNet as attributes of 21K classes are not available, we use
Word2Vec (Mikolov et al., 2013b) trained on Wikipedia provided by (Changpinyo
et al., 2016). Note that an evaluation of class embeddings is out of the scope of this
chapter. We refer the reader to (Akata et al., 2015c) for more details on the topic.

3Our benchmark is in: http://www.mpi-inf.mpg.de/zsl-benchmark

http://www.mpi-inf.mpg.de/zsl-benchmark
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4.5.2 Dataset Splits

Zero-shot learning assumes disjoint training and test classes. Hence, as deep neural
network (DNN) training for image feature extraction is actually a part of model
training, the dataset used to train DNNs, e.g. ImageNet, should not include any
of the test classes. However, we notice from the standard splits (SS) of aPY and
AWA1 datasets that 7 aPY test classes out of 12 (monkey, wolf, zebra, mug, building,
bag, carriage), 6 AWA1 test classes out of 10 (chimpanzee, giant panda, leopard,
persian cat, pig, hippopotamus), are among the 1K classes of ImageNet, i.e. are
used to pre-train ResNet. On the other hand, the mostly widely used splits, i.e. we
term them as standard splits (SS), for SUN from (Lampert et al., 2013) and CUB
from (Akata et al., 2013) shows us that 1 CUB test class out of 50 (Indigo Bunting),
and 6 SUN test classes out of 72 (restaurant, supermarket, planetarium, tent, market,
bridge), are also among the 1K classes of ImageNet.

We noticed that the accuracy for all methods on those overlapping test classes
are higher than others. Therefore, we propose new dataset splits, i.e. proposed splits
(PS), insuring that none of the test classes appear in ImageNet 1K, i.e. used to train
the ResNet model. We present the differences between the standard splits (SS) and
the proposed splits (PS) in Table 5.1. While in SS and PS no image from test classes
is present at training time, at test time our PS includes images from training classes.
We designed the PS this way as evaluating accuracy on both training and test classes
is crucial to show the generalization of the methods.

For SUN, CUB, AWA1, aPY, and our proposed AWA2 dataset, for measuring the
significance of the results, we propose 3 different splits of 580, 100, 27, 15 and 27
training classes respectively while keeping 72, 50, 10, 12 and 10 test classes the same.
It is important to perform hyperparameter search on a disjoint set of validation set
of 65, 50, 13, 5 and 13 classes respectively. We keep the number of classes the same
for SS and PS, however we choose different classes while making sure that the test
classes do not overlap with the 1K training classes of ImageNet.

ImageNet provides possibilities of constructing several zero-shot evaluation splits.
Following (Changpinyo et al., 2016), our first two standard splits consider all the
classes that are 2-hops and 3-hops away from the original 1K classes according to
the ImageNet label hierarchy, corresponding to 1509 and 7678 classes. This split
measures the generalization ability of the models with respect to the hierarchical and
semantic similarity between classes. As discussed in the previous section, another
characteristic of ImageNet is the imbalanced sample size. Therefore, our proposed
split considers 500, 1K and 5K most populated classes among the remaining 21K
classes of ImageNet with approximately 1756, 1624 and 1335 images per class on
average. Similarly, we consider 500, 1K and 5K least-populated classes in ImageNet
which correspond to most fine-grained subsets of ImageNet with approximately 1,
3 and 51 images per class on average. We measure the generalization of methods
to the entire ImageNet data distribution by considering a final split of all the
remaining approximately 20K classes of ImageNet with at least 1 image per-class,
i.e. approximately 631 images per class on average.
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4.5.3 Evaluation Criteria

Single label image classification accuracy has been measured with Top-1 accuracy,
i.e. the prediction is accurate when the predicted class is the correct one. If the
accuracy is averaged for all images, high performance on densely populated classes is
encouraged. However, we are interested in having high performance also on sparsely
populated classes. Therefore, we average the correct predictions independently for
each class before dividing their cumulative sum w.r.t the number of classes, i.e. we
measure average per-class top-1 accuracy in the following way:

accY =
1
‖Y‖

‖Y‖

∑
c=1

# correct predictions in c
# samples in c

(4.21)

In the generalized zero-shot learning setting, the search space at evaluation time is
not restricted to only test classes (Y ts), but includes also the training classes (Y tr),
hence this setting is more practical. As with our proposed split at test time we have
access to some images from training classes, after having computed the average
per-class top-1 accuracy on training and test classes, we compute the harmonic mean
of training and test accuracies:

H =
2 ∗ accY tr ∗ accY ts

accY tr + accY ts
(4.22)

where accY tr and accY ts represent the accuracy of images from seen (Y tr), and images
from unseen (Y ts) classes respectively. We choose harmonic mean as our evaluation
criteria and not arithmetic mean because in arithmetic mean if the seen class accuracy
is much higher, it effects the overall results significantly. Instead, our aim is high
accuracy on both seen and unseen classes.
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SUN CUB AWA1 aPY
Model R O R O R O R O
DAP 22.1 22.2 − − 41.4 41.4 19.1 19.1
SSE 83.0 82.5 44.2 30.4 64.9 76.3 45.7 46.2
LATEM − − 45.1 45.5 71.2 71.9 − −
SJE − − 50.1 50.1 67.2 66.7 − −
ESZSL 64.3 65.8 − − 48.0 49.3 14.3 15.1
SYNC 62.8 62.8 53.4 53.4 69.7 69.7 − −
SAE − − − − 84.7 84.7 − −
GFZSL 86.5 86.5 56.6 56.5 80.4 80.8 − −
GFZSL-tran 87.0 87.0 63.8 63.7 94.9 94.3 − −
DSRL 86.0 85.4 57.6 57.1 87.7 87.2 47.8 51.3

Table 4.2: Reproducing zero-shot results with methods that have a public implemen-
tation: O = Original results, R = Reproduced using provided image features and
code. We measure top-1 accuracy in %. −: image features are not provided in the
original paper for this dataset. Top: ZSL, Bottom: transductive ZSL.

4.6 experiments

We first provide ZSL results on the attribute datasets SUN, CUB, AWA1, AWA2 and
aPY and then on the large-scale ImageNet dataset. Finally, we present results for the
GZSL setting.

4.6.1 Zero-Shot Learning Experiments

On attribute datasets, i.e. SUN, CUB, AWA1, AWA2, and aPY, we first reproduce
the results of each method using their evaluation protocol, then provide a unified
evaluation protocol using the same train/val/test class splits, followed by our
proposed train/val/test class splits on SUN, CUB, AWA1, aPY and AWA2. We
also evaluate the robustness of the methods to parameter tuning and visualize the
ranking of different methods. Finally, we evaluate the methods on the large-scale
ImageNet dataset.

Comparing State-of-The-Art Models. For sanity-check, we re-evaluate methods
(Lampert et al., 2013; Zhang and Saligrama, 2015; Xian et al., 2016; Akata et al., 2015c;
Romera-Paredes et al., 2015; Changpinyo et al., 2016) and (Kodirov et al., 2017) using
publicly available features and code from the original publication on SUN, CUB,
AWA1 and aPY (CMT (Socher et al., 2013) evaluates on CIFAR dataset.). We observe
from the results in Table 4.2 that our reproduced results of DAP(Lampert et al., 2013),
SYNC (Changpinyo et al., 2016), GFZSL (Verm and Rai, 2017), GFZSL-tran (Verm and
Rai, 2017), DSRL (Ye and Guo, 2017) and SAE (Kodirov et al., 2017) are nearly identical
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to the reported number in their original publications. For LATEM (Xian et al., 2016),
we obtain slightly different results which can be explained by the non-convexity and
thus the sensibility to initialization. Similarly for SJE (Akata et al., 2015c) random
sampling in SGD might lead to slightly different results. ESZSL (Romera-Paredes
et al., 2015) has some variance because its algorithm randomly picks a validation set
during each run, which leads to different hyperparameters. Notable observations
on SSE (Zhang and Saligrama, 2015) results are as follows. The published code has
hard-coded hyperparameters operational on aPY, i.e. number of iterations, number
of data points to train SVM, and one regularizer parameter γ which lead to inferior
results than the ones reported here, therefore we set these parameters on validation
sets. On SUN, SSE uses 10 classes (instead of 72) and our results with validated
parameters got an improvement of 0.5% that may be due to random sampling of
training images. On AWA1, our reproduced result being 64.9% is significantly lower
than the reported result (76.3%). However, we could not reach the reported result
even by tuning parameters on the test set (73.8%).

In addition to (Lampert et al., 2013; Zhang and Saligrama, 2015; Xian et al., 2016;
Akata et al., 2015c; Romera-Paredes et al., 2015; Changpinyo et al., 2016; Socher et al.,
2013; Kodirov et al., 2017), we re-implement (Norouzi et al., 2014; Frome et al., 2013;
Akata et al., 2015a) based on the original publications. We use train, validation, test
splits as provided in Table 5.1 and report results in Table 4.3 with deep ResNet
features. DAP (Lampert et al., 2013) uses hand-crafted image features and thus
reproduced results with those features are significantly lower than the results with
deep features (22.1% vs 38.9%). When we investigate the results in detail, we noticed
two irregularities with reported results on SUN. First, SSE (Zhang and Saligrama,
2015) and ESZSL (Romera-Paredes et al., 2015) report results on a test split with 10
classes whereas the standard split of SUN contains 72 test classes (74.5% vs 54.5%
with SSE (Zhang and Saligrama, 2015) and 64.3% vs 57.3% with ESZSL (Romera-
Paredes et al., 2015)). Second, after careful examination and correspondence with
the authors of SYNC (Changpinyo et al., 2016), we detected that SUN features were
extracted with a MIT Places (Zhou et al., 2014) pre-trained model. As the MIT Places
dataset intersects with both training and test classes of SUN, it is expected to lead to
significantly better results than ImageNet pre-trained models (62.8% vs 59.1%). In
addition, while SAE (Kodirov et al., 2017) reported 84.7% on AWA1, we obtain only
80.7% on the standard split. This could be explained by two differences. First, we
measure per-class accuracy but SAE (Kodirov et al., 2017) reports per-image accuracy
which is typically higher when the dataset is class-imbalanced, e.g. AWA1. Indeed,
their reported accuracy decreases to 82.0% if per-class accuracy is applied. Second,
we confirmed with the authors of SAE (Kodirov et al., 2017) that they improved
GoogleNet (Szegedy et al., 2015) by adding Batch Normalization and averaging 5

randomly cropped images to obtain better image features. Therefore, as expected,
improving visual features lead to improved results in zero-shot learning.

Promoting Our Proposed Splits (PS). We propose new dataset splits (see details
in section 4.4) ensuring that test classes of any of the datasets do not overlap with the
ImageNet1K used to pre-train ResNet. As training ResNet is a part of the training
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SUN CUB AWA1 AWA2 aPY
Method SS PS SS PS SS PS SS PS SS PS
DAP 38.9 39.9 37.5 40.0 57.1 44.1 58.7 46.1 35.2 33.8
IAP 17.4 19.4 27.1 24.0 48.1 35.9 46.9 35.9 22.4 36.6
CONSE 44.2 38.8 36.7 34.3 63.6 45.6 67.9 44.5 25.9 26.9
CMT 41.9 39.9 37.3 34.6 58.9 39.5 66.3 37.9 26.9 28.0
SSE 54.5 51.5 43.7 43.9 68.8 60.1 67.5 61.0 31.1 34.0
LATEM 56.9 55.3 49.4 49.3 74.8 55.1 68.7 55.8 34.5 35.2
ALE 59.1 58.1 53.2 54.9 78.6 59.9 80.3 62.5 30.9 39.7
DEVISE 57.5 56.5 53.2 52.0 72.9 54.2 68.6 59.7 35.4 39.8
SJE 57.1 53.7 55.3 53.9 76.7 65.6 69.5 61.9 32.0 32.9
ESZSL 57.3 54.5 55.1 53.9 74.7 58.2 75.6 58.6 34.4 38.3
SYNC 59.1 56.3 54.1 55.6 72.2 54.0 71.2 46.6 39.7 23.9
SAE 42.4 40.3 33.4 33.3 80.6 53.0 80.7 54.1 8.3 8.3
GFZSL 62.9 60.6 53.0 49.3 80.5 68.3 79.3 63.8 51.3 38.4

Table 4.3: Zero-shot learning results on SUN, CUB, AWA1, AWA2 and aPY using SS
= Standard Split, PS = Proposed Split with ResNet features. The results report top-1
accuracy in %.

procedure, including test classes in the dataset used for pre-training ResNet would
violate the zero-shot learning conditions. We compare the results obtained with our
proposed split (PS) with previously published standard split (SS) results in Table 4.3.

Our first observation is that the results on the PS are significantly lower than the
SS for AWA1 and AWA2. This is expected as most of the test classes of AWA1 and
AWA2 in SS overlaps with ImageNet 1K. On the other hand, for fine-grained datasets
CUB and SUN, the results are not significantly effected as the overlap in that case
was not as significant. Our second observation regarding the method ranking is as
follows. On SS, SYNC (Changpinyo et al., 2016) is the best performing method on
SUN (59.1%) and aPY (39.7%) datasets whereas SJE (Akata et al., 2015c) performs
the best on CUB (55.3%) and SAE (Kodirov et al., 2017) performs the best on AWA1

(80.6%) and AWA2 (80.7%) dataset. On PS, ALE (Akata et al., 2015a) performs the
best on SUN (58.1%) and AWA2 (62.5%), SYNC (Changpinyo et al., 2016) on CUB
(55.6%), SJE (Akata et al., 2015c) on AWA1 (65.6%) and DEVISE (Frome et al., 2013)
on aPY (39.8%). ALE, SJE and DEVISE all use max-margin bi-linear compatibility
learning framework which seem to perform better than others. It is also worth to
note that SYNC and SAE perform well on SS, i.e. SYNC is the best performing
model for SUN and aPY whereas SAE is for AWA1 and AWA2 on SS, while they
perform significantly lower in PS which indicates that they do not generalize well in
zero-shot learning task.

Evaluating Robustness. We evaluate robustness of 13 methods, i.e. (Lampert et al.,
2013; Zhang and Saligrama, 2015; Xian et al., 2016; Akata et al., 2015c; Romera-
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Figure 4.3: Robustness of 10 methods evaluated on SUN, CUB, AWA1, aPY using 3

validation set splits (results are on the same test split). Top: original split, Bottom:
proposed split (Image embeddings = ResNet). We measure top-1 accuracy in %.

Paredes et al., 2015; Changpinyo et al., 2016; Socher et al., 2013; Norouzi et al., 2014;
Frome et al., 2013; Akata et al., 2015a; Kodirov et al., 2017; Verm and Rai, 2017), to
hyperparameters by setting them on 3 different validation splits while keeping the
test split intact. We report results on SS (Figure 4.3, top) and PS (Figure 4.3, bottom)
for SUN, CUB, AWA1, AWA2 and aPY datasets. On SUN and CUB, the results are
stable across methods and across dataset splits. This is expected as these datasets
both have a balanced number of images across classes and they are fine-grained
datasets. Therefore, the validation splits are similar. On the other hand, aPY being a
small and coarse-grained dataset has several issues. First, many of the test classes
of aPY are included in ImageNet1K. Second, it is not well balanced, i.e. different
validation class splits contain significantly different number of images. Third, the
class embeddings are far from each other, i.e. objects are semantically different,
therefore different validation splits learn a different mapping between images and
classes. On AWA1 and AWA2, on SS, the DEVISE method seems to show the largest
variance. This might be due to the fact that AWA1 and AWA2 datasets are also
coarse-grained and test classes overlap with ImageNet training classes. Indeed,
AWA2 being slightly more balanced than AWA1, in the proposed split it does not
lead to such a high variance for DEVISE.

Visualizing Method Ranking. We first evaluate the 13 methods using three different
validation splits as in the previous experiment. We then rank them based on
their per-class top-1 accuracy using the non-parametric Friedman test (Garcia and
Herrera, 2008), which does not assume a distribution on performance but rather uses
algorithm ranking. Each entry of the rank matrix on Figure 4.4 indicates the number
of times the method is ranked at the first to thirteenth rank. We then compute the
mean rank of each method and order them based on the mean rank across datasets.

Our general observation is that the highest ranked method on both splits is
GFZSL, the second highest ranked method on the standard split (SS) is SYNC while
it drops to the seventh rank on the proposed split (PS). On the other hand, ALE ranks
the second on the SS and the first on the PS. We reinforce our initial observation
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Figure 4.4: Ranking 12 models by setting parameters on three validation splits on the
standard (SS, left) and proposed (PS, right) setting. Element (i, j) indicates number
of times model i ranks at jth over all 4× 3 observations. Models are ordered by their
mean rank (displayed in brackets).

from numerical results and conclude that GFZSL and ALE seems to be the method
that is the most robust in zero-shot learning setting for attribute datasets. These
results also indicate the importance of choosing zero-shot splits carefully. On the
PS, the two of three highest ranked methods are compatibility learning methods, i.e.
ALE and DEVISE whereas the three lowest ranked methods are attribute classifier
learning or hybrid methods, i.e. IAP, CMT and CONSE. Therefore, max-margin
compatibility learning methods lead to consistently better results in the zero-shot
learning task compared to learning independent classifiers. Finally, visualizing the
method ranking in this way provides a visually interpretable way of how models
compare across datasets.

Results on Our Proposed AWA2. We introduce AWA2 which has the same classes
and attributes as AWA1, but contains different images each coming with a public
copyright license. In order to show that AWA1 and AWA2 images are not the same
but similar in nature, we compare the zero-shot learning results on AWA1 and
AWA2 in Table. 4.3. Under the Standard Splits (SS), SAE (Kodirov et al., 2017) is
the best performing method on both AWA1 (80.6%) and AWA2 (80.7%). Similarly,
for most of the methods, the results on AWA1 are close to those on AWA2, for
instance, DAP obtains 57.1% on AWA1 and 58.7% on AWA2, SSE obtains 68.8%
on AWA1 and 67.5% AWA2, etc. The results under the Proposed Splits (PS) are
also consistent across AWA1 and AWA2. For 8 out of 12 methods, the performance
difference between AWA1 and AWA2 is within 2%. On the other hand, the same
consistency is not observed for DEVISE (Frome et al., 2013), SJE (Akata et al., 2015c)
and SYNC (Changpinyo et al., 2016). For instance, SJE (Akata et al., 2015c) obtains
65.6% on AWA1 and 61.9% on AWA2. After careful examination, we noticed that
SJE (Akata et al., 2015c) selects different hyperparameters for AWA1 and AWA2,
which results in different performance on those two datasets. In our opinion, this
does not indicate a possible dataset artifact, however shows that zero-shot learning
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Training Set : Test Set
Method AWA1:AWA1 AWA1:AWA2 AWA2:AWA2 AWA2:AWA1
DAP 44.1 44.2 46.1 46.2
IAP 35.9 36.1 35.9 35.3
CONSE 45.6 46.5 44.5 43.7
CMT 39.5 40.7 37.9 37.7
SSE 60.1 61.6 61.0 59.8
LATEM 55.1 55.4 55.8 53.5
ALE 59.9 59.9 62.5 60.9
DEVISE 54.2 55.2 59.7 57.7
SJE 65.6 65.5 61.9 62.0
ESZSL 58.2 58.5 58.6 59.9
SYNC 54.0 53.7 46.6 46.9
SAE 53.0 52.4 54.1 53.1

Table 4.4: Cross-dataset evaluation over AWA1 and AWA2 in zero-shot learning
setting on the Proposed Splits: Left of the colon indicates the training set and right
of the colon indicates the test set, e.g. AWA1:AWA2 means that the model is trained
on the train set of AWA1 and evaluated on the test set of AWA2. We measure top-1
accuracy in %.

is sensitive to parameter setting.
Commonly, a model is trained and evaluated on the same dataset. Across dataset

experiments are not easy as different datasets do not share the same attributes.
However, AWA1 and AWA2 share both classes and attributes. In order to verify that
AWA2 is a good replacement for AWA1, we conduct across-dataset evaluation for
12 methods, i.e. (Lampert et al., 2013; Zhang and Saligrama, 2015; Xian et al., 2016;
Akata et al., 2015c; Romera-Paredes et al., 2015; Changpinyo et al., 2016; Socher et al.,
2013; Norouzi et al., 2014; Frome et al., 2013; Akata et al., 2015a; Kodirov et al., 2017).
In particular, with our Proposed Splits (PS), we train one model on the training set
of AWA1 and evaluate it on the test set of AWA2 in the zero-shot learning setting,
and vice versa. From Table. 4.4, we observe that all the models trained on AWA1

generalize well to AWA2 and vice versa.
In addition, we notice that the cross-dataset result is dependent on the training set.

For instance, for all the methods, if we fix training set to be from AWA1, the results
on the test set of AWA1 and AWA2 are close. To verify this hypothesis, we performed
a paired t-test which determines if the mean difference between paired results is
significantly higher than zero. To that end, we take the 24 pairs of results whose test
sets are the same, i.e. the results obtained with 12 methods on AWA1:AWA2 and
AWA2:AWA2 (2nd and 3rd column) as well as the results obtained with 12 methods
on AWA1:AWA1 and AWA2:AWA1 (1st and 4th column). The paired t-test rejects
the null hypothesis with p-value= 0.007, indicating that the results are significantly
different if the test set is the same but the training set is different. As a conclusion,
the training set is an important indicator of the final result and the two datasets, i.e.
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Hierarchy Most Populated Least Populated All
Method 2 H 3 H 500 1K 5K 500 1K 5K 20K
CONSE 7.63 2.18 12.33 8.31 3.22 3.53 2.69 1.05 0.95
CMT 2.88 0.67 5.10 3.04 1.04 1.87 1.08 0.33 0.29
LATEM 5.45 1.32 10.81 6.63 1.90 4.53 2.74 0.76 0.50
ALE 5.38 1.32 10.40 6.77 2.00 4.27 2.85 0.79 0.50
DEVISE 5.25 1.29 10.36 6.68 1.94 4.23 2.86 0.78 0.49
SJE 5.31 1.33 9.88 6.53 1.99 4.93 2.93 0.78 0.52
ESZSL 6.35 1.51 11.91 7.69 2.34 4.50 3.23 0.94 0.62
SYNC 9.26 2.29 15.83 10.75 3.42 5.83 3.52 1.26 0.96
SAE 4.89 1.26 9.96 6.57 2.09 2.50 2.17 0.72 0.56
GFZSL 1.45 −− 2.01 1.35 −− 1.40 1.11 0.13 −−

Table 4.5: ImageNet with different splits: 2/3 H = classes with 2/3 hops away
from the Y tr of ImageNet1K, 500/1K/5K most populated classes, 500/1K/5K least
populated classes, All = The remaining 20K categories of ImageNet (Y ts). We
measure top-1 accuracy in %.

AWA1 and AWA2 are sufficiently similar. Therefore, our cross-dataset experimental
results indicate that AWA2 is a good replacement for AWA1.

Zero-Shot Learning Results on ImageNet. ImageNet scales the methods to a truly
large-scale setting, thus these experiments provide further insights on how to tackle
the zero-shot learning problem from the practical point of view. Here, we evaluate
10 methods, i.e. (Xian et al., 2016; Akata et al., 2015c; Romera-Paredes et al., 2015;
Changpinyo et al., 2016; Socher et al., 2013; Norouzi et al., 2014; Frome et al., 2013;
Akata et al., 2015a; Kodirov et al., 2017; Verm and Rai, 2017). We exclude DAP and
IAP as attributes are not available for all ImageNet classes as well as SSE (Zhang
and Saligrama, 2015) due to scalability issues of the public implementation of the
method. Table 4.5 shows that the best performing method is SYNC (Changpinyo
et al., 2016) which may either indicate that it performs well in large-scale setting
or it can learn under uncertainty due to usage of Word2Vec instead of attributes.
Another possibility is Word2Vec may be tuned for SYNC as it is provided by the
same authors. However, we refrain to make a strong claim as this would requires a
full evaluation on class embeddings which is out of the scope of this chapter. On the
other hand, GFZSL (Verm and Rai, 2017) which is the best performing model for
attribute datasets perform poorly on ImageNet which may indicate that generative
models require a strong class embedding space such as attributes to perform well
on ZSL task. Note that due to the computational issues, we were not able to obtain
results for GFZSL for 3H, M5K, L5K and All 20K classes.

More detailed observations are as follows. The second highest performing
method is ESZSL (Romera-Paredes et al., 2015) which is one of the linear embedding
models that have an implicit regularization mechanism, which seems to be more
effective than early stopping as an explicit regularizer. A general observation from
the results of all the methods is that in the most populated classes, the results are



4.6 experiments 73

2H 3H M500 M1K M5K L500 L1K L5K All
0

2

4

6

8

10

12

14

16

T
op

-1
 A

cc
. (

in
 %

)
CONSE
CMT
LATEM
ALE
DEVISE
SJE
ESZSL
SYNC
SAE

2H 3H M500 M1K M5K L500 L1K L5K All
0

5

10

15

20

25

30

35

40

T
op

-5
 A

cc
. (

in
 %

)

CONSE
CMT
LATEM
ALE
DEVISE
SJE
ESZSL
SYNC
SAE

2H 3H M500 M1K M5K L500 L1K L5K All
0

10

20

30

40

50

T
op

-1
0 

A
cc

. (
in

 %
)

CONSE
CMT
LATEM
ALE
DEVISE
SJE
ESZSL
SYNC
SAE

Figure 4.5: Zero-Shot Learning experiments on Imagenet, measuring Top-1, Top-5
and Top-10 accuracy. 2/3 H = classes with 2/3 hops away from ImageNet1K training
classes (Y tr), M500/M1K/M5K denote 500, 1K and 5K most populated classes,
L500/L1K/L5K denote 500, 1K and 5K least populated classes, All = The remaining
20K categories of ImageNet.

higher than the least populated classes which indicates that zero-shot learning on
fine-grained ImageNet subsets is a more difficult task. Moreover, we conclude that
the nature of the test set, e.g. type of the classes being tested, is more important
than the number of classes. Therefore, the selection of the test set is an important
aspect of zero-shot learning on large-scale datasets. Furthermore, for all methods we
consistently observe a large drop in accuracy between 1K and 5K most populated
classes which is expected as 5K contains ≈ 6.6M images, making the problem much
more difficult than 1K (≈ 1624 images). It is worth to note that, measuring per-image
accuracy in this case would lead to higher results if the labels of the highly populated
class samples are predicted correctly. Finally, the largest test set, i.e. All 20K, the
results are poor for all methods which indicates the difficulty of this problem where
there is a large room for improvement.

Several models in the literature evaluate Top-5 and Top-10 as well as Top-1
accuracy on ImageNet. Top-5 and Top-10 accuracy in this case is reasonable as an
image usually contains multiple objects however by construction it is associated with
a single label in ImageNet. Hence, we provide a comparison of the same 9 models
according to all these three criteria in Figure 4.5. We observe that SYNC (Changpinyo
et al., 2016) performs significantly better than other methods when the number of
images is higher, e.g. 2H, M500, M1K, whereas the gap reduces when the number
of images and the number of classes increase, e.g. 3H, L5K and All. In fact, when
for All, all the methods perform similarly and poorly which indicates that there is a
large room for improvement in this task. In fact, this observation carries on for all
three accuracy measures. For Top-5 (middle) and Top-10 (right) accuracy although
the numbers are as expected in general higher, the winning model remains as SYNC,
significantly for 2H, M500 and M1K whereas the difference is smaller with 3H, L5H,
L1K. On the other hand, all methods perform similarly when all 20K classes are
tested.
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SUN CUB AWA1 AWA2 aPY
Method ts tr H ts tr H ts tr H ts tr H ts tr H
DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
IAP 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4
CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
CMT 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8
CMT* 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 8.7 89.0 15.9 10.9 74.2 19.0
SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4
LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2
ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7
DEVISE 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2
SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9
ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6
SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3
SAE 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9
GFZSL 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

Table 4.6: Generalized Zero-Shot Learning on Proposed Split (PS) measuring ts =
Top-1 accuracy on Y ts, tr=Top-1 accuracy on Y tr, H = harmonic mean (CMT*: CMT
with novelty detection). We measure top-1 accuracy in %.

4.6.2 Generalized Zero-Shot Learning Results

In real world applications, image classification systems do not have access to whether
a novel image belongs to a seen or unseen class in advance. Hence, generalized
zero-shot learning is interesting from a practical point of view. Here, we use same
models trained on ZSL setting on our proposed splits (PS). We evaluate performance
on both Y tr and Y ts (using held-out images).

As shown in Table 4.6, generalized zero-shot learning results are significantly
lower than zero-shot learning results. This is due to the fact that training classes
are included in the search space which act as distractors for the images that come
from test classes, e.g. most of the images that are being evaluated. An interesting
observation is that compatibility learning frameworks, e.g. ALE, DEVISE, SJE,
perform well on test classes. However, methods that learn independent attribute or
object classifiers, e.g. DAP and CONSE, perform well on training classes. Due to
this discrepancy, we evaluate the harmonic mean which takes a weighted average
of training and test class accuracy as shown in Equation 4.17. The harmonic mean
measure ranks ALE as the best performing method on SUN, CUB and AWA1 datasets
whereas on our AWA2 dataset DEVISE performs the best and on aPY dataset CMT*
performs the best. Note that CMT* has an integrated novelty detection phase for
which the method receives another supervision signal determining if the image
belongs to a training or a test class. Similar to the ImageNet results, GFZSL (Verm
and Rai, 2017) performs poorly on GZSL setting.

As for the generalized zero-shot learning setting on ImageNet, we report results
measured on unseen classes as no images are reserved from seen classes on Figure 4.6.
Our first observation is that there is no winner model in all cases, the results
diverge for different splits and different accuracy measures. For instance, when the
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Figure 4.6: GZSL on Imagenet, measuring Top-1, Top-5 and Top-10 accuracy. 2/3H:
classes with 2/3 hops away from ImageNet1K Y tr, M500/M1K/M5K: 500/1K/5K
most populated classes, L500/L1K/L5K: 500/1K/5K least populated classes, All:
Remaining 20K classes.

performance is measured with Top-1 accuracy, in general the best performing model
seems to be DEVISE, ALE and SJE which are all linear compatibility learning models.
On the other hand, for Top-5 accuracy different models take the lead in different
splits, e.g. CONSE works the best for 3H and M5K indicating that it performs better
when the number of images that come from unseen classes is larger. Whereas SJE
and ESZSL works better for 2H, M500, L5H settings. Finally, for Top-10 accuracy,
the best performing model overall is ESZSL which is the model that learns a linear
compatibility with an explicit regularization scheme. Finally, for Top-1, Top-5 and
Top-10 results we observe the same trend for when all the unseen classes are included
in the test set, i.e. the models perform similarly however CONSE slightly stands out
for Top-5 and Top-10 accuracy plots.

In summary, generalized zero-shot learning setting provides one more level of
detail on the performance of zero-shot learning methods. Our take-home message is
that the accuracy of training classes is as important as the accuracy of test classes in
real world scenarios. Therefore, methods should be designed in a way that they are
able to predict labels well both in train and test classes.

Visualizing Method Ranking. Similar to the analysis in the previous section that
was conducted for zero-shot learning setting, we rank the 13 methods, i.e. (Lampert
et al., 2013; Zhang and Saligrama, 2015; Xian et al., 2016; Akata et al., 2015c; Romera-
Paredes et al., 2015; Changpinyo et al., 2016; Socher et al., 2013; Norouzi et al., 2014;
Frome et al., 2013; Akata et al., 2015a; Kodirov et al., 2017; Verm and Rai, 2017), based
on their results obtained on SUN, CUB, AWA1, AWA2 and aPY. The performance is
measured on seen classes, unseen classes and the Harmonic mean of the two.

The rank matrix of test classes, i.e. Figure 4.7 top left, shows that highest ranked
methods,i.e. ALE, DEVISE, SJE, although overall the absolute accuracy numbers
are lower (Table 4.6). Note that in Figure 4.4 GFZSL ranked highest which shows
that GFZSL is not as strong for GZSL task. The rank matrix of the harmonic mean
shows the same trend. However, the rank matrix of training classes, i.e. Figure 4.7
top right, shows that models that learn intermediate attribute classifiers perform
well for the images that come from training classes. However, these models typically
do not lead to a high accuracy for the images that belong to unseen classes as shown
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Figure 4.7: Ranking 13 models on the proposed split (PS) in generalized zero-shot
learning setting. Top-Left: Top-1 accuracy (T1) is measured on unseen classes (ts),
Top-Right: T1 is measured on seen classes (tr), Bottom: T1 is measured on Harmonic
mean (H).

in Table 4.6. This eventually makes the harmonic mean, i.e. the overall accuracy on
both training and test classes, lower. These results clearly suggest that one should
not only optimize for test class accuracy but also for training class accuracy while
evaluating generalized zero-shot learning.

Our final observation from Figure 4.7 is that CMT* is better than CMT in all
cases which supports the argument that a simple novelty detection scheme helps to
improve results. However, it is important to note that the proposed novelty detection
mechanism uses more supervision than classic zero-shot learning models. Although
the label of test classes is not used, whether the sample comes from a seen or unseen
class is an additional supervision.

4.6.3 Transductive (Generalized) Zero-Shot Learning

In contrast to previous zero-shot learning approaches that learn only with data from
training classes, transductive approaches use unlabaled images from test classes.
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Figure 4.8: Zero-shot (left) and generalized zero-shot learning (right) results in the
transductive learning setting on our Proposesd Split.

In this section, we evaluate three state-of-the-art transductive ZSL approaches, i.e.
DSRL (Ye and Guo, 2017), GFZSL-tran (Verm and Rai, 2017), and ALE-tran (Akata
et al., 2015a). Similar to the previous section, we evaluate those approaches on our
proposed splits in both zero-shot learning where test time search space is composed
of only unseen classes and generalized zero-shot learning where it contains both
seen and unseen classes. The performance is per-class averaged top-1 accuracy.

Our transductive learning results are presented in Figure 4.8. We observe that in
ZSL setting, transductive learning leads to accuracy improvement, e.g. ALE-tran and
GFZSL-tran outperforms ALE and GFZSL respectively in almost all cases. In partic-
ular, on AWA2, GFZSL-tran achieves 78.6%, significantly improving GFZSL (63.8%).
On APY, ALE-tran obtains 45.5% and significantly improves ALE (37.1%) as well.
Moreover, GFZSL-tran outperforms ALE-tran and DSRL on SUN, AWA1 and AWA2.
However, ALE-tran performs the best on CUB and APY. In GZSL setting we observe
a different trend, i.e. transductive learning does not improve results for ALE in any
of the datasets. Although, on AWA1 and AWA2 GFZSL results improve significantly
for the transductive learning setting, on other datasets GFZSL model performs
poorly both in inductive and in transductive settings.

4.7 conclusion

In this work, we evaluated a significant number of state-of-the-art zero-shot learning
methods, i.e. (Lampert et al., 2013; Zhang and Saligrama, 2015; Xian et al., 2016;
Akata et al., 2015c; Romera-Paredes et al., 2015; Changpinyo et al., 2016; Socher et al.,
2013; Norouzi et al., 2014; Frome et al., 2013; Akata et al., 2015a; Kodirov et al., 2017;
Verm and Rai, 2017; Ye and Guo, 2017), on several datasets, i.e. SUN, CUB, AWA1,
AWA2, aPY and ImageNet, within a unified evaluation protocol both in zero-shot
and generalized zero-shot settings.

Our evaluation showed that generative models and compatibility learning frame-
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works have an edge over learning independent object or attribute classifiers and also
over other hybrid models for the classic zero-shot learning setting. We observed
that unlabeled data of unseen classes can further improve the zero-shot learning
results, thus it is not fair to compare transductive learning approaches with inductive
ones. We discovered that some standard zero-shot dataset splits may treat feature
learning disjoint from the training stage as several test classes are included in the
ImageNet1K dataset that is used to train the deep neural networks that act as feature
extractor. Therefore, we proposed new dataset splits making sure that none of the
test classes in none of the datasets belong to ImageNet1K. Moreover, disjoint training
and validation class split is a necessary component of parameter tuning in zero-shot
learning setting.

In addition, we introduced a new Animal with Attributes (AWA2) dataset. AWA2

inherits the same 50 classes and attributes annotations from the original Animal with
Attributes (AWA1) dataset, but consists of different 37, 322 images with publicly
available redistribution license. Our experimental results showed that the 12 methods
that we evaluated perform similarly on AWA2 and AWA1. Moreover, our statistical
consistency test indicated that AWA1 and AWA2 are compatible with each other.

Finally, including training classes in the search space while evaluating the meth-
ods, i.e. generalized zero-shot learning, provides an interesting playground for
future research. Although the generalized zero-shot learning accuracy obtained
with 13 models compared to their zero-shot learning accuracy is significantly lower,
the relative performance comparison of different models remain the same. Having
noticed that some models perform well when the test set is composed only of seen
classes, while some others perform well when the test set is composed of only of
unseen classes, we proposed the Harmonic mean of seen and unseen class accuracy
as a unified measure for performance in GZSL setting. The Harmonic mean encour-
ages the models to perform well on both seen and unseen class samples, which is
closer to a real world setting. In summary, our work extensively evaluated the good
and bad aspects of zero-shot learning while sanitizing the ugly ones.
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In Chapter 4, we observe that almost all zero-shot learning approaches fail to
predict novel classes in the realistic generalized zero-shot learning setting. In
this chapter, our goal is to develop methods to tackle generalized zero-shot

learning under the benchmark proposed in Chapter 4. In a high-level point of view,
we propose to learn a feature generator that synthesizes visual features for novel
classes. The generated features alleviate the imbalanced issues and consistently
improve the zero-shot and generalized zero-shot learning results.

In Chapter 6, we extend the approach introduced this chapter by improving the
generative model and incorporating unlabeled data. We also show the effectiveness
of our approach on few-shot learning tasks. Chapter 7 defines and addresses the
zero-shot and few-shot learning problems in the scenario of semantic segmentation.
Chapter 8 tackles few-shot learning challenges arised in video action classification
tasks.

5.1 introduction

Deep learning has allowed to push performance considerably across a wide range
of computer vision and machine learning tasks. However, almost always, deep
learning requires large amounts of training data which we are lacking in many
practical scenarios, e.g. it is impractical to annotate all the concepts that surround
us, and have enough of those annotated samples to train a deep network. Therefore,
training data generation has become a hot research topic (e.g. Chawla et al., 2002;
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Figure 5.1: CNN features can be extracted from: 1) real images, however in zero-shot
learning we do not have access to any real images of unseen classes, 2) synthetic
images, however they are not accurate enough to improve image classification
performance. We tackle both of these problems and propose a novel attribute
conditional feature generating adversarial network formulation, i.e. f-CLSWGAN, to
generate CNN features of unseen classes.

Goodfellow et al., 2014; Chen and Koltun, 2017; Reed et al., 2016c; Zhang et al.,
2017a; Salimans et al., 2016). Generative Adversarial Networks (Goodfellow et al.,
2014) are particularly appealing as they allow generating realistic and sharp images
conditioned, for instance, on object categories (e.g. Reed et al., 2016c; Zhang et al.,
2017a). However, they do not yet generate images of sufficient quality to train deep
learning architectures as demonstrated by our experimental results.

In this work, we are focusing on arguably the most extreme case of lacking data,
namely zero-shot learning (e.g. Lampert et al., 2013; Xian et al., 2017; Chao et al.,
2016), where the task is to learn to classify when no labeled examples of certain
classes are available during training. We argue that this scenario is a great testbed for
evaluating the robustness and generalization of generative models. In particular, if
the generator learns discriminative visual data with enough variation, the generated
data should be useful for supervised learning. Hence, one contribution of this
chapter is a comparison of various existing GAN-models and another competing
generative model, i.e. GMMN, for visual feature generation. In particular, we look
into both zero-shot learning (ZSL) where the test time search space is restricted
to unseen class labels and generalized zero-shot learning (GZSL) for being a more
realistic scenario as at test time the classifier has to decide between both seen and
unseen class labels. In this context, we propose a novel GAN-method – namely
f-CLSWGAN that generates features instead of images and is trained with a novel
loss improving over alternative GAN-models.

We summarize our contributions as follows. (1) We propose a novel conditional
generative model f-CLSWGAN that synthesizes CNN features of unseen classes by
optimizing the Wasserstein distance regularized by a classification loss. (2) Across
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five datasets with varying granularity and sizes, we consistently improve upon the
state of the art in both the ZSL and GZSL settings. We demonstrate a practical
application for adversarial training and propose GZSL as a proxy task to evaluate
the performance of generative models. (3) Our model is generalizable to different
deep CNN features, e.g. extracted from GoogleNet or ResNet, and may use different
class-level auxiliary information, e.g. sentence, attribute, and word2vec embeddings.

5.2 related work

In this section we review some recent relevant literature on Generative Adversarial
Networks, Zero-Shot Learning (ZSL) and Generalized Zero-Shot (GZSL) Learning.

Generative Adversarial Network. GAN (Goodfellow et al., 2014) was originally
proposed as a means of learning a generative model which captures an arbitrary
data distribution, such as images, from a particular domain. The input to a generator
network is a “noise” vector z drawn from a latent distribution, such as a multivariate
Gaussian. DCGAN (Radford et al., 2016) extends GAN by leveraging deep convo-
lution neural networks and providing best practices for GAN training. (Wang and
Gupta, 2016) improves DCGAN by factorizing the image generation process into
style and structure networks, InfoGAN (Chen et al., 2016) extends GAN by addition-
ally maximizing the mutual information between interpretable latent variables and
the generator distribution. GAN has also been extended to a conditional GAN by
feeding the class label (Mirza and Osindero, 2014), sentence descriptions (Reed et al.,
2016b,c; Zhang et al., 2017a), into both the generator and discriminator. The theory
of GAN is recently investigated in (Arjovsky and Bottou, 2017; Arjovsky et al., 2017;
Gulrajani et al., 2017), where they show that the Jenson-shannon divergence opti-
mized by the original GAN leads to instability issues. To cure the unstable training
issues of GANs, (Arjovsky et al., 2017) proposes Wasserstein-GAN (WGAN), which
optimizes an efficient approximation of the Earth Mover, i.e. Wasserstein-1, distance.
While WGAN attains better theoretical properties than the original GAN, it still
suffers from vanishing and exploding gradient problems due to weight clipping to
enforce the 1-Lipschitz constraint on the discriminator. Hence, (Gulrajani et al., 2017)
proposes an improved version of WGAN enforcing the Lipschitz constraint through
gradient penalty. Although those papers have demonstrated realistic looking images,
they have not applied this idea to image feature generation.

In this chapter, we empirically show that images generated by the state-of-the-art
GAN (Gulrajani et al., 2017) are not ready to be used as training data for learning a
classifier. Hence, we propose a novel GAN architecture to directly generate CNN
features that can be used to train a discriminative classifier for zero-shot learning.
Combining the powerful WGAN (Gulrajani et al., 2017) loss and a classification
loss which enforces the generated features to be discriminative, our proposed GAN
architecture improves the original GAN (Goodfellow et al., 2014) by a large margin
and has an edge over WGAN (Gulrajani et al., 2017) thanks to our regularizer.

For zero-shot and generalized zero-shot learning literature, readers can refer to
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Chapter 2.
In this chapter, we propose to tackle generalized zero-shot learning by generating

CNN features for unseen classes via a novel GAN model. Our work is different
from (Hariharan and Girshick, 2017) because they generate additional examples
for data-starved classes from feature vectors alone, which is unimodal and do not
generalize to unseen classes. Our work is closer to (Bucher et al., 2017) in which
they generate features via GMMN (Li et al., 2015). Hence, we directly compare with
them on the latest zero-shot learning benchmark (Xian et al., 2017) and show that
WGAN (Arjovsky et al., 2017) coupled with our proposed classification loss can
further improve GMMN in feature generation on most datasets for both ZSL and
GZSL tasks.

5.3 feature generation & classification in zsl

Existing ZSL models only see labeled data from seen classes during training biasing
the predictions to seen classes. The main insight of our proposed model is that by
feeding additional synthetic CNN features of unseen classes, the learned classifier
will also explore the embedding space of unseen classes. Hence, the key to our
approach is the ability to generate semantically rich CNN feature distributions
conditioned on a class specific semantic vector e.g. attributes, without access to
any images of that class. This alleviates the imbalance between seen and unseen
classes, as there is no limit to the number of synthetic CNN features that our model
can generate. It also allows to directly train a discriminative classifier, i.e. Softmax
classifier, even for unseen classes.

We begin by defining the problem of our interest. Let S = {(x, y, c(y))|x ∈
X , y ∈ Y s, c(y) ∈ C} where S stands for the training data of seen classes, x ∈ Rdx

is the CNN features, y denotes the class label in Y s = {y1, . . . , yK} consisting of K
discrete seen classes, and c(y) ∈ Rdc is the class embedding, e.g. attributes, of class
y that models the semantic relationship between classes. In addition, we have a
disjoint class label set Yu = {u1, . . . , uL} of unseen classes, whose class embedding
set U = {(u, c(u))|u ∈ Yu, c(u) ∈ C} is available but images and image features are
missing. Given S and U , the task of ZSL is to learn a classifier fzsl : X → Yu and in
GZSL we learn a classifier fgzsl : X → Y s ∪ Yu.

5.3.1 Feature Generation

In this section, we begin our discussion with Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) for it being the basis of our model. GAN consists
of a generative network G and a discriminative network D that compete in a two
player minimax game. In the context of generating image pixels, D tries to accurately
distinguish real images from generated images, while G tries to fool the discriminator
by generating images that are mistakable for real. Following (Mirza and Osindero,
2014), we extend GAN to conditional GAN by including a conditional variable to
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both G and D. In the following we give the details of the conditional GAN variants
that we develop. Our novelty lies in that we develop three conditional GAN variants,
i.e. f-GAN, f-WGAN and f-CLSWGAN, to generate image features rather than image
pixels. It is worth noting that our models are only trained with seen class data S but
can also generate image features of unseen classes.

f-GAN. Given the train data S of seen classes, we aim to learn a conditional generator
G : Z × C → X , which takes random Gaussian noise z ∈ Z ⊂ Rdz and class
embedding c(y) ∈ C as its inputs, and outputs a CNN image feature x̃ ∈ X of class
y. Once the generator G learns to generate CNN features of real images, i.e. x,
conditioned on the seen class embedding c(y) ∈ Y s, it can also generate x̃ of any
unseen class u via its class embedding c(u). Our feature generator f-GAN is learned
by optimizing the following objective,

min
G

max
D
LGAN =E[log D(x, c(y))]+ (5.1)

E[log (1− D(x̃, c(y)))],

with x̃ = G(z, c(y)). The discriminator D : X × C → [0, 1] is a multi-layer perceptron
with a sigmoid function as the last layer. While D tries to maximize the loss, G
tries to minimizes it. Although GAN has been shown to capture complex data
distributions, e.g. pixel images, they are notoriously difficult to train (Arjovsky and
Bottou, 2017).

f-WGAN. We extend the improved WGAN (Gulrajani et al., 2017) to a conditional
WGAN by integrating the class embedding c(y) to both the generator and the
discriminator. The loss is,

LWGAN =E[D(x, c(y))]− E[D(x̃, c(y))]− (5.2)

λE[(||∇x̂D(x̂, c(y))||2 − 1)2],

where x̃ = G(z, c(y)), x̂ = αx + (1− α)x̃ with α ∼ U(0, 1), and λ is the penalty
coefficient. In contrast to the GAN, the discriminative network here is defined as
D : X × C → R, which eliminates the sigmoid layer and outputs a real value. The
log in Equation 5.1 is also removed since we are not optimizing the log likelihood.
Instead, the first two terms in Equation 6.1 approximate the Wasserstein distance,
and the third term is the gradient penalty which enforces the gradient of D to have
unit norm along the straight line between pairs of real and generated points. Again,
we solve a minmax optimization problem,

min
G

max
D
LWGAN (5.3)

f-CLSWGAN. f-WGAN does not guarantee that the generated CNN features are
well suited for training a discriminative classifier, which is our goal. We conjecture
that this issue could be alleviated by encouraging the generator to construct features
that can be correctly classified by a discriminative classifier trained on the input
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Figure 5.2: Our f-CLSWGAN: we propose to minimize the classification loss over
the generated features and the Wasserstein distance with gradient penalty.

data. To this end, we propose to minimize the classification loss over the generated
features in our novel f-CLSWGAN formulation. We use the negative log likelihood,

LCLS = −Ex̃∼px̃ [log P(y|x̃; θ)], (5.4)

where x̃ = G(z, c(y)), y is the class label of x̃, P(y|x̃; θ) denotes the probability of x̃
being predicted with its true class label y. The conditional probability is computed
by a linear softmax classifier parameterized by θ, which is pretrained on the real
features of seen classes. The classification loss can be thought of as a regularizer
enforcing the generator to construct discriminative features. Our full objective then
becomes,

min
G

max
D
LWGAN + βLCLS (5.5)

where β is a hyperparameter weighting the classifier.

5.3.2 Classification

Given c(u) of any unseen class u ∈ Yu, by resampling the noise z and then recom-
puting x̃ = G(z, c(u)), arbitrarily many visual CNN features x̃ can be synthesized.
After repeating this feature generation process for every unseen class, we obtain a
synthetic training set Ũ = {(x̃, u, c(u))}. We then learn a classifier by training either
a multimodal embedding model or a softmax classifier. Our generated features allow
to train those methods on the combinations of real seen class data S and generated
unseen class data Ũ .

Multimodal Embedding. Many efficient zero-shot learning approaches, e.g. (Akata
et al., 2015a), DEVISE (Frome et al., 2013), SJE (Akata et al., 2015c), ESZSL (?) and
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LATEM (Xian et al., 2016), learn a multimodal embedding between the image feature
space X and the class embedding space C using seen classes data S . With our
generated features, those methods can be trained with seen classes data S together
with unseen classes data Ũ to learn a more robust classifier. The embedding model
F(x, c(y); W), parameterized by W, measures the compatibility score between any
image feature x and class embedding c(y) pair. Given a query image feature x, the
classifier searches for the class embedding with the highest compatibility via:

f (x) = argmax
y

F(x, c(y); W), (5.6)

where in ZSL, y ∈ Yu and in GZSL, y ∈ Y s ∪ Yu.

Softmax. The standard softmax classifier minimizes the negative log likelihood loss,

min
θ
− 1
|T | ∑

(x,y)∈T
log P(y|x; θ), (5.7)

where θ ∈ Rdx×N is the weight matrix of a fully connected layer which maps
the image feature x to N unnormalized probabilities with N being the number of

classes, and P(y|x; θ) =
exp(θT

y x)

∑N
i exp(θT

i x)
. Depending on the task, T = Ũ if it is ZSL and

T = S ∪ Ũ if it is GZSL. The prediction function is:

f (x) = arg max
y

P(y|x; θ), (5.8)

where in ZSL, y ∈ Yu and in GZSL, y ∈ Y s ∪ Yu.

5.4 experiments

First we detail our experimental protocol, then we present (1) our results comparing
our framework with the state of the art for GZSL and ZSL tasks on four challenging
datasets, (2) our analysis of f-xGAN 4 under different conditions, (3) our large-scale
experiments on ImageNet and (4) our comparison of image and image feature
generation.

Datasets. Caltech-UCSD-Birds 200-2011 (CUB) (Welinder et al., 2010), Oxford Flowers
(FLO) (Nilsback and Zisserman, 2008) and SUN Attribute (SUN) (Patterson and
Hays, 2012) are all fine-grained datasets. CUB contains 11,788 images from 200

different types of birds annotated with 312 attributes. FLO dataset 8189 images
from 102 different types of flowers without attribute annotations. However, for both
CUB and FLO we use the fine-grained visual descriptions collected by (Reed et al.,
2016a). SUN contains 14,340 images from 717 scenes annotated with 102 attributes.
Finally, Animals with Attributes (AWA) (Lampert et al., 2013) is a coarse-grained

4We denote our f-GAN, f-WGAN, f-CLSWGAN as f-xGAN
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Dataset att stc |Y s|+ |Yu| |Y s| |Yu|
CUB (Welinder et al., 2010) 312 Y 200 100 + 50 50

FLO (Nilsback and Zisserman, 2008) – Y 102 62 + 20 20
SUN (Patterson and Hays, 2012) 102 N 717 580 + 65 72

AWA (Lampert et al., 2013) 85 N 50 27 + 13 10

Table 5.1: CUB, SUN, FLO, AWA datasets, in terms of number of attributes per class
(att), sentences (stc), number of classes in training + validation (Y s) and test classes
(Yu).

dataset with 30,475 images, 50 classes and 85 attributes. Statistics of the datasets are
presented in Table 5.1. We use the zero-shot splits proposed by (Xian et al., 2017)
for AWA, CUB and SUN insuring that none of the training classes are present in
ImageNet (Deng et al., 2009)5. For FLO, we use the standard split provided by (Reed
et al., 2016a).

Features. As real CNN features, we extract 2048-dim top-layer pooling units of the
101-layered ResNet (He et al., 2016) from the entire image. We do not do any image
pre-processing such as cropping, background subtraction etc, or use any other data
augmentation techniques. ResNet is pre-trained on ImageNet 1K and not fine-tuned.
As synthetic CNN features, we generate 2048-dim CNN features using our f-xGAN
model. As the class embedding, unless it is stated otherwise, we use per-class
attributes for AWA (85-dim), CUB (312-dim) and SUN (102-dim). Furthermore,
for CUB and Flowers, we extract 1024-dim character-based CNN-RNN (Reed et al.,
2016a) features from fine-grained visual descriptions (10 sentences per image). None
of the Yu sentences are seen during training the CNN-RNN. We build per-class
sentences by averaging the CNN-RNN features that belong to the same class.

Evaluation Protocol. At test time, in the ZSL setting, the aim is to assign an unseen
class label, i.e. Yu to the test image and in GZSL setting, the search space includes
both seen or unseen classes, i.e. Y s ∪ Yu. We use the unified evaluation protocol
proposed in (Xian et al., 2017). In the ZSL setting, the average accuracy is computed
independently for each class before dividing their cumulative sum by the number
of classes; i.e., we measure average per-class top-1 accuracy (T1). In the GZSL
setting, we compute average per-class top-1 accuracy on seen classes (Y s) denoted
as s, average per-class top-1 accuracy on unseen classes (Yu) denoted as u and their
harmonic mean, i.e. H = 2 ∗ (s ∗ u)/(s + u).

Implementation details. In all f-xGAN models, both the generator and the discrimi-
nator are MLP with LeakyReLU activation. The generator consists of a single hidden
layer with 4096 hidden units. Its output layer is ReLU because we aim to learn
the top max-pooling units of ResNet-101. While the discriminator of f-GAN has

5as ImageNet is used for pre-training the ResNet (He et al., 2016)
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Zero-Shot Learning Generalized Zero-Shot Learning
CUB FLO SUN AWA CUB FLO SUN AWA

Classifier FG T1 T1 T1 T1 u s H u s H u s H u s H

DEVISE
none 52.0 45.9 56.5 54.2 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9 13.4 68.7 22.4
f-CLSWGAN 60.3 60.4 60.9 66.9 52.2 42.4 46.7 45.0 38.6 41.6 38.4 25.4 30.6 35.0 62.8 45.0

SJE
none 53.9 53.4 53.7 65.6 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8 11.3 74.6 19.6
f-CLSWGAN 58.4 67.4 56.5 66.9 48.1 37.4 42.1 52.1 56.2 54.1 36.7 25.0 29.7 37.9 70.1 49.2

LATEM
none 49.3 40.4 55.3 55.1 15.2 57.3 24.0 6.6 47.6 11.5 14.7 28.8 19.5 7.3 71.7 13.3
f-CLSWGAN 60.8 60.8 61.3 69.9 53.6 39.2 45.3 47.2 37.7 41.9 42.4 23.1 29.9 33.0 61.5 43.0

ESZSL
none 53.9 51.0 54.5 58.2 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8 6.6 75.6 12.1
f-CLSWGAN 54.7 54.3 54.0 63.9 36.8 50.9 43.2 25.3 69.2 37.1 27.8 20.4 23.5 31.1 72.8 43.6

ALE
none 54.9 48.5 58.1 59.9 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5
f-CLSWGAN 61.5 71.2 62.1 68.2 40.2 59.3 47.9 54.3 60.3 57.1 41.3 31.1 35.5 47.6 57.2 52.0

Softmax
none – – – – – – – – – – – – – – – –
f-CLSWGAN 57.3 67.2 60.8 68.2 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4 57.9 61.4 59.6

Table 5.2: ZSL measuring per-class average Top-1 accuracy (T1) on Yu and GZSL
measuring u = T1 on Yu, s = T1 on Y s, H = harmonic mean (FG=feature generator,
none: no access to generated CNN features, hence softmax is not applicable). f-
CLSWGAN significantly boosts both the ZSL and GZSL accuracy of all classification
models on all four datasets.

one hidden layer with 1024 hidden units in order to stabilize the GAN training,
the discriminators of f-WGAN and f-CLSWGAN have one hidden layer with 4096

hidden units as WGAN (Gulrajani et al., 2017) does not have instability issues thus a
stronger discriminator can be applied here. We do not apply batch normalization our
empirical evaluation showed a significant degradation of the accuracy when batch
normalization is used. The noise z is drawn from a unit Gaussian with the same
dimensionality as the class embedding. We use λ = 10 as suggested in (Gulrajani
et al., 2017) and β = 0.01 across all the datasets.

5.4.1 Comparing with State-of-the-Art

In a first set of experiments, we evaluate our f-xGAN features in both the ZSL and
GZSL settings on four challenging datasets: CUB, FLO, SUN and AWA. Unless
it is stated otherwise, we use att for CUB, SUN, AWA and stc for FLO (as att are
not available). We compare the effect of our feature generating f-xGAN to 6 recent
state-of-the-art methods (Xian et al., 2017).

ZSL with f-CLSWGAN. We first provide ZSL results with our f-CLSWGAN in
Table 5.2 (left). Here, the test-time search space is restricted to unseen classes Yu.
First, our f-CLSWGAN in all cases improves the state of the art that is obtained
without feature generation. The overall accuracy improvement on CUB is from 54.9%
to 61.5%, on FLO from 53.4% to 71.2%, on SUN from 58.1% to 62.1% and on AWA
from 65.6% to 69.9%, i.e. all quite significant. Another observation is that feature
generation is applicable to all the multimodal embedding models and softmax. These
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Figure 5.3: Zero-shot learning results when comparing f-xGAN versions with f-
GMMN as well as comparing multimodal embedding methods with softmax.

results demonstrate that indeed our f-CLSWGAN generates generalizable and strong
visual features of previously unseen classes.

GZSL with f-CLSWGAN. Our main interest is GZSL where the test time search
space contains both seen and unseen classes, Y s ∪ Yu, and at test time the images
come both from seen and unseen classes. Therefore, we evaluate both seen and
unseen class accuracy, i.e. s and u, as well as their harmonic mean (H). The GZSL
results with f-CLSWGAN in Table 5.2 (right) demonstrate that for all datasets our
f-xGAN significantly improves the H-measure over the state-of-the-art. On CUB,
f-CLSWGAN obtains 49.7% in H measure, significantly improving the state of the art
(34.4%), on FLO it achieves 65.6% (vs. 21.9%), on SUN it reaches 39.4% (vs. 26.3%),
and on AWA it achieves 59.6% (vs. 27.5%). The accuracy boost can be attributed
to the strength of the f-CLSWGAN generator learning to imitate CNN features of
unseen classes although not having seen any real CNN features of these classes
before.

We also observe that without feature generation on all models the seen class
accuracy is significantly higher than unseen class accuracy, which indicates that
many samples are incorrectly assigned to one of the seen classes. Feature generation
through f-CLSWGAN finds a balance between seen and unseen class accuracies by
improving the unseen class accuracy while maintaining the accuracy on seen classes.
Furthermore, we would like to emphasize that the simple softmax classifier beats all
the models and is now applicable to GZSL thanks to our CNN feature generation.
This shows the true potential and generalizability of feature generation to various
tasks.

ZSL and GZSL with f-xGAN. The generative model is an important component of
our framework. Here, we evaluate all versions of our f-xGAN and f-GMMN for
it being a strong alternative. We show ZSL and GZSL results of all classification
models in Figure 5.3 and Figure 5.4 respectively. We selected CUB and FLO for them
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Figure 5.4: Generalized zero-shot learning results when comparing f-xGAN versions
with f-GMMN as well as comparing multimodal embedding methods with softmax.

being fine-grained datasets, however we provide full numerical results and plots in
the supplementary which shows that our observations hold across datasets. Our first
observation is that for both ZSL and GZSL settings all generative models improve
in all cases over “none” with no access to the synthetic CNN features. This applies
to the GZSL setting and the difference between “none” and f-xGAN is strikingly
significant. Our second observation is that our novel f-CLSWGAN model is the
best performing generative model in almost all cases for both datasets. Our final
observation is that although f-WGAN rarely performs lower than f-GMMN, e.g.
ESZL on FLO, our f-CLSWGAN which uses a classification loss in the generator
recovers from it and achieves the best result among all these generative models.
We conclude from these experiments that generating CNN features to support the
classifier when there is missing data is a technique that is flexible and strong.

5.4.2 Analyzing f-xGAN Under Different Conditions

In this section, we analyze f-xGAN in terms of stability, generalization, CNN archi-
tecture used to extract real CNN features and the effect of class embeddings on two
fine-grained datasets, namely CUB and FLO.

Stability and Generalization. We first analyze how well different generative models
fit the seen class data used for training. Instead of using Parzen window-based log-
likelihood (Goodfellow et al., 2014) that is unstable, we train a softmax classifier with
generated features of seen classes and report the classification accuracy on a held-out
test set. Figure 5.5 shows the classification accuracy w.r.t the number of training
epochs. On both datasets, we observe a stable training trend. On FLO, compared
to the supervised classification accuracy obtained with real images, i.e. the upper
bound marked with dashed line, f-GAN remains quite weak even after convergence,
which indicates that f-GAN has underfitting issues. A strong alternative is f-GMMN
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Figure 5.5: Measuring the seen class accuracy of the classifier trained on generated
features of seen classes w.r.t. the training epochs (with softmax).

CNN FG u s H

GoogLeNet
none 20.2 35.7 25.8
f-CLSWGAN 35.3 38.7 36.9

ResNet-101

none 23.7 62.8 34.4
f-CLSWGAN 43.7 57.7 49.7

Table 5.3: GZSL results with GoogLeNet vs ResNet-101 features on CUB (CNN:
Deep Feature Encoder Network, FG: Feature Generator, u = T1 on Yu, s = T1 on Y s,
H = harmonic mean, “none”= no generated features).

leads to a significant accuracy boost while our f-WGAN and f-CLSWGAN improve
over f-GMMN and almost reach the supervised upper bound.

After having established that our f-xGAN leads to a stable training performance
and generating highly descriptive features, we evaluate the generalization ability of
the f-xGAN generator to unseen classes. Using the pre-trained model, we generate
CNN features of unseen classes. We then train a softmax classifier using these
synthetic CNN features of unseen classes with real CNN features of seen classes. On
the GZSL task, Figure 5.6 shows that increasing the number of generated features of
unseen classes from 1 to 100 leads to a significant boost of accuracy, e.g. 28.2% to
56.5% on CUB and 37.9% to 66.5% on FLO. As in the case for generating seen class
features, here the ordering is f-GAN < f-WGAN < f-GMMN < f-CLSWGAN on
CUB and f-GAN < f-GMMN < f-WGAN < f-CLSWGAN on FLO. With these results,
we argue that if the generative model can generalize well to previously unseen data
distributions, e.g. perform well on GZSL task, they have practical use in a wide
range of real-world applications. Hence, we propose to quantitatively evaluate the
performance of generative models on the GZSL task.
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Figure 5.6: Increasing the number of generated f-xGAN features wrt unseen class
accuracy (with softmax) in ZSL.

C FG u s H

Attribute (att)
none 23.7 62.8 34.4
f-CLSWGAN 43.7 57.7 49.7

Sentence (stc)
none 38.8 53.8 45.1
f-CLSWGAN 50.3 58.3 54.0

Table 5.4: GZSL results with conditioning f-xGAN with stc and att on CUB (C: Class
embedding, FG: Feature Generator, u = T1 on Yu, s = T1 on Y s, H = harmonic mean,
“none”= no generated features).

Effect of CNN Architectures. The aim of this study is to determine the effect of
the deep CNN encoder that provides real features to our f-xGAN discriminator.
In Table 5.3, we first observe that with GoogLeNet features, the results are lower com-
pared to the ones obtained with ResNet-101 features. This indicates that ResNet-101

features are stronger than GoogLeNet, which is expected. Besides, most importantly,
with both CNN architectures we observe that our f-xGAN outperforms the “none”
by a large margin. Specifically, the accuracy increases from 25.8% to 36.9% for
GoogleNet features and 34.4% to 49.7% for ResNet-101 features. Those results are
encouraging as they demonstrate that our f-xGAN is not limited to learning the
distribution of ResNet-101 features, but also able to learn other feature distributions.

Effect of Class Embeddings. The conditioning variable, i.e. class embedding, is an
important component of our f-xGAN. Therefore, we evaluate two different class
embeddings, per-class attributes (att) and per-class sentences (stc) on CUB as this
is the only dataset that has both. In Table 5.4, we first observe that f-CLSWGAN
features generated with att not only lead to a significantly higher result (49.7% vs
34.4%), s and u are much more balanced (57.7% and 43.7% vs. 62.8% and 23.7%)
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Figure 5.7: ZSL and GZSL results on ImageNet (ZSL: T1 on Yu, GZSL: T1 on Yu).
The splits, ResNet features and Word2Vec are provided by (Xian et al., 2017). “Ours”
= feature generator: f-CLSWGAN, classifier: softmax.

compared to the state-of-the-art, i.e. “none”. This is because generated CNN features
help us explore the space of unseen classes whereas the state of the art learns to
project images closer to seen class embeddings.

Finally, f-CLSWGAN features generated with per-class stc significantly improve
results over att, achieving 54.0% in H measure, and also leads to a notable u of
50.3% without hurting s (58.3%). This is due to the fact that stc leads to high
quality features (Reed et al., 2016a) reflecting the highly descriptive semantic content
language entails and it shows that our f-CLSWGAN is able to learn higher quality
CNN features given a higher quality conditioning signal.

5.4.3 Large-Scale Experiments

Our large-scale experiments follow the same zero-shot data splits of (Xian et al., 2017)
and serve two purposes. First, we show the generalizability of our approach by
conducting ZSL and GZSL experiments on ImageNet (Deng et al., 2009) for it being
the largest-scale single-label image dataset, i.e. with 21K classes and 14M images.
Second, as ImageNet does not contain att, we use as a (weak) conditioning signal
Word2Vec (Mikolov et al., 2013b) to generate f-CLSWGAN features. Figure 6.3 shows
that softmax as a classifier obtains the state-of-the-art of ZSL and GZSL on ImageNet,
significantly improving over ALE (Akata et al., 2015a). These results show that our
f-CLSWGAN is able to generate high quality CNN features also with Word2Vec as
the class embedding.

For ZSL, for instance, with the 2H split “Ours” almost doubles the performance
of ALE (5.38% to 10.00%) and in one of the extreme cases, e.g. with L1K split, the
accuracy improves from 2.85% to 3.62%. For GZSL the same observations hold,
i.e. the gap between ALE and “Ours” is 2.18 vs 4.38 with 2H split and 1.21 vs
2.50 with L1K split. Note that, (Xian et al., 2017) reports the highest results with
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CUB FLO
Generated Data u s H u s H
none 38.8 53.8 45.1 13.3 61.6 21.9
Image (with (Zhang et al., 2017a)) 0.2 69.4 0.4 10.5 95.4 18.9
CNN feature (Ours) 50.3 58.3 54.0 59.0 73.8 65.6

Table 5.5: Summary Table (u = T1 on Yu, s = T1 accuracy on Y s, H = harmonic mean,
class embedding = stc). “none”: ALE with no generated features.

SYNC (Changpinyo et al., 2016) and “Ours” improves over SYNC as well, e.g. 9.26%
vs 10.00% with 2H and 3.23% vs 3.56% with L1K. With these results we emphasize
that with a supervision as weak as a Word2Vec signal, our model is able to generate
CNN features of unseen classes and operate at the ImageNet scale. This does not
only hold for the ZSL setting which discards all the seen classes from the test-time
search space assuming that the evaluated images will belong to one of the unseen
classes. It also holds for the GZSL setting where no such assumption has been
made. Our model generalizes to previously unseen classes even when the seen
classes are included in the search space which is the most realistic setting for image
classification.

5.4.4 Feature vs Image Generation

As our main goal is solving the GZSL task which suffers from the lack of visual
training examples, one naturally thinks that image generation serves the same
purpose. Therefore, here we compare generating images and image features for
the task of GZSL. We use the StackGAN (Zhang et al., 2017a) to generate 256× 256
images conditioned on sentences.

In Table 5.5, we compare GZSL results obtained with “none”, i.e. with an ALE
model trained on real images of seen classes, Image, i.e. image features extracted
from 256× 256 synthetic images generated by StackGAN (Zhang et al., 2017a) and
CNN feature, i.e. generated by our f-CLSWGAN. Between “none” and “Image”,
although the seen class accuracy improves, the unseen class accuracy is extremely
low (0.2% for CUB and 10.5% for FLO) which shows that the generated images do
not generalize to unseen classes. On average, i.e. the H measure, generating images
of unseen classes leads to 0.4% on CUB and 18.9% accuracy on FLO whereas “none”
leads to 45.1% on CUB and 21.9% accuracy on FLO. Upon visual inspection, we have
observed that although many images have an accurate visual appearance as birds
or flowers, they lack the necessary discriminative details to be classified correctly
and the generated images are not class-consistent. On the other hand, generating
CNN features leads to a significant boost of accuracy, e.g. 54.0% on CUB and 65.6%
on FLO which is clearly higher than having no generation, i.e. “none”, and image
generation.

We argue that image feature generation has the following advantages. First, the
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number of generated image features is limitless. Second, the image feature generation
learns from compact invariant representations obtained by a deep network trained
on a large-scale dataset such as ImageNet, therefore the feature generative network
can be quite shallow and hence computationally efficient. Third, generated CNN
features are highly discriminative, i.e. they lead to a significant boost in performance
of both ZSL and GZSL. Finally, image feature generation is a much easier task as the
generated data is much lower dimensional than high quality images necessary for
discrimination.

5.5 conclusion

In this work, we propose f-CLSWGAN, a learning framework for feature generation
followed by classification, to tackle the generalized zero-shot learning task. Our
f-CLSWGAN model adapts the conditional GAN architecture that is frequently
used for generating image pixels to generate CNN features. In f-CLSWGAN, we
improve WGAN by adding a classification loss on top of the generator, enforcing it
to generate features that are better suited for classification. In our experiments, we
have shown that generating features of unseen classes allows us to effectively use
softmax classifiers for the GZSL task.

Our framework is generalizable as it can be integrated to various deep CNN archi-
tectures, i.e. GoogleNet and ResNet as a pair of the most widely used architectures. It
can also be deployed with various classifiers, e.g. ALE, SJE, DEVISE, LATEM, ESZSL
that constitute the state of the art for ZSL but also the GZSL accuracy improvements
obtained with softmax is important as it is a simple classifier that could not be used
for GZSL before this work. Moreover, our features can be generated via different
sources of class embeddings, e.g. Sentence, Attribute, Word2vec, and applied to
different datasets, i.e. CUB, FLO, SUN, AWA being fine and coarse-grained ZSL
datasets and ImageNet being a truly large-scale dataset.

Finally, based on the success of our framework, we motivated the use of GZSL
tasks as an auxiliary method for evaluation of the expressive power of generative
models in addition to manual inspection of generated image pixels which is tedious
and prone to errors. For instance, WGAN (Gulrajani et al., 2017) has been proposed
and accepted as an improvement over GAN (Goodfellow et al., 2014). This claim
is supported with evaluations based on manual inspection of the images and the
inception score. Our observations in Figure 5.4 and in Figure 5.6 support this and
follow the same ordering of the models, i.e. WGAN improves over GAN in ZSL and
GZSL tasks. Hence, while not being the primary focus of this chapter, we strongly
argue, that ZSL and GZSL are suited well as a testbed for comparing generative
models.
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In Chapter 5, we show that feature generation is an effective way to tackle the
data imbalance issue. Therefore in this chapter, we extend this idea to any-shot
learning i.e., few-shot and zero-shot learning. We improve the feature generator

f-CLSWGAN of Chapter 5 in two ways. First, our combine GANs and VAE to
construct a stronger generative model. Second, our model additionally adds a
descriminator that learns marginal distribution of novel classes from their unlabeled
examples. Our proposed approach achieves the SOTA on the zero-shot learning
benchmark introduced in Chapter 4.

The previous chapters including this chapter are all about image classification. In
the next two chapters, we will move our attention to more complicated tasks includ-
ing the semantic segmentation in Chapter 7 and video classification in Chapter 8 in
the context of zero-shot and few-shot learning.

6.1 introduction

Learning with limited labels has been an important topic of research as it is unrealistic
to collect sufficient amounts of labeled data for every object. Recently, generating
visual features of previously unseen classes (e.g. Xian et al., 2018; Bucher et al., 2017;
Kumar Verma et al., 2018b; Felix et al., 2018a) has shown its potential to perform well
on extremely imbalanced image collections. However, current feature generation
approaches have still shortcomings. First, they rely on simple generative models
which are not able to capture complex data distributions. Second, in many cases, they
do not truly generalize to the under represented classes. Third, although classifiers

95
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Figure 6.1: Our any-shot feature generating framework learns discriminative and
interpretable CNN features from both labeled data of seen and unlabeled data of
novel classes.

trained on a combination of real and generated features obtain state-of-the-art results,
generated features may not be easily interpretable.

Our main focus in this work is a new model that generates visual features
of any class, utilizing labeled samples when they are available and generalizing
to unknown concepts whose labeled samples are not available. Prior work used
GANs for this task (Xian et al., 2018; Felix et al., 2018a) as they directly optimize the
divergence between real and generated data, but they suffer from mode collapse
issues (Arjovsky and Bottou, 2017). On the other hand, feature generation with
VAE (Kumar Verma et al., 2018b) is more stable. However, VAE optimizes the lower
bound of log likelihood rather than the likelihood itself (Kingma and Welling, 2014).
Our model combines the strengths of VAE and GANs by assembling them to a condi-
tional feature generating model, called f-VAEGAN-D2, that synthesizes CNN image
features from class embeddings, i.e. class-level attributes or word2vec (Mikolov et al.,
2013b). Thanks to its additional discriminator that distinguishes real and generated
features, our f-VAEGAN-D2 is able to use unlabeled data from previously unseen
classes without any condition. The features learned by our model, e.g. Figure 8.1,
are disciminative in that they boost the performance of any-shot learning as well as
being visually and textually interpretable.

Our main contributions are as follows. (1) We propose the f-VAEGAN-D2 model
that consists of a conditional encoder, a shared conditional decoder/generator,
a conditional discriminator and a non-conditional discriminator. The first three
networks aim to learn the conditional distribution of CNN image features given class
embeddings optimizing VAE and WGAN losses on labeled data of seen classes. The
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a conditional discriminator (D1) and a transductive feature generator with a non-
conditional discriminator (D2) that learns from both labeled data of seen classes and
unlabeled data of novel classes.

last network learns the marginal distribution of CNN image features on the unlabeled
features of novel classes. Once trained, our model synthesizes discriminative image
features that can be used to augment softmax classifier training. (2) Our empirical
analysis on CUB, AWA2, SUN, FLO, and large-scale ImageNet shows that our
generated features improve the state-of-the-art in low-shot regimes, i.e. (generalized)
zero- and few shot learning in both the inductive and transductive settings. (3) We
demonstrate that our generated features are interpretable by inverting them back to
the raw pixel space and by generating visual explanations.

6.2 related work

In this section, we discuss related works on generative models. We will not repeat
the zero-shot and few-shot learning works that have been discussed in Chapter 2.

Generative Models. Generative modeling aims to learn the probability distribution
of data points such that we can randomly sample data from it that can be used as a
data augmentation mechanism. Generative Adversarial Networks (GANs)(Goodfellow
et al., 2014; Mirza and Osindero, 2014; Radford et al., 2016) consist of a generator
that synthesizes fake data and a discriminator that distinguishes fake and real data.
The instable training issues of GANs have been studied by (Gulrajani et al., 2017;
Arjovsky and Bottou, 2017; Miyato et al., 2018). An interesting application of GANs
is CycleGAN (Zhu et al., 2017) that translates an image from one domain to another
domain. (Reed et al., 2016c) generates natural images from text descriptions, and
SRGAN(Ledig et al., 2017) solves single image super-resolution. Variational Autoen-
coder (VAE) (Kingma and Welling, 2014) employs an encoder that represents the
input as a latent variable with Gaussian distribution assumption and a decoder that
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reconstructs the input from the latent variable. GMMN (Li et al., 2015) optimizes the
maximum mean discrepancy (MMD) (Gretton et al., 2007) between real and gener-
ated distribution. Recently, generative models (Bucher et al., 2017; Zhu et al., 2018b;
Kumar Verma et al., 2018b; Xian et al., 2018) have been applied to solve generalized
zero-shot learning by synthesizing CNN features of unseen classes from semantic
embeddings. Among those, (Bucher et al., 2017) uses GMMN (Li et al., 2015), (Zhu
et al., 2018b; Xian et al., 2018) use GANs(Goodfellow et al., 2014) and (Kumar Verma
et al., 2018b) employs VAE (Kingma and Welling, 2014). Our model combines the
advantages of both VAE and GAN with an additional discriminator to use unlabeled
data of unseen classes which lead to more discriminative features.

6.3 f-vaegan-d2 model

Existing models that operate on sparse data regimes are either trained with labeled
data from a set of classes which is disjoint from the set of classes at test time, i.e.
inductive zero-shot setting (e.g. Lampert et al., 2013; Frome et al., 2013), or the sam-
ples can come from all classes but then their labels are not known, i.e. transductive
zero-shot setting (e.g. Fu et al., 2015a; Rohrbach et al., 2013). Recent works (e.g.
Xian et al., 2018; Kumar Verma et al., 2018b; Felix et al., 2018a) address generalized
zero-shot learning by generating synthetic CNN features of unseen classes followed
by training softmax classifiers, which alleviates the imbalance between seen and
unseen classes. However, we argue that those feature generating approaches are
not expressive enough to capture complicated feature distributions in real world.
In addition, since they have no access to any real unseen class features, there is no
guarantee on the quality of generated unseen class features. As shown in Figure 7.2,
we proposes to enhance the feature generator by combining VAE and GANs with
shared decoder and generator, and adding another discriminator (D2) to distinguish
real or generated features without applying any condition. Intuitively, in transduc-
tive zero-shot setting, by feeding real unlabeled features of unseen classes, D2 will
be able to learn the manifold of unseen class such that more realistic features can be
generated. Hence, the key to our approach is the ability to generate semantically
rich CNN feature distributions, which is generalizes to any-shot learning scenar-
ios ranging from (generalized) zero-shot to (generalized) few-shot to (generalized)
many-shot learning.

Setup. We are given a set of images X = {x1, . . . , xl} ∪ {xl+1, . . . , xt} encoded in
the image feature space X , a seen class label set Ys, a novel label set Yn, a.k.a
unseen class label set Yu in the zero-shot learning literature. The set of class
embeddings C = {c(y)|∀y ∈ Ys ∪Yn} are encoded in the semantic embedding space
C that defines high level semantic relationships between classes. The first l points
xs(s ≤ l) are labeled as one of the seen classes ys ∈ Ys and the remaining points
xn(l + 1 ≤ n ≤ t) are unlabeled, i.e. may come from seen or novel classes.

In the inductive setting, the training set contains only labeled samples of seen
class images, i.e. {x1, . . . , xl}. On the other hand, in the transductive setting, the
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training set contains both labeled and unlabeled samples, i.e. {x1, . . . , xl, xl+1, . . . , xt}.
For both inductive and transductive settings the inference is the same. In zero-shot
learning, the task is to predict the label of those unlabeled points that belong to
novel classes, i.e. fzsl : X → Yn, while in the generalized zero-shot learning, the goal
is to classify those unlabeled points that can be either from seen or novel classes,
i.e. fgzsl : X → Y s ∪ Yn. Few-shot and generalized few-shot learning are defined
similarly.

Our framework can be thought of as a data augmentation scheme where ar-
bitrarily many synthetic features of sparsely populated classes aid in improving
the disciminative power of classifiers. In the following, we only detail our feature
generating network structure as the classifier is unconstrained (we use linear softmax
classifiers).

6.3.1 Baseline Feature Generating Models

In feature generating networks (f-WGAN) (Xian et al., 2018) the generator G(z, c)
generates a CNN feature x̂ in the input feature space X from random noise zp and a
condition c, and the discriminator D(x, c) takes as input a pair of input features x
and a condition c and outputs a real value, optimizing:

Ls
WGAN =E[D(x, c)]−E[D(x̃, c)] (6.1)

− λE[(||∇x̂D(x̂, c)||2 − 1)2],

where x̃ = G(z, c) is the generated feature and x̂ = αx + (1− αx) with α ∼ U(0, 1)
and λ is the penalty coefficient.

The feature generating VAE (Kingma and Welling, 2014) (f-VAE) consists of an
encoder E(x, c), which encodes an input feature x and a condition c to a latent
variable z, and a decoder Dec(z, c), which reconstructs the input x from the latent z
and condition c optimizing:

Ls
VAE = KL(q(z|x, c)||p(z|c)) (6.2)
−Eq(z|x,c)[log p(x|z, c)],

where the conditional distribution q(z|x, c) is modeled as E(x, c), p(z|c)) is as-
sumed to be N (0, 1), KL is the Kullback-Leibler divergence, and p(x|z, c) is equal to
Dec(z, c).

6.3.2 Our f-VAEGAN-D2 Model

It has been shown that ensembling a VAE and a GAN leads to better image generation
results (Larsen et al., 2016). We hypothesize that VAE and GAN learn complementary
information for feature generation as well. This is likely when the target data follows
a complicated multi-modal distribution where two losses are able to capture different
modes of the data.
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To combine f-VAE and f-WGAN, we introduce an encoder E(x, c) : X × C → Z ,
which encodes a pair of feature and class embedding to a latent representation, and
a discriminator D1 : X × C → R maps this embedding pair to a compatibility score,
optimizing:

Ls
VAEGAN = Ls

VAE + γLs
WGAN (6.3)

where the generator G(z, c) of the GAN and decoder Dec(z, c) of the VAE share the
same parameters. The superscript s indicates that the loss is applied to feature and
class embedding pair of seen classes. γ is a hyperparameter to control the weighting
of VAE and GAN losses.

Furthermore, when unlabeled data of novel classes becomes available, we propose
to add a non-conditional discriminator D2 (D2 in f-VAEGAN-D2) which distinguishes
between real and generated features of novel classes. This way D2 learns the feature
manifold of novel classes. Formally, our additional non-conditional discriminator
D2 : X → R distinguishes real and synthetic unlabeled samples using a WGAN loss:

Ln
WGAN =E[D2(xn)]−E[D2(x̃n)]− (6.4)

λE[(||∇x̂n D2(x̂n)||2 − 1)2],

where x̃n = G(z, yn) with yn ∈ Yn, x̂n = αxn + (1− αxn) with α ∼ U(0, 1). Since
Ls

WGAN is trained to learn CNN features using labeled data conditioned on class
embeddings of seen classes and class embeddings encode shared properties across
classes, we expect these CNN features to be transferable across seen and novel classes.
However, this heavily relies on the quality of semantic embeddings and suffers from
domain shift problems. Intuitively, Ln

WGAN captures the marginal distribution of
CNN features and provides useful signals of novel classes to generate transferable
CNN features. Hence, our unified f-VAEGAN-D2 model optimizes the following
objective function:

min
G,E

max
D1,D2

Ls
VAEGAN + Ln

WGAN (6.5)

Implementation Details. Our generator (G) and discriminators (D1 and D2) are
implemented as multilayer perceptron (MLP). The random Gaussian noise z ∼
N(0, 1) and class embedding c(y) are concatenated and fed into the generator, which
is composed of 2 fully connected layers with 4096 hidden units. We find dimension
of noise dz = dc, i.e. dimension of class embeddings, works well. Similarly, the
discriminators take input as the concatenation of image feature and class embedding
and have 2 fully connected layers with 4096 hidden units. We use LeakyReLU as the
nonlinear activation function except for the output layer of G, for which Sigmoid
is used because we apply binary cross entropy loss as LREC and input features
are rescaled to be in [0, 1]. We find β = 1 and γ = 1000 works well across all the
datasets. Gradient penalty coefficient is set to λ = 10 and generator is updated every
5 discriminator iterations as suggested in WGAN paper (Arjovsky et al., 2017). As
for the optimization, we use Adam optimizer with constant learning rate 0.001 and
early stopping on the validation set.
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Model ZSL GZSL

INDUCTIVE
GAN 59.1 52.3
VAE 58.4 52.5
VAE-GAN 61.0 53.7

TRANSDUCTIVE
GAN 67.3 61.6
VAE 68.9 59.6
VAE-GAN 71.1 63.2

Table 6.1: Ablating different generative models on CUB (using attribute class em-
bedding and image features with no fine-tuning). ZSL: top-1 accuracy on unseen
classes, GZSL: harmonic mean of seen and unseen class accuracies.

6.4 experiments

In this section, we validate our approach in both zero-shot and few-shot learning.
The details of the settings are provided in their respective sections.

6.4.1 (Generalized) Zero-shot Learning

We validate our model on five widely-used datasets for zero-shot learning, i.e.
Caltech-UCSD-Birds (CUB) (Welinder et al., 2010), Oxford Flowers (FLO) (Nilsback
and Zisserman, 2008), SUN Attribute (SUN) (Patterson and Hays, 2012) and Animals
with Attributes2 (AWA2) (Xian et al., 2019b). Among those, CUB, FLO and SUN
are medium scale, fine-grained datasets. AWA2, on the other hand, is a coarse-
grained dataset. Finally we evaluate our model also on ImageNet (Deng et al., 2009)
with more than 14 million images and 21K classes as a large-scale and fine-grained
dataset.

We follow the exact ZSL and GZSL splits as well as the evaluation protocol
of (Xian et al., 2019b) and for fair comparison we use the same image and class
embeddings for all models. Briefly, image (with no image cropping or flipping)
features are extracted from the 2048-dim top pooling units of 101-layer ResNet
pretrained on ImageNet 1K. For comparative studies, we also fine-tune ResNet-101

on the seen class images of each dataset. As for class embeddings, unless otherwise
specified, we use class-level attributes for CUB (312-dim), AWA2 (85-dim) and
SUN(102-dim). For CUB and FLO, we also extract 1024-dim sentence embeddings
of character-based CNN-RNN model (Reed et al., 2016a) from fine-grained visual
descriptions (10 sentences per image).

Ablation study. We ablate our model with respect to the generative model, i.e.
using GAN, VAE or VAE-GAN in both inductive and transductive settings. Our
conclusions from Table 8.4, are as follows. In the inductive setting VAE-GAN has
an edge over both VAE and GAN, i.e. 59.1% and 58.4% vs 61.0% in ZSL setting.
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Zero-Shot Learning Generalized Zero-Shot Learning
CUB FLO SUN AWA CUB FLO SUN AWA

Method T1 T1 T1 T1 u s H u s H u s H u s H

IND

ALE 54.9 48.5 58.1 59.9 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5
CLSWGAN 57.3 67.2 60.8 68.2 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4 57.9 61.4 59.6
SE-GZSL 59.6 - 63.4 69.2 41.5 53.3 46.7 - - - 40.9 30.5 34.9 58.3 68.1 62.8
Cycle-CLSWGAN 58.6 70.3 59.9 66.8 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4 59.6 63.4 59.8
Ours 61.0 67.7 64.7 71.1 48.4 60.1 53.6 56.8 74.9 64.6 45.1 38.0 41.3 57.6 70.6 63.5
Ours-finetuned 72.9 70.4 65.6 70.3 63.2 75.6 68.9 63.3 92.4 75.1 50.1 37.8 43.1 57.1 76.1 65.2

TRAN

ALE-tran 54.5 48.3 55.7 70.7 23.5 45.1 30.9 13.6 61.4 22.2 19.9 22.6 21.2 12.6 73.0 21.5
GFZSL 50.0 85.4 64.0 78.6 24.9 45.8 32.2 21.8 75.0 33.8 0.0 41.6 0.0 31.7 67.2 43.1
DSRL 48.7 57.7 56.8 72.8 17.3 39.0 24.0 26.9 64.3 37.9 17.7 25.0 20.7 20.8 74.7 32.6
UE-finetune 72.1 - 58.3 79.7 74.9 71.5 73.2 - - - 33.6 54.8 41.7 93.1 66.2 77.4
Ours 71.1 89.1 70.1 89.8 61.4 65.1 63.2 78.7 87.2 82.7 60.6 41.9 49.6 84.8 88.6 86.7
Ours-finetuned 82.6 95.4 72.6 89.3 73.8 81.4 77.3 91.0 97.4 94.1 54.2 41.8 47.2 86.3 88.7 87.5

Table 6.2: Comparing with the-state-of-the-art. Top: inductive methods (IND),
Bottom: transductive methods (TRAN). Fine tuning is performed only on seen class
images as this does not violate the zero-shot condition. We measure top-1 accuracy
(T1) in ZSL setting, Top-1 accuracy on seen (s) and unseen (s) classes as well as their
harmonic mean (H) in GZSL setting.

Adding unlabeled samples to the training set, i.e. transductive learning setting, is
beneficial for all the generative models. As in the inductive setting VAE and GAN
achieve similar results, i.e 67.3% and 68.9% for ZSL. Our VAE-GAN model leads to
the state-of-the-art results, i.e. 71.1% in ZSL and 63.2% in GZSL confirming that VAE
and GAN learn complementary representations. As VAE-GAN gives the highest
accuracy in all settings, it is employed in all remaining results of the chapter.

Comparing with the state-of-the-art. In Table 6.2 we compare our model with the
best performing recent methods on four zero-shot learning datasets on ZSL and
GZSL settings.

In the inductive ZSL setting, our model both with and without fine-tuning
outperforms the state-of-the art for all datasets. Our model with fine-tuned features
establishes the new state-of-the-art, i.e. 72.9% on CUB, 70.4% on FLO, 65.6% on SUN
and 70.3% on AWA. For the transductive ZSL setting, our model without fine-tuning
on CUB is surpassed by UE-finetune of (Song et al., 2018), i.e. 71.1% vs 72.1%.
However, when we also fine-tune our features, we establish the new state-of-the-art
on the transductive ZSL setting as well, i.e. 82.6% on CUB, 95.4% on FLO, 72.6% on
SUN and 89.3% on AWA.

In the GZSL setting, we observe that feature generating methods, i.e. our
model, CLSWGAN (Xian et al., 2018), SE-GZSL (Kumar Verma et al., 2018b), Cycle-
CLSWGAN (Felix et al., 2018a) achieve better results than others. This is due to the
fact that data augmentation through feature generation leads to a more balanced
data distribution such that the learned classifier is not biased to seen classes. Note
that although UE (Song et al., 2018) is not a feature generating method, it leads
to strong results as this model uses additional information, i.e. it assumes that
unlabeled test samples always come from unseen classes. Nevertheless, our model
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Figure 6.3: Top-1 ZSL results on ImageNet. We follow the splits in (Xian et al.,
2019b) and compare our results with the state-of-the-art feature generating model
CLSWGAN (Xian et al., 2018).

with fine-tuning leads to 77.3% harmonic mean (H) on CUB, 94.1% H on FLO, 47.2%
H on SUN and 87.5% H on AWA achieving significantly higher results than all the
prior works.

Large-scale experiments. Although most of the prior work presented in Table 6.2
has not been evaluated in ImageNet, this dataset serves a challenging and interesting
test bed for (G)ZSL research. Hence, we compare our model with CLSWGAN (Xian
et al., 2018) on ImageNet using the same evaluation protocol. As shown in Figure 6.3
our model significantly improves over the state-of-the-art in both ZSL and GZSL
settings in 2H, 3H and All splits determined by considering the classes 2 hops or
3 hops away from 1000 classes of Imagenet as well as all the remaining classes.
These experiments are important for two reasons. First, they show that our feature
generation model is scalable to the largest scale setting available. Second, our
model is applicable to the situations even when human annotated attributes are not
available, i.e. for ImageNet classes attributes are not available hence we use per-class
word2vec representations.

6.4.2 (Generalized) Few-shot Learning

In few-shot or low-shot learning scenarios, classes are divided into base classes that
have a large number of labeled training samples and novel classes that contain only
few labeled samples per category. In the plain FSL setting, the goal is to achieve
good performance on novel classes whereas in GFSL setting good performance must
generalize to all classes.

Among the classic ZSL datasets, CUB has been used for few-shot learning in (Qi
et al., 2018) by taking the first 100 classes as base classes and the rest as novel classes.
However, as ImageNet 1K contains some of those novel classes and feature extractors
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Figure 6.4: Few-Shot Learning (FSL) results on CUB and FLO with increasing number
of training samples per novel class. We report the top-1 accuracy on novel classes.

are pretrained on it, we use the class splits from the standard ZSL setting, i.e. 150

base and 50 novel. For FLO we also follow the same class splits as in ZSL. As
for features, we use the same fine-tuned ResNet-101 features and attribute class
embeddings used in zero-shot learning experiments. For fairness, we repeat all the
experiments for (Qi et al., 2018) and (Hariharan and Girshick, 2017) with the same
image features.

Comparing with the state-of-the-art. As shown in Figure 6.4 and Figure 6.5, both
for FSL and GFSL settings and for both datasets, both our inductive and transductive
models have a significant edge over all the competing methods when the number
of samples from novel classes is small, e.g. 1,2 and 5. This shows that our model
generates highly discriminative features even with only few real samples are present.
In fact, only with one real sample per class, our model achieves almost the full
accuracy obtained with 20 samples per class. Going towards the full supervised
learning, e.g. with 10 or 20 samples per class, all methods perform similarly. This is
expected since in the setting where a large number of labeled samples per class is
available, then a simple softmax classifier that uses real ResNet-101 features achieves
the state-of-the-art.

In the inductive FSL setting, our model that uses one labeled sample per class
reaches the accuracy as softmax that uses five samples per class. In the transductive
FSL setting, our model that uses one labeled sample per class reaches the accuracy
of softmax obtained with 10 samples per class. Furthermore, the inductive GFSL
setting, our model with two samples per class achieves the same accuracy as softmax
trained with ten samples per class on CUB. In the transductive GFSL setting, for FLO,
for our model only one labeled sample is enough to reach the accuracy obtained with
20 labeled samples with softmax. Note that the same behavior is observed on SUN
and AWA as well. Due to space restrictions we present them in the supplementary
material.
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Figure 6.5: Generalized Few-Shot Learning (GFSL) results on CUB and FLO with
increasing number of training samples per novel class. We report the top-1 accuracy
on all classes.

Large-scale experiments. Regarding few-shot learning results on ImageNet, we
follow the procedure in (Hariharan and Girshick, 2017) where 1K ImageNet cat-
egories are randomly divided into 389 base and 611 novel classes. To facilitate
cross validation, base classes are further split into C1

base (193 classes) and C2
base (196

classes), and novel classes into C1
novel (300 classes) and C2

novel (311 classes). The cross
validation of hyperparameters is performed on C1

base and C1
novel and the final results

are reported on C2
base and C2

novel. Here, we extract image features from the ResNet-50

pretrained on C1
base ∪ C2

base, which is provided by the benchmark (Hariharan and
Girshick, 2017). Since there is no attribute annotation on ImageNet, we use 300-dim
word2vec (Mikolov et al., 2013b) embeddings as the class embedding. Following
(Wang et al., 2018c), we measure the averaged top-5 accuracy on test examples of
novel classes with the model restricted to only output novel class labels, and the
averaged top-5 accuracy on test examples of all classes with the model that predicts
both base and novel classes.

Our baselines are PMN w/G* (Wang et al., 2018c) combining meta-learning and
feature generation, analogy generator (Hariharan and Girshick, 2017) learning an
analogy-based feature generator and softmax classifier learned with uniform class
sampling. For, few-shot learning results in Figure 6.6(left), we observe that our
model in the transductive setting, i.e. Ours-tran improves the state-of-the-art PMN
w/G* (Wang et al., 2018c) significantly when the number of training samples is small,
i.e. 1,2 and 5. Notably, we achieve 60.6% vs 54.7% state-of-the art at 1 shot, 70.3
vs 66.8% at 2 shots. This indicates that our model generates highly discriminative
features by leveraging unlabeled data and word embeddings. In the challenging
generalized few-shot learning setting (Figure 6.6 right), although PMN /G* (Wang
et al., 2018c) is quite strong by applying meta-learning (Snell et al., 2017), our model
still achieves comparable results with the state-of-the-art. It is also worth noting
that PMN w/G* (Wang et al., 2018c) cannot be directly applied to zero-shot learning.
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Figure 6.6: Few Shot Learning results on ImageNet with increasing number of
training samples per novel class (Top-5 Accuracy). Left: FSL setting, Right: GFSL
setting.

Hence, our approach is more versatile.

6.4.3 Interpreting Synthesized Features

In this section, we show that our generated features on FLO are visually discrimina-
tive and textually explainable.

Visualising generated features. A number of methods (Dosovitskiy and Brox, 2016a;
Mahendran and Vedaldi, 2015; Dosovitskiy and Brox, 2016b) have explored strategies
to generate images by inverting feature embeddings. We follow a strategy similar to
(Dosovitskiy and Brox, 2016a) and train a deep upconvolutional neural network to
invert feature embeddings to the image pixel space. We impose a L1 loss between
the ground truth image and the inverted image, as well as a perceptual loss, by
passing both images through a pre-trained Resnet101, and taking an L2 loss on the
feature vectors at conv5 4 and average pooling layers. We also utilize an adversarial
loss, by feeding the image and feature embedding to a discriminator, to improve
our image quality. Our generator consists of a fully connected layer followed by
5 upconvolutional blocks. Each upconvolutional block contains an Upsampling
layer, a 3x3 convolution, BatchNorm and ReLu non-linearity. The final size of the
reconstructed image is 64x64. The discriminator processes the image through 4

downsampling blocks, the feature embedding is sent to a linear layer and spatially
replicated and concatenated with the image embedding, and this final embedding
is passed through a convolutional and sigmoid layer to get the probability that the
sample is real or fake. We train this model on all the real feature-image pairs of the
102 classes, and use the trained generator to invert images from synthetic features.

In Figure 6.7, we show generated images from real and synthetic features for
comparison. We observe that images generated from synthetic features contain the
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Figure 6.7: Interpretability: visualizations by generating images and textual explana-
tions from real or synthetic features. For every block, the top is the target, the middle
is reconstructed from the real feature (R) of the target, the bottom is reconstructed
from a synthetic feature (S) from the same class. We also generate visual explanations
conditioned with the predicted class and the reconstructed real or synthetic images.
Top (Middle): Features come from seen (unseen) classes. Bottom: classes with a
large inter-class variation lead to poorer visualizations and explanations.

essential attributes required for classification, such as the general color distribution
and sometimes even features like the petal and stamen are visible. Also, the image
quality is similar for the images generated from real and synthetic features. Inter-
estingly, the synthetic features of unseen classes generated by our model without
observing any real features from that class, i.e. “Unseen classes” and “S” row, also
yield pleasing reconstructions.

As shown in “Challenging Classes” of Figure 6.7, in some cases the generated
images from synthetic features lack a certain level of detail, e.g. see images for
“Balloon Flower” and in some cases the colors do not match with the real image, e.g.
see images for “Sweat Pea”. We noticed that these correspond to classes with high
inter class variation.

Explaining visual features. We also explore generating textual explanations of our
synthetic features. For this, we choose a language model (Hendricks et al., 2016),
that produces an explanation of why an image belongs to a particular class, given
a feature embedding and a class label. The architecture of our model is similar to
(Hendricks et al., 2016), we use a linear layer for the feature embedding, and feed it
as the start token for a LSTM. At every step in the sequence, we also feed the class
embedding, to produce class relevant captions. The class embedding is obtained by
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training a LSTM to generate captions from images, and taking the average hidden
state for images of that class. A softmax cross entropy loss is imposed on the output
using the ground truth caption. Also, a discriminative loss that encourages the
generated sentence to belong to the relevant class is imposed by sampling a sentence
from the LSTM and sending it to a pre-trained sentence classifier. The model is
trained on the dataset from (Reed et al., 2016a). As before, we train this model on all
the real feature-caption pairs, and use it to obtain explanations for synthetic features.

In Figure 6.7, we show explanations obtained from real and synthetic features.
We observe that the model generates image relevant and class specific explanations
for synthetic features of both seen and unseen classes. For instance, a “King Protea”
feature contains information about “red petals and pointy tips” while “Purple
Coneflower” feature has information on “pink in color and petals that are drooping
downward” which are the most visually distinguishing properties of this flower.

On the other hand, as shown at the bottom of the figure, for classes where image
features lack a certain level of detail, the generated explanations have some issues
such as repetitions, e.g. “trumpet shaped” and “star shape” in the same sentence
and unknown words, e.g. see the explanation for “Balloon Flower”.

6.5 conclusion

In this work, we develop a transductive feature generating framework that syn-
thesizes CNN image features from a class embedding. Our generated features
circumvent the scarceness of the labeled training data issues and allow us to ef-
fectively train softmax classifiers. Our framework combines conditional VAE and
GAN architectures to obtain a more robust generative model. We further improve
VAE-GAN by adding a non-conditional discriminator that handles unlabeled data
from unseen classes. The second discriminator learns the manifold of unseen classes
and backpropagates the WGAN loss to feature generator such that it generalizes
better to generate CNN image features for unseen classes.

Our feature generating framework is effective across zero-shot (ZSL), generalized
zero-shot (GZSL), few-shot (FSL) and generalized few-shot learning (GFSL) tasks
on CUB, FLO, SUN, AWA and large-scale ImageNet datasets. Finally, we show
that our generated features are visually interpretable, i.e. the generated images by
by inverting features into raw image pixels achieve an impressive level of detail.
They are also explainable via language, i.e. visual explanations generated using our
features are class-specific.
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In Chapters 3, 4, 5, and 6, we develop methods and define evaluation protocols
for the image classification tasks. However, in fact, the long-tail issue almost
appear in many computer vision applications. Semantic segmentation is one

of the most fundamental problems in computer vision. As pixel-level labelling in
this context is particularly expensive, there have been several attempts to reduce
the annotation effort, e.g. by learning from image level labels and bounding box
annotations. In this chapter, we take this one step further and propose zero- and few-
label learning for semantic segmentation as a new task and propose a benchmark on
the challenging COCO-Stuff and PASCAL VOC12 datasets. In the task of zero-label
semantic image segmentation no labeled sample of that class was present during
training whereas in few-label semantic segmentation only a few labeled samples were
present. Solving this task requires transferring the knowledge from previously seen
classes to novel classes. Our proposed semantic projection network (SPNet) achieves
this by incorporating class-level semantic information into any network designed
for semantic segmentation, and is trained in an end-to-end manner. Our model is
effective in segmenting novel classes, i.e. alleviating expensive dense annotations,
but also in adapting to novel classes without forgetting its prior knowledge, i.e.
generalized zero- and few-label semantic segmentation.

In Chapter 8, we will take a further step to address the few-shot learning chal-
lenges in the video domain.

109



110 chapter 7. zero-label and few-label semantic segmentation

classes  with many samples

classes with few samples

Zero-label  semantic 
segmentation

Few-label  semantic 
segmentation

Training set Test set

Semantic knowledge

Our prediction

Our prediction

Figure 7.1: We propose (generalized) zero- and few-label semantic segmentation
tasks, i.e. segmenting classes whose labels are not seen by the model during training
or the model has a few labeled samples of those classes. To tackle these tasks, we
propose a model that transfers knowledge from seen classes to unseen classes using
side information, e.g. semantic word embedding trained on free text corpus.

7.1 introduction

In semantic image segmentation the aim is assign a label to every pixel in an image
by partitioning it into several semantic regions and then learning the appearance of
various classes as well as the background. Although deep CNN-based approaches
have achieved good performance for this task, they require costly dense annota-
tions to learn their numerous parameters. Hence, leveraging weak annotations via
image-level labels (Pathak et al., 2015; Papandreou et al., 2015; Oh et al., 2017) or
point (Bearman et al., 2016), bounding box (Khoreva et al., 2017), scribble-level anno-
tations (Lin et al., 2016) recently gained interest. On the other hand, as humans, we
easily learn to recognize a previously unseen, i.e. novel, class by associating it with
classes that we know. However, segmenting such novel classes via modern machine
learning techniques is still an open problem as this process requires knowledge
transfer from known classes to previously unseen ones.

Knowledge transfer to novel classes is not a new task. Learning to predict novel
classes has been studied extensively in the context of image classification, i.e. zero-
shot learning (Lampert et al., 2013; Zhang and Saligrama, 2016; Changpinyo et al.,
2016; Akata et al., 2015b). In zero-label semantic segmentation (ZLSS), our aim is
to segment previously unseen, i.e. novel, classes, in few-label semantic segmenta-
tion (FLSS) these novel classes have a small number of labeled training examples (see
Figure 7.1). In this work, we also aim for learning without forgetting the previously
seen classes, i.e. generalized ZLSS and FLSS. To achieve these aims, we propose
Semantic Projection Network (SPNet) that incorporates semantic word embeddings
to an arbitrary semantic segmentation network inspired by the success of zero-shot
learning. Prior models that tackle few-shot semantic segmentation (Shaban et al.,
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2017; Dong and Xing, 2018) operate in the foreground-background segmentation
setting. However, in our definition of FLSS the model has to predict all the classes in
an image separately, which is more challenging and realistic. Our framework utilizes
the similarity between different categories in a semantic segmentation network,
enabling it to transfer learned representations to other classes. Consequently, our
model is able to segment scenes containing novel classes.

Our main contributions are as follows. (1) We introduce the (generalized) zero-
label and few-label semantic image segmentation task in a realistic settings inspired
by zero-shot learning for image classification. (2) We propose semantic projection
network (SPNet), an end-to-end semantic segmentation model which maps each
image pixel to a semantic word embedding space where it is projected with a fixed
word embedding to class probabilities optimizing the cross-entropy loss. (3) We cre-
ate a benchmark for (generalized) zero- and few-label semantic image segmentation
with two challenging datasets, i.e. COCO-Stuff and PASCAL-VOC. Our analysis
shows that the SPNet model achieves impressive results both quantitatively and
qualitatively in (generalized) zero-label and few-label tasks. Furthermore, as a side-
product, our model improves the state of the art in zero-shot image classification
demonstrating that it successfully generalizes to other tasks.

7.2 related works

In this section, we review prior work on semantic segmentation and its combination
with zero-shot learning. Related works on zero-shot learning have been extensively
discussed in Chapter 2 and will not be repeated here.

Semantic segmentation with weak supervision. Modern semantic segmentation
systems (Long et al., 2015; Chen et al., 2018; Badrinarayanan et al., 2017) are built
on the encoder-decoder networks and trained with densely labeled annotations.
Much efforts focus on improving semantic segmentation under fully supervised
settings, e.g. adding global context information (Zhao et al., 2017b; Zhang et al.,
2018a; Liu et al., 2016), applying graphical models as a post-processing step to refine
the output (Zheng et al., 2015; Chen et al., 2018), etc. On the other hand, weakly
supervised semantic segmentation, i.e. reducing the annotation effort, has recently
gained momentum. As weak supervision, prior works use image-level annotation
(Pathak et al., 2015; Papandreou et al., 2015; Oh et al., 2017), point (Bearman et al.,
2016), scribble (Lin et al., 2016) and bounding box (Khoreva et al., 2017) annotations.
Those methods propagate the supervision to larger regions by measuring objectness
(Bearman et al., 2016) and saliency (Oh et al., 2017), or applying graphical models
(Lin et al., 2016). Other methods refine the coarse annotated regions to more accurate
ones (Khoreva et al., 2017; Papandreou et al., 2015). However, those models still
require all the classes to be seen during training, thus cannot easily be adapted to
new classes. In contrast, we focus on segmenting completely novel classes.

Semantic segmentation of novel classes. The term zero-shot semantic segmentation
appears in prior works (Ji et al., 2018a; Zhao et al., 2017a). The aim of (Ji et al., 2018a)
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is to segment novel actor-action patterns during test time. While (Zhao et al.,
2017a) proposes open-vocabulary scene parsing task that segments novel objects
by performing hierarchical parsing, we leverage word embeddings to predict the
exact unseen classes and address the few-label problem in a unified framework. For
few-shot semantic segmentation, previous approaches (Shaban et al., 2017; Rakelly
et al., 2018; Dong and Xing, 2018; Zhang et al., 2018b) follow the meta-learning
setup (Vinyals et al., 2016; Snell et al., 2017), which uses a support set to predict an
query image. However, those approaches are restricted to output a binary mask
and fail to segment an image with multiple classes. In contrast, our approach is
operating in the more realistic (generalized) few-label semantic segmentation setting,
i.e. pixel-level labeling of an image where labels come from both base and novel
classes.

Semantic embeddings. In learning with limited labels, some form of side infor-
mation is required to transfer the knowledge learned from seen classes to unseen
classes. One popular form of side information is attributes (Lampert et al., 2013)
that, however, require costly expert annotation. Thus, there has been a large group
of studies (Akata et al., 2015b; Reed et al., 2016a; Qiao et al., 2016; Ding et al., 2017)
utilizing other sources such as Word2vec (Mikolov et al., 2013b), fastText (Joulin et al.,
2016a), or hierarchies (Miller, 1995) for building semantic embeddings. In this work,
we utilize Word2Vec and fastText as they do not require dataset specific human
annotation.

7.3 approach

Modern semantic segmentation models are built on fully convolutional encoder-
decoder architectures (Chen et al., 2018; Long et al., 2015) that output intermediate
feature maps and posteriors for individual classes. However, to segment novel
classes these models need to be adapted to transfer knowledge from one class to
the other. Such knowledge can be obtained from class-level semantic embeddings
associating different classes. Hence, the main insight of our approach is to leverage
semantic word embeddings, i.e. word2vec (Mikolov et al., 2013b) or fast-text (Joulin
et al., 2016a), to transfer knowledge learned from base classes to novel classes
in a two-step process. First, we propose to learn a visual-semantic embedding
module that produces intermediate feature maps in the word embedding space.
Second, we project those feature maps into class probabilities via a fixed word
embedding projection matrix. At test time, by replacing the projection matrix
with word embeddings of novel classes, our model is able to segment unseen
categories. Our model is trained end-to-end and can be incorporated into any
semantic segmentation network, i.e. FCN (Long et al., 2015) and deeplab (Chen et al.,
2018). We illustrate our overall pipeline in Figure 7.2.

Task formulation. We denote the set of seen classes as S and a disjoint set of unseen
classes as U . Let Ds = {(x, y)|x ∈ X , y ∈ Y s} be our labeled training data of seen
classes where x is an image in the image space X , y is its corresponding label mask
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Figure 7.2: Our zero-label and few-label semantic segmentation model, i.e. SPNet,
consists of two steps: visual semantic embedding and semantic projection. Zero-
label semantic segmentation is drawn as an instance of our model. Replacing
different components of SPNet, four tasks are addressed (Solid/dashed lines show
the training/test procedures respectively).

in the dense label mask space Y s ⊂ S a∗b of seen classes with a and b being the
height and the width of the image respectively. Similarly, we define the label mask
space of unseen classes as Yu ⊂ U a∗b. In addition, Ws ∈ Rdw×|S| and Wu ∈ Rdw×|U|

denote the word embedding matrices of seen and unseen classes where dw is the
word embedding dimension. Given Ds, Ws, and Wu, the task of zero-label semantic
segmentation (ZLSS) is to learn a model that takes an image as an input and predicts
the label of each pixel among unseen classes. A more realistic setting is generalized
zero-label semantic segmentation (GZLSS) where the learned model predicts both
seen and unseen classes. As for the (generalized) few-label semantic segmentation
task, a few labeled samples from unseen classes Du = {(x, y)|x ∈ X , y ∈ Yu} are
provided to the model during training. The test time target classes include only seen
classes in few-label semantic segmentation (FLSS) whereas they include both seen
and unseen classes in generalized few-label semantic segmentation (GFLSS). Here,
we refer to the classes with a few labeled samples as unseen or novel, interchangeably.
We summarize train class, test class and word embeddings used in different settings
in Figure 7.2.

7.3.1 Semantic Projection Network (SPNet)

We address all four tasks with an unified model SPNet, which consists of two parts:
visual-semantic embedding module and semantic projection layer.

i. Visual-semantic embedding module. This module is parameterized by a CNN
and maps an input image x ∈ X into dw feature maps via φ : X → Ra×b×dw of size
a × b. This is equivalent to embedding each pixel at (i, j) into a dw dimensional
class embedding vector φ(x)ij that lies in the semantic embedding space shared
by all the classes. The semantic embedding space constrains the output of the



114 chapter 7. zero-label and few-label semantic segmentation

visual-semantic embedding extractor φ and transfers knowledge from seen to unseen
classes. Note that this is different from a standard CNN where pixels are mapped
into an unconstrained feature space.

ii. Semantic projection layer. The semantic projection layer maps the feature
embedding φ(x)ij into unnormalized logit scores followed by a softmax activation
that outputs the probability distribution over each training category,

p(ŷij = s|x; Ws) =
exp (w>s φ(x)ij)

∑
c∈S

exp (w>c φ(x)ij)
(7.1)

where ŷij represents the prediction for pixel (i, j), wc is the c-th column of Ws

normalized to have unit length.
In contrast to standard CNNs that predict the class posterior by adding 1× 1

convolution layer or fully connected layer with learnable weights, our classifier
weights Ws are predefined by a word embedding model, e.g. word2vec (Mikolov
et al., 2013b), and then fixed during training. The Ws and the semantic projection
layer estimate the compatibility between class prototypes and a feature embedding
in terms of inner product similarity. Our proposed semantic projection layer is easy
to implement by computing the tensor product between feature maps φ(x) and word
embedding matrix Ws followed by the softmax activation function. After this layer,
we directly optimize the standard cross-entropy loss over the spatial dimensions
(i, j) ∈ I ,

∑
(i,j)∈I

− log p(ŷij = yij|x) (7.2)

which can be viewed as maximizing the negative log likelihood of predicting each
pixel as its true label yij. Since there are no learnable parameters at the semantic
projection layer, the optimization is over parameters of the visual-semantic embed-
ding extractor φ. Compared to the standard semantic segmentation network, we
have made subtle yet critical changes, i.e. mapping pixels to the semantic word
embedding space followed by stacking a projection layer.

Inference. At the test time, in ZLSS and FLSS, we predict unseen classes by replacing
the word embedding matrix in Eq. (7.1) with Wu. Each pixel label is predicted by:

argmax
u∈U

p(ŷij = u|x; Wu). (7.3)

On the other hand, for GZLSS and GFLSS, we predict both seen and unseen class
labels via their word embedding:

argmax
u∈S∪U

p(ŷij = u|x; [Ws; Wu]). (7.4)

The extreme case of the imbalanced data problem occurs when there is no labeled
training images of unseen classes, and this results in predictions being biased to seen
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classes. To fix this issue, we follow (Chao et al., 2016) and calibrate the prediction by
reducing the scores of seen classes, which leads to:

argmax
u∈S∪U

p(ŷij = u|x; [Ws; Wu])− γI[u ∈ S ] (7.5)

where I = 1 if u is a seen class and 0 otherwise, γ ∈ [0, 1] is the calibration factor
tuned on a held-out validation set.

Theoretically, the semantic projection layer allows our model to predict any class
by simply copying its word embedding to the classifier weights. However, intuitively,
the model can only perform well on the classes that share visual similarities with
training classes. Hence, the word embedding ought to capture the similarity between
classes.

Two-stage training in few-label setting. In our FLSS and GFLSS, we train a model
with both Ds that includes a large number of samples per seen class and Du that has
only a few samples per unseen, i.e. novel, class. This is a typical imbalanced learning
problem. The naive idea is to learn using both seen and unseen class samples within
a mini-batch sampled uniformly from the whole training data. As expected, this
leads to good performance on seen classes but inferior performance on unseen
classes. Another strategy is to oversample unseen classes by first uniformly sampling
a mini-batch of classes and selecting one sample from each of those classes. We
found that this strategy remedies the imbalance issues to some extent but the results
still remain unsatisfactory. On the other hand, fine-tuning the learned classifier on
unseen class samples, i.e. after the initial optimization with only seen class samples,
yields better results on unseen classes in FLSS as well as better overall results in
GFLSS. Hence, we report our results in this setting.

7.3.2 Baseline: Hinge Visual-Semantic Loss (HVSL)

The choice of the loss function turns out to be important in zero-label semantic
segmentation. Hence, in this section, we develop a baseline that shares the same
embedding extractor φ as our SPNet but adopts the hinge visual-semantic loss
instead of cross-entropy loss. Indeed hinge visual-semantic loss constitutes the
most widely used loss function for zero-shot image classification (Akata et al., 2015a;
Bansal et al., 2018; Frome et al., 2013; Zhang and Saligrama, 2016; Xian et al., 2016).
In the context of semantic segmentation, we define the following hinge ranking loss
for a single training example (x, y) as,

∑
(i,j)∈I

∑
s∈S

[∆(s, yij) + w>s φ(x)ij − w>yij
φ(x)ij]+ (7.6)

where ∆(s, yij) = 1 if s 6= yij otherwise 0, φ(x)ij is the visual-semantic embedding
for pixel (i, j) in image x, yij is its corresponding ground-truth label. In practice, we
follow (Frome et al., 2013) to truncate the sum by randomly sampling one class that
is not ground-truth.
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7.4 experiment

In this section, we present both quantitative and qualitative results of zero-label
semantic segmentation and few-label semantic segmentation.

Datasets. We evaluate our model on the challenging COCO-stuff (Caesar et al., 2018)
and PASCAL-VOC 2012 (Everingham et al.) datasets. COCO-stuff has 164K images
with dense pixel-level annotations from 172 classes including 80 thing classes, 91

stuff classes. PASCAL-VOC is a smaller dataset which contains 13K images from 20

classes.

Word embeddings. Encoding the semantic similarity between labels plays an im-
portant role in bridging the gap between seen and unseen class predictions. In this
work, we study two different word embedding models, i.e. word2vec (Mikolov
et al., 2013b) trained on Google News (Wang et al., 2018a) and fastText (Joulin et al.,
2016a) trained on Common Crawl (Mikolov et al., 2018). The word embeddings of
classes that contain multiple words are obtained by averaging the embeddings of
each individual word.

Implementation details. We implement our SPNet model with PyTorch (Paszke
et al., 2017). We apply ImageNet pretrained VGG-16 (Simonyan and Zisserman,
2014b) and ResNet-101 (He et al., 2016) as our backbone to extract features, and our
model is built on the DeepLab-v2 (Chen et al., 2018) that first extract features and
apply atrous spatial pyramid pooling layer to produce the visual features, whose
dimension is the same as the dimension of the semantic embedding space (i.e., 300 for
fast-text and word2vec; 600 for their concatenation). In this work, for VGG backbone
we apply Adam solver (Kingma and Ba, 2014) with initial learning rate 1.0× 10−4,
and for ResNet we use SGD with initial learning rate 2.5× 10−4. Following (Chen
et al., 2018), we use the “poly” learning rate policy where current learning rate is the
initial one multiplied by (1− iter

max iter )
power, and we set power to 0.9. Momentum and

weight decay are set to 0.9 and .0005.

7.4.1 Zero-Label Semantic Segmentation Task

One of the contributions of our work is to propose a new task of zero-label semantic
segmentation (ZLSS). In this section, we propose two benchmarks with zero-label
data splits and detail the zero-label evaluation protocol.

Proposed zero-label dataset splits. The zero-label assumption, i.e. similar to the
zero-shot assumption (Xian et al., 2019b), states that none of the pixel values of the
query images are allowed to belong to the classes that were used in any part of the
training procedure, i.e. be it the model training or CNN training. This means that as
CNNs are commonly trained on ImageNet 1K, none of the test classes should overlap
with it. Following this rule, in COCO-Stuff dataset, we create a new zero-label class
split by selecting 15 classes as unseen and the rest of the 167 classes as seen classes
as they appear in ImageNet 1K which was used to pretrain ResNet.
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# classes # images
train+val test train+val test

COCO-Stuff 155+12 15 116287+2000 5000

PASCAL-VOC 12+3 5 11185 + 500 1449

Table 7.1: Statistics of data splits for COCO-Stuff and PASCAL-VOC datasets in
terms of the number of classes and the number of images in the training and test
splits.

In contrast to zero-shot image classification, we do not remove images that
contain unseen classes from the training set, otherwise most of training images will
be eliminated because seen and unseen classes co-occur frequently. Instead, we
utilize the whole training set but ignore the labels of pixels belonging to unseen
classes during training, i.e. these pixels do not effect the loss we optimize in any
stage of the training. For PASCAL-VOC, since (a) only 4 classes are unseen in
ImageNet 1K, (b) one of the candidate class ‘person’ has no semantically similar class
present in the dataset, (c) all vehicles appear in ImageNet thus reducing candidate
diversity - we simply take the first 15 classes as seen classes and the last 5 classes
as unseen classes. We use the train/val split provided by the COCO-Stuff dataset:
118K training images as our training set and 5K validation images as our test set,
and PASCAL-VOC: 11K training images and 1.4K test images. Following the cross-
validation procedure of (Xian et al., 2019b), we further hold out a subset of training
classes as our validation set for tuning hyperparameters. More details about our
data splits are shown in Table 7.1.

Evaluation protocol. The intersection-over-union (IoU), i.e. the standard evaluation
criteria commonly used in semantic segmentation, quantizes the overlap between the
predicted mask and the target mask. It is defined to be the size of the intersection
between predicted and target regions divided by the union of them. For each class,
its mean IoU is computed by averaging the IoU over all the query images.

In ZLSS, as the test-time search space is restricted to be unseen classes we report
the mean IoU averaged over unseen classes. In GZLSS, the search space becomes
the union of seen and unseen classes. In analogy to generalized zero-shot image
classification (Xian et al., 2019b), we report the mean IoU on seen classes, the mean
IoU on unseen classes and the harmonic mean (H) of them, which is defined as,

H =
2 ∗mIoUseen ∗mIoUunseen

mIoUseen + mIoUunseen
(7.7)

where mIoUseen and mIoUunseen represents the mean IoU of seen classes and unseen
classes respectively. Similarly, in few-label semantic segmentation, we report mean
IoU on unseen classes, but in generalized few-label semantic segmentation, the mean
IoU over all classes is reported.
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fastText (ft) word2vec (w2v) ft + w2v
HVSL 25.8 25.3 31.8
SPNet 33.1 32.1 35.2

Table 7.2: Effect of word embeddings: Mean IoU of unseen classes in ZLSS with
different word2vec, fastText and their combination on COCO-Stuff. Both HVSL and
SPNet are based on ResNet101.

COCO-Stuff PASCAL VOC
SPNet-VGG 26.3 47.4
SPNet-ResNet101 35.2 49.5

Table 7.3: Effect of CNN architectures: ZLSS with different CNN architectures, i.e.
VGG and ResNet101 on COCO-Stuff and PASCAL-VOC. Word embedding is the ft +
w2v.

7.4.1.1 SPNet Model Analysis for ZLSS

In this section, we provide an extensive evaluation for different design choices of
our model.

Effect of word embeddings. We compare our SPNet model with HVSL and study
the effect of different word embeddings in Table 7.2. We investigate three types
of word embeddings, i.e. fastText, word2vec and their concatenation. Our first
observation is that SPNet performs significantly better than HVSL wrt. all the word
embedding types, e.g. SPNet achieves 33.1 vs 25.8 with fastText, and 32.1 vs 25.3
with word2vec compared to HVSL. This implies that the cross-entropy loss is more
suitable to the ZLSS task than hinge loss. Furthermore, we observe that fastText and
word2vec achieve comparable results, and combining them significantly boosts the
performance, e.g. mean IoU of SPNet are improved from 33.1 and 32.1 to 35.2. This
indicates that fastText and word2vec contain complementary information. Hence,
for the rest experiments, we use SPNet with fastText and word2vec combined.

Effect of CNN architectures. Our aim here is to compare different CNN architec-
tures that are used as the backbone network to encode images in DeepLab-v2 (Chen
et al., 2018). Table 7.3 shows the ZLSS results with VGG16 (Simonyan and Zisserman,
2014b) and ResNet101 (He et al., 2016). We first observe that with VGG16, the results
are lower than with ResNet101 on both COCO-Stuff and PASCAL-VOC which im-
plies that ResNet101 generate stronger features than VGG16 for this task. Besides,
these results show that our SPNet achieves reasonably good results in ZLSS with
both CNN architectures. Specifically, on COCO-stuff, SPNet obtains 26.3% mIoU
with VGG16 and 35.2% mIoU with ResNet101. This is promising because our model
does not require expensive dense pixel-level annotations for each class, e.g. it is not
trained with any of the 15 unseen class labels of COCO-Stuff. This also indicates
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Figure 7.3: mIoU of unseen classes on COCO-Stuff ordered wrt average object size
(left to right).

that our model is easily adapted to various semantic segmentation architectures.

Effect of the object size. We study the difficulty of zero-label semantic segmentation
as a function of object sizes. Figure 7.3 presents a plot of per class mIoU score for
the unseen classes in COCO-Stuff. The classes are ordered according to their average
object sizes – with the largest on the right. It shows that there is a tendency that
the performance is better for classes with larger objects. The plot also indicates
that the knowledge transfer from seen to unseen classes is in general successful
for the challenging stuff classes, such as, tree (59.3%), grass (59.7%, clouds (62.2%),
considering the fact that they do not have semantically similar classes present in
ImageNet 1K. We also observe that our model performs well for cow (61.3%) however
the result is quite poor the other unseen animal class giraffe (0.2%).

7.4.1.2 Generalized Zero-Label Semantic Segmentation

GZLSS is a practical segmentation setting as the test time search space contains both
seen and unseen classes, i.e. the pixel can be assigned to one of the seen or one of
the unseen classes. Since the training images contain only labeled pixels of seen
classes, at the test time, prediction will be biased to seen classes. Hence, this is a
particularly challenging task. We alleviate this issue by using the calibrated classifier
formulated in Eq. (7.5), which reduces the prediction scores of seen classes by a
calibration factor γ. We select the optimal γ value based on the best harmonic mean
IoU on a held-out validation set. Figure 7.4 shows the mean IoU on unseen classes,
seen classes and their harmonic mean on COCO-Stuff and PASCAL VOC datasets.

On COCO-Stuff SPNet obtains 0.2% mean IoU on unseen classes while IoU on
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Figure 7.4: GZLSS results on COCO-Stuff and PASCAL-VOC. We report mean IoU
of unseen classes, seen classes and their harmonic mean (perception model is based
on ResNet101 and the semantic embedding is ft + w2v). SPNet-C represents SPNet
with calibration.

ZSL GZSL
CUB SUN AWA CUB SUN AWA

ALE 54.9 58.1 59.9 34.4 26.3 27.5
SJE 53.9 53.7 65.6 33.6 19.8 19.6
SYNC 56.3 55.6 54.0 19.8 13.4 16.2
GFZSL 49.3 60.6 68.3 0.0 0.0 3.5
SPNet 56.5 60.7 66.2 36.6 39.6 24.7

Table 7.4: SPNet loss on (generalized) zero-shot learning tasks. Top-1 accuracy on
unseen classes is reported for ZSL and harmonic mean of seen and unseen classes is
for GZSL.

seen classes is high, i.e. 34.05%. This is expected, in fact the same trend is observed
in generalized zero-shot image classification task (Xian et al., 2019b; Chao et al., 2016).
On the other hand, after calibration i.e. SPNet-C, on COCO-Stuff, mean IoU of
unseen classes jumps to 8.33% while maintaining high mIoU on seen classes, i.e.
34.52% and overall SPNet-C achieves a harmonic mean of 13.42%. This is due to the
fact that after calibration, i.e. reducing prediction scores of seen classes, pixels get
predicted as seen classes less frequently.

On PASCAL-VOC we observe a similar trend. While SPNet performs poorly
on unseen classes, i.e. 0.01% mIoU, with calibration this increases to 29.33% mIoU.
Accordingly, SPNet-C achieves an impressive 42.45% harmonic mIoU. These results
demonstrate that our SPNet does not only tackle ZLSS but also can handle the more
practical GZLSS via predictor calibration.
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Figure 7.5: Few-label semantic segmentation (FLSS) on COCO-Stuff and PASCAL
VOC with increasing number of training samples per class, i.e. n ∈ {1, 2, 5, 10, 20}.

7.4.1.3 (Generalized) Zero-Shot Image Classification

We evaluate our SPNet on the zero-shot image classification task on three benchmark
datasets, i.e. CUB (Welinder et al., 2010) (200 types of birds with 312 attributes),
SUN (Patterson and Hays, 2012) (717 scenes with 102 attributes) and AWA (Lampert
et al., 2013) (50 classes of animals with 85 attributes) with various sizes and com-
plexities, following the data splits and evaluation protocol of (Xian et al., 2019b). We
train SPNet with cross-entropy loss:

L(x, y) = − log
exp (φ(x)>Vwy)

∑c∈S exp (φ(x)>Vwc)
(7.8)

where φ(x) is 2048-dim image feature extracted from a pre-trained ResNet101 (no
fine-tuning on the task), wc ∈ Rdw is the class attribute of class c, V ∈ R2048×dw

is the linear embedding we aim to learn. Table 7.4 shows that both in ZSL and
GZSL settings, our SPNet improves over the state of the art on both CUB and
SUN while it obtains the second best results on AWA despite the simplicity of
our model. Both ALE (Akata et al., 2015a) and SJE (Akata et al., 2015b) utilize the
visual-semantic hinge loss, SYNC (Changpinyo et al., 2016) align visual and semantic
embedding space using manifold learning, and GFZSL (Verma and Rai, 2017) learns
a generative model to capture the class conditional distribution. However, our SPNet
simply projects image feature into the class embedding space and apply the standard
softmax classifier with the class embedding being the weights.

7.4.2 Few-Label Semantic Segmentation Task

The (Generalized) few-label semantic segmentation (FLSS and GFLSS) tasks arise
in many real-world applications since class distribution in semantic segmentation
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Figure 7.6: Generalized few-label semantic segmentation (GFLSS) on COCO-Stuff
and PASCAL VOC with increasing number of training samples per class, i.e. n ∈
{1, 2, 5, 10, 20}.

is usually skewed, e.g. there are far more road pixels than bicycles. In contrast to
ZLSS where the training set has no labeled example from unseen (novel) classes, in
FLSS and GFLSS, the model is trained with all classes. At the evaluation time, the
goal of FLSS is to segment only the novel classes, while GFLSS aims to segment both
base and novel classes. For each novel class, we randomly draw n ∈ {1, 2, 5, 10, 20}
images that contain this class from the training set and disable ignore-label condition
for those novel pixels. In addition, we develop a simple baseline based on the
original DeepLab-v2 (Chen et al., 2018), which is finetuned on novel classes after an
initial optimization on base classes. We carry out experiments in FLSS and GFLSS
with the baseline and our SPNet on COCO-Stuff and PASCAL-VOC.

In FLSS task, Figure 7.5 shows the comparison results with the baseline model (Chen
et al., 2018). Our SPNet yields significantly better results than the baseline in all cases
on both COCO-Stuff and PASCAL VOC. In particular, when there is only 1 labeled
example, our SPNet significantly outperforms the baseline, achieving a mean IoU
of 47.90% over 27.69% in COCO-Stuff and 71.52% over 29.17% in PASCAL VOC on
FZLSS. The accuracy improvement from 1 labeled sample to 5 labeled samples is
significant, i.e. ≈ 20% mIoU for both COCO-Stuff and PASCAL VOC. These results
demonstrate the effectiveness of our SPNet when the training samples are scarce.

As for GFLSS in Figure 7.6, a similar trend is observed. Our SPNet improves
over DeepLab in all cases. The accuracy improvement is steady from 1 to 2, 5, 10, 20
especially on COCO-Stuff. The difference between DeepLab and ours is 21.24%
mIoU over both seen and unseen classes on PASCAL VOC when our model has
access to only one labeled sample from novel classes.
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(b)

(a)

Figure 7.7: Qualitative results of our SPNet in 0-, 1- and 5-label semantic segmenta-
tion settings on COCO-Stuff on 15 novel classes (color coded at the top). Base classes
are masked out with black color. (a) promising results (b) failure cases.

7.4.3 Qualitative Results

Figure 7.7 shows the qualitative results obtained by our SPNet in ZLSS and FLSS
on COCO-Stuff. Our target 15 novel classes are encoded with the colors shown at
the top. Base classes are masked out with black color. Some interesting results are
as follows. In the first row and left column, our SPNet is already able to segment
two previously unseen classes cows and grass at ZLSS, i.e. 0-label, and results get
refined after the model sees more examples. It is also worth noting that our SPNet
is able to predict stuff classes, such as road, river, clouds etc., in ZLSS setting. For
instance, SPNet successfully segments clouds and roads in the image at the second
row and right column, and perfectly segments the river in the image at the third row
and left column. Another interesting result is in the left column of 4th row where
the model correctly segments the frisbee in 0-label setting but incorrectly labels most
pixels as ‘skateboard’ which in fact is another sports category object. On the other
hand, some failure cases are shown in the bottom row. Our SPNet fails to predict
giraffe at 0-label because shape and appearance of a giraffe vary significantly from
seen classes. However, seeing only 1 example is enough to recognize and segment it,
which demonstrates the ability of our SPNet in learning from few examples. Again,
the result gets refined with 5 labeled examples.

These results support our observations in the previous sections and indicate
that our SPNet, although simple, adapts its knowledge attained in previously seen
examples to unseen ones.
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7.5 conclusions

In this work, we propose SPNet to semantically segment novel classes with no labeled
examples or with only a few samples, within the new tasks of zero-label semantic
segmentation and few-label semantic segmentation respectively. This model consists
of a visual-semantic embedding module that encodes images in the word embedding
space and a semantic projection layer that produces class probabilities. Our SPNet is
both conceptually and computationally simple but surprisingly effective and end-to-
end trainable. We have shown its applicability across zero-shot image classification
to zero-label and few-label semantic segmentation tasks on various benchmark
datasets.
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In Chapters 3, 4 and 5, we show that semantic embeddings can be used as an
effective way for knowledge transfer on image classification tasks. We extend
this idea to the semantic segmentation field in Chapter 6. While most of

works for few-shot learning are in the image domain, there are many real-world
applications that takes as input videos e.g., self-driving cars and video surveillance.
Therefore, in this chapter, we study how to develop efficient methods for the few-shot
video classification task where there are only few training examples per class. Our
main idea is to improve the issues of video representation learning and lacking
of training data. We argue that existing methods with 2D CNNs are unable to
learn temporal information and thus develop a simple 3D CNN baseline, surpassing
existing methods by a large margin. To circumvent the need of labelled examples,
we propose to leverage weakly-labelled videos from a large dataset using video
tag retrieval followed by selection of the best clips with visual similarities, yielding
further improvement. Our results saturate current 5-way benchmarks for few-
shot video classification and therefore we propose a more challenging benchmark
involving more classes and a mixture of classes with varying supervision.
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Figure 8.1: Leveraging the lack of class-labeled videos (time-consuming to obtain)
with tag-labeled videos, few-shot videos and text, our 3D CNN saturates existing
benchmarks and enables the more challenging generalized few-shot multi-way video
classification task.

8.1 introduction

In the video domain annotating data is very time-consuming due to the additional
time dimension. A lack of labelled training data is more prominent in fine-grained
scenarios such as action recognition. For some fine-grained action classes at the
”tail” of the skewed long-tail distribution (see Figure 8.1 for an illustration), e.g.,
‘arabesque in ballet”, collecting enough training videos is even not possible It is
thus of great importance to investigate how to learn to classify videos in the limited
labeled training data regime. Visual recognition methods that operate in the few-shot
learning setting aim to generalize a classifier trained on known classes (often referred
to as base classes) with enough training data to unknown (novel) classes with only a
few labelled training examples. While considerable attention has been devoted to
the scenario of few-shot image classification (Vinyals et al., 2016; Qi et al., 2018; Ravi
and Larochelle, 2016; Chen et al., 2019), few-shot video classification is relatively
unexplored.

Existing few-shot video classification approaches (Zhu and Yang, 2018; Cao
et al., 2019) are mostly based on frame-level features extracted from a 2D CNN,
which essentially ignores the important temporal information. Although additional
temporal modules have been added at the top of a pre-trained 2D CNN, necessary
temporal cues may be lost when temporal information is learned on top of static
image features. We argue that under-representing temporal cues may negatively
impact the robustness of the classifier. In fact, in the few-shot scenario it may be



8.2 related work 127

risky for the model to rely exclusively on appearance and context cues extrapolated
from the few examples available. In order to make temporal information available
we propose to represent the videos by means of a 3D CNN.

While obtaining labelled videos for target classes is time-consuming and chal-
lenging, there are many weakly-labelled videos available on the internet, e.g. there
are 400,000 tag-labelled videos in the YFCC100M (Thomee et al., 2015) dataset. Our
second goal is thus to leverage such tag-labelled videos (Figure 8.1) to alleviate the
lack of training data for our few-shot video models.

Existing experimental settings for few-shot video classification (Zhu and Yang,
2018; Cao et al., 2019) are limited. Searching for the label among 5 novel classes,
i.e. classes with few-shot videos, in each testing episode is restrictive. Moreover,
restricting the search space to novel classes at test time, i.e. test set consists of
only videos from novel classes and models only have to predict novel classes, and
ignoring the base classes is unrealistic because in real-world applications test videos
are expected to belong to any class.

In this work, our goal is to push the progress of few-shot video classification in
three ways: 1) To learn the temporal information, we revisit spatiotemporal CNNs
in the few-shot video classification regime. We develop a 3D CNN baseline that
maintains significant temporal information within short clips; 2) We propose to
retrieve relevant tag-labeled videos from a large video dataset, i.e. YFCC100M, to
circumvent the need for class-labeled videos of novel classes; 3) We extend current
few-shot video classification evaluation by introducing two challenging experimental
settings. In generalized few-shot video classification task, the search space has no
restriction in terms of classes. In few-shot video classification with more ways,
the search space goes beyond five towards all classes. Our extensive experimental
results demonstrate that on existing settings spatiotemporal CNNs outperform the
state-of-the-art by a largin margin, and on our proposed settings weakly-labeled
videos retrieved using tags successfully tackles both of our new few-shot video
classification tasks.

8.2 related work

Low-shot learning setup. The low-shot image classification (Mensink et al., 2012;
Ravi and Larochelle, 2016; Hariharan and Girshick, 2017) setting uses a large-scale
fully labelled dataset for pre-training a DNN and a low-shot dataset with a small
number of examples from a disjoint set of classes. The terminology “k-shot n-way
classification” means that in the low-shot dataset there are n distinct classes and k
examples per class for training. Evaluating with few examples (k small) is bound
to be noisy. Therefore, the k training examples are often sampled several times and
accuracy results are averaged (Hariharan and Girshick, 2017; Douze et al., 2018).
Many authors focus on cases where the number of classes n is small as well, which
amplifies the measurement noise. For that case (Ravi and Larochelle, 2016) introduce
the notion of “episodes”. One episode is one sampling of n classes and k examples
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per class.
It is feasible to use distinct datasets for pre-training and low-shot evaluation.

Hovever, to avoid dataset bias (Torralba et al., 2011) it is easier to split a large super-
vised dataset into a set of “base” classes and a set of “novel” classes. The evaluation
is most often performed only on novel classes, except (Hariharan and Girshick,
2017; Xian et al., 2019c; Schoenfeld et al., 2019) who evaluate on the combination of
base+novel classes.

Recently, a low-shot video classification setup has been proposed (Zhu and Yang,
2018; Dwivedi et al., 2019). They use the same type of decomposition of the dataset
as (Ravi and Larochelle, 2016), with learning episodes and random sampling of
low-shot classes. In this work, we follow and extend the evaluation protocol of (Zhu
and Yang, 2018).

Tackling low-shot learning. The simplest low-shot learning approach is to extract
embeddings from the images using the pre-trained trunk and train a linear classi-
fier (Akata et al., 2015a) or logistic regression (Hariharan and Girshick, 2017) on top
using the k training available examples. Another approach is to cast low-shot learn-
ing as a similarity search problem (Wang et al., 2019b). The “inprinting” approach (Qi
et al., 2018), consists in building a linear classifier from the embeddings of training ex-
amples, then fine-tune it. It also belongs to this family, since it is equivalent to doing
class-mean similarity search with a cosine distance. As a complementary approach,
(Joulin et al., 2016b) has looked into exploiting noisy labels to aid classification. By
leveraging tags of 100M images from the YFCC100M dataset (Thomee et al., 2015),
they show improvements over Imagenet-pretraining. In this work, we use videos
from YFCC100M retrieved by tags to augment and improve training of our classifier.

In a meta-learning setup, the the low-shot classifier is assumed to have hyper-
parameters or parameters that must be adjusted before training. Thus, there is a
preliminary meta-learning step that consists in training those parameters on simu-
lated episodes sampled from the main training data. Matching networks (Vinyals
et al., 2016) “meta-learns” an LSTM that maps the low-shot training examples into a
classifier. Feature hallucination (Wang et al., 2018c) meta-learns how to generate ad-
ditional training data for novel classes, directly in the feature space. In MAML (Finn
et al., 2017), the embedding classifier is meta-learned to adapt quickly and without
overfitting to fine-tuning.

Recent works (Chen et al., 2019; Wang et al., 2019b) suggest that state-of-the-
art performance can be obtained by methods that do not need meta learning. In
particular, (Chen et al., 2019) show that meta-learning methods are less useful when
the image descriptors are expressive enough, which is the case when they are from
high-capacity networks trained on large datasets. Therefore, we focus on techniques
that do not require a meta-learning stage.

Deep descriptors for videos. Moving from hand-designed descriptors (Dollár et al.,
2005; Laptev, 2005; Sadanand and Corso, 2012; Wang and Schmid, 2013) to learned
deep-network based descriptors (Feichtenhofer et al., 2016a,b; Karpathy et al., 2014;
Simonyan and Zisserman, 2014a; Wang et al., 2016; Tran et al., 2015) has been
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enabled by labeled large-scale datasets (Kay et al., 2017; Karpathy et al., 2014), and
parallel computing hardware. Deep descriptors are either based on 2D-CNN models
operating on a frame-by-frame basis with temporal aggregation (Girdhar et al.,
2017; Yue-Hei Ng et al., 2015), or more commonly 3D-CNN models operating on
sequential sequences of images we refer to as video-clips (Tran et al., 2015, 2018).
Recently, ever-more-powerful descriptors have been developed leveraging two-stream
architectures using additional modalities (Feichtenhofer et al., 2016b; Simonyan and
Zisserman, 2014a), factorized 3D convolutions (Tran et al., 2018, 2019), or multi-
scale approaches (Feichtenhofer et al., 2019). While most of these descriptors are
trained in a fully supervised way, advances in learning deep descriptors in either
weakly-supervised (Yalniz et al., 2019; Ghadiyaram et al., 2019; Mahajan et al., 2018)
or self-supervised fashion have been explored as well (Korbar et al., 2018; Owens
and Efros, 2018).

8.3 r-3dfsv approach

In the few-shot learning setting (Zhu and Yang, 2018), classes are split into two
disjoint label sets, i.e., base classes (denoted as Cb) that have a large number of
training examples, and novel classes (denoted as Cn) that have only a small set
of training examples. Let Xb denote the training videos with labels from the base
classes and Xn be the training videos with labels from the novel classes (|Xb| � |Xn|).
Given the training data Xb and Xn, the goal of the conventional few-shot video
classification task (FSV) (Zhu and Yang, 2018; Cao et al., 2019) is to learn a classifier
which searches for the labels among novel classes at test time. As the test-time search
space is restricted to novel classes, the FSV setting is unrealistic. Thus, in this chapter,
we additionally study the generalized few-shot video classification (GFSV) which
allows videos at test time to belong to any base or novel class.

8.3.1 3D CNN for FSV (3DFSV)

In this section, we introduce our spatiotemporal CNN baseline for few-shot video
classification (3DFSV). Our approach in Figure 8.2 consists of 1) a representation
learning stage which trains a spatiotemporal CNN on the base classes, 2) a few-shot
learning stage that trains a linear classifier for novel classes with few labelled videos,
and 3) a testing stage which evaluates the model on unseen test videos. The details
of each of these stages are given below.

Representation learning. Our model uses a spatiotemporal CNN (Tran et al., 2018)
φ : RF×3×H×W → Rdv , encoding a short, fixed-length video clip of F RGB frames
with spatial resolution H ×W to a feature vector in the dv-dimensional Euclidean
space. On top of the feature extractor φ, we define a linear classifier f (•; Wb)

parameterized by a weight matrix Wb ∈ Rdv×|Cb|, producing a probability distribution
over the base classes. The objective is to jointly learn the network φ and the classifier
Wb by minimizing the cross-entropy classification loss on video clips randomly
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Figure 8.2: Our approach is composed of three steps: representation learning, few-
shot learning and testing. In representation learning, we train a R(2+1)D from the
random initialization or Sports1M-pretrained model on the base classes of our target
dataset. In few-shot learning, given few-shot support videos from novel classes,
we first retrieve a list of candidate videos for each class from YFCC100M (Thomee
et al., 2015) using their tags, followed by selecting the best matching short clips from
the retrieved videos using visual features. Those clips serve as additional training
examples to learn classifiers that generalize to novel classes at test time.

sampled from training videos Xb of base classes. More specifically, given a training
video x ∈ Xb with a label y ∈ Cb, the loss for a video clip xi ∈ RF×3×H×W sampled
from video x is defined as,

L(xi) = − log σ(WT
b φ(xi))y (8.1)

where σ denotes the softmax function that produces a probability distribution and
σ(•)y is the probability at class y. Following (Chen et al., 2019), we do not do
meta-learning, so we can use all the base classes as a whole to learn the network φ.

Few-shot learning. This stage aims to adapt the learned network φ to recognize
novel classes Cn with a few training videos Xn. To reduce overfitting, we fix the
network φ and learn a linear classifier f (•, Wn) by minimizing the cross-entropy loss
on video clips randomly sampled from videos in Xn, where Wn ∈ Rdv×|Cn| is the
weight matrix of the linear classifier. Similarly, we define the loss for a video clip xi
sampled from x ∈ Xn with a label y as

L(xi) = − log σ(WT
n φ(xi))y (8.2)

Testing. The spatiotemporal CNN operates on fixed-length video clips of F RGB
frames and the classifiers make clip-level predictions. At test time, the model must
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predict the label of a test video x ∈ RT×3×H×W with arbitrary time length T. We
achieve this by randomly drawing a set L of clips {xi}L

i=1 from video x, where
xi ∈ RF×3×H×W . The video-level prediction is then obtained by averaging the
prediction scores after the softmax function over those L clips. For few-shot video
classification (FSV), this is:

1
L

L

∑
i=1

f (xi; Wn). (8.3)

For generalized few-shot video classification (GFSV), both base and novel classes
are taken into account and we concatenate the base class weight Wb learned in the
representation stage with the novel class weight Wn learned in the few-shot learning
stage:

1
L

L

∑
i=1

f (xi; [Wb; Wn]). (8.4)

8.3.2 Retrieval-enhanced 3DFSV (R-3DFSV)

During few-shot learning, fine-tuning the network φ or learning the classifier f (•; Wn)
alone is prone to overfitting. Moreover, class-labeled videos to be used for fine-
tuning are scarce. Instead, the hypothesis is that leveraging a massive collection of
weakly-labeled real-world videos would improve our novel-class classifier. Thus, for
each novel class, we propose to retrieve a subset of weakly-labelled videos, associate
pseudo-labels to these retrieved videos and use them to expand the training set of
novel classes. For efficiency and to reduce the label noise, we adopt the following
two-step retrieval approach.

Tag-based video retrieval. The YFCC100M dataset (Thomee et al., 2015) includes
around 800K videos collected from Flickr, with a total length of over 8000 hours.
Processing a large collection of videos has a high computational demand and a large
portion of them are irrelevant to our target classes. Thus, we restrict ourselves to
videos with tags related to those of the target class names. Leveraging information
orthogonal with the actual video content increases the visual diversity.

Given a video with user tags {ti}S
i=1 where ti ∈ T is a word or phrase and S is

the number of tags, we represent it with an average tag embedding 1
S ∑S

i=1 ϕ(ti). The
tag embedding ϕ(.) : T → Rdt maps each tag to a dt dimensional embedding space,
e.g., Fasttext (Joulin et al., 2017). Similarly, we can represent each class by the text
embedding of its class name and then for each novel class c, we compute its cosine
similarity to all the video tags and retrieve the N most similar videos according to
this distance.

Selecting best clips. The video tag retrieval selects a list of N candidate videos for
each novel class. However, those videos are not yet suitable for training because
the annotation may be erroneous, which can harm the performance. Besides, some
weakly-labelled videos can last as long as an hour. We thus propose to select the



132 chapter 8. generalized many-way few-shot video classification

best short clips of F frames from those candidate videos using the few-shot videos
of novel classes.

Given a set of few-shot videos X c
n from novel class c, we randomly sample L

video clips from each video. We then extract features from those clips with the
spatiotemporal CNN φ and compute the class prototype by averaging over clip
features. Similarly, for each retrieved candidate video of novel class c, we also
randomly draw L video clips and extract clip features from φ. Finally, we perform a
nearest neighbour search with cosine distance to find the M best matching clips of
the class prototype. This can be formulated as

max
xj

cos(pc, φ(xj)) (8.5)

where pc denotes the class prototype of class c, xj is the clip belonging to the retrieved
weakly-labeled videos. After repeating this process for each novel class, we obtain a
collection of pseudo-labeled video clips Xp = {X c

p}
|Cn|
c=1 where X c

p indicates the best
M video clips from YFCC100M for novel class c.

Batch denoising. The retrieved video clips contribute to learning a better novel class
classifier f (•; Wn) in the few-shot learning stage by expanding the training set of
novel classes from Xn to Xn

⋃Xp. Xp may inevitably include noisy video clips with
wrong labels. During the optimization, we adopt a simple strategy to alleviate the
noise: we construct a mini-batch with half video clips from Xn and another half
video clips from Xp at each iteration. The purpose is to reduce the gradient noise in
each mini-batch by enforcing that half of the samples are correct.

8.4 experiments

In this section, we first describe the existing experimental settings and our proposed
setting for few-shot video recognition. We then present the results comparing our
approaches with the state-of-the-art methods in the existing setting on two datasets,
the results of our approach in our proposed settings, model analysis and qualitative
results.

8.4.1 Experimental settings

Here we describe the four datasets we use, previous few-shot video classification
protocols and our settings.

Datasets. Kinetics (Kay et al., 2017) is a large-scale video classification dataset
which covers 400 human action classes including human-object and human-human
interactions. Its videos are collected from Youtube and trimmed to include only
one action class. The UCF101 (Soomro et al., 2012) dataset is also collected from
Youtube videos, consisting of 101 realistic human action classes, with one action
label in each video. SomethingV2 (Goyal et al., 2017) is a fine-grained human action
recognition dataset, containing 174 action classes, in which each video shows a



8.4 experiments 133

# classes # videos
train val test train val test

Kinetics 64 12 24 6400 1200 2400+2288

UCF101 64 12 24 5891 443 971+1162

SomethingV2 64 12 24 67013 1926 2857+5243

Table 8.1: Statistics of our data splits on Kinetics, UCF101 and SomethingV2 datasets.
We follow the train, val, and test class splits of (Zhu and Yang, 2018) and (Cao
et al., 2019) on Kinetics and SomethingV2 respectively. In addition, we add test
videos (the second number under the second test column) from train classes for
GFSV. We also introduce a new data split on UCF101 and for all datasets we propose
5-,10-,15-,24-way (the maximum number of test classes) and 1-,5-shot setting.

human performing a predefined basic action, such as “picking something up” and
“pulling something from left to right”. We use the second release of the dataset.
YFCC100M (Thomee et al., 2015) is the largest publicly available multimedia collection
with about 99.2 million images and 800k videos from Flickr. Although none of these
videos are annotated with a class label, half of them (400k) have at least one user
tag. We use the tag-labeled videos of YFCC100M to improve the few-shot video
classification.

Prior setup. The existing practice of (Zhu and Yang, 2018) and (Cao et al., 2019)
indicates randomly selecting 100 classes on Kinetics and on SomethingV2 datasets
respectively. Those 100 classes are then randomly divided into 64, 12, and 24 non-
overlapping classes to construct the meta-training, meta-validation and meta-testing
sets. The meta-training and meta-validation sets are used for training models and
tuning hyperparameters. In the testing phase of this meta-learning setting (Zhu and
Yang, 2018; Cao et al., 2019), each episode simulates a n-way, k-shot classification
problem by randomly sampling a support set consisting of k samples from each of
the n classes, and a query set consisting of one sample from each of the n classes.
While the support set is used to adapt the model to recognize novel classes, the
classification accuracy is computed at each episode on the query set and mean top-1
accuracy over 20,000 episodes constitutes the final accuracy.

Proposed setup. The prior experimental setup is limited to n = 5 classes in each
episode, even though there are 24 novel classes in the test set. As in this setting the
performance saturates quickly, we extend it to 10-way, 15-way and 24-way settings.
Similarly, the previous meta-learning setup assumes that test videos all come from
novel classes. On the other hand, it is important in many real-world scenarios
that the classifier does not forget about previously learned classes while learning
novel classes. Thus, we propose the more challenging generalized few-shot video
classification (GFSV) setting where the model needs to predict both base and novel
classes.

To evaluate a n-way k-shot problem in GFSV, in addition to a support and a query
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set of novel classes, at each test episode we randomly draw an additional query set of
5 samples from each of the 64 base classes. We do not sample a support set for base
classes because base class classifiers have been learned during the representation
learning phase. We report the mean top-1 accuracy of both base and novel classes
over 500 episodes.

Kinetics, UCF101 and SomethingV2 datasets are used as our few-shot video
classification datasets with disjoint sets of train, validation and test classes (see
Table 8.1 for details). Here we refer to base classes as train classes. Test classes
include the classes we sample novel classes from in each testing episode. For Kinetics
and SomethingV2, we follow the splits proposed by (Zhu and Yang, 2018) and (Cao
et al., 2019) respectively for a fair comparison. It is worth noting that 3 out of 24

test classes in Kinetics appear in Sports1M, which is used for pretraining our 3D
ConvNet. But the performance drop is negligible if we replace those 3 classes with
other 3 random kinetics classes that are not present in Sports1M (more details can be
found in the supplementary material). Following the same convention, we randomly
select 64, 12 and 24 non-overlapping classes as train, validation and test classes from
UCF101 dataset, which is widely used for video action recognition. We ensure that
in our splits the novel classes do not overlap with the classes of Sports1M. For the
GFSV setting, in each dataset the test set includes samples from base classes coming
from the validation split of the original dataset.

Implementation details. Unless otherwise stated our backbone is a 34-layer R(2+1)D
(Tran et al., 2018) pretrained on Sports1M (Karpathy et al., 2014) which takes as
input video clips consisting of F = 16 RGB frames with spatial resolution of H =
112×W = 112. We extract clip features from the dv = 512 dimensional top pooling
units of the R(2+1)D.

In the representation learning stage, we fine-tune the R(2+1)D with a constant
learning rate 0.001 on all datasets and stop training when the validation accuracy of
base classes saturates. We perform standard spatial data augmentation including
random cropping and horizontal flipping. We also apply temporal data augmen-
tation by randomly drawing 8 clips from a video in one epoch. In the few-shot
learning stage, the same data augmentation is applied and the novel class classifier
is learned with a constant learning rate 0.01 for 10 epochs on all the datasets. At test
time, we randomly draw L = 10 clips from each video and average their predictions
for a video-level prediction.

As for the retrieval approach, we use the 400 dimensional (dt = 400) fast-
text (Joulin et al., 2016a) embedding trained with GoogleNews. We first retrieve
N = 20 candidate videos for each class with video tag retrieval and then select
M = 5 best clips among those videos with visual similarities.

8.4.2 Comparing with the state-of-the-art

In this section, we compare our model with the state-of-the-art in existing evaluation
settings which mainly consider 1-shot, 5-way and 5-shot, 5-way problems and
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Kinetics SomethingV2
Method 1-shot 5-shot 1-shot 5-shot
CMN (Zhu and Yang, 2018) 60.5 78.9 - -
CMN++ (Cao et al., 2019) 65.4 78.8 34.4 43.8
TAM (Cao et al., 2019) 73.0 85.8 42.8 52.3
3DFSV (ours, scratch) 48.9 67.8 57.9 75.0
3DFSV (ours, pretrained) 92.5 97.8 59.1 80.1
R-3DFSV (ours, pretrained) 95.3 97.8 - -

Table 8.2: Comparing with the state-of-the-art few-shot video classification methods.
We report top-1 accuracy on the novel classes of Kinetics and SomethingV2 for 1-shot
and 5-shot tasks (both in 5-way). 3DFSV (ours, scratch): our R(2+1)D is trained
from scratch; 3DFSV (ours, pretrained): our model is trained from the Sports1M-
pretrained R(2+1)D. R-3DFSV (ours, pretrained): our model with retrieved videos,
trained from the Sports1M-pretrained R(2+1)D.

evaluate only on novel classes, i.e., FSV. The baselines CMN (Zhu and Yang, 2018)
and TAM (Cao et al., 2019) are considered as the state-of-the-art in few-shot video
classification. CMN (Zhu and Yang, 2018) proposes a multi-saliency embedding
function to extract video descriptor, and few-shot classification is then done by the
compound memory network (Kaiser et al., 2017). TAM (Cao et al., 2019) proposes
to leverage the long-range temporal ordering information in video data through
temporal alignment. They additionally build a stronger CMN, namely CMN++, by
using the few-shot learning practices from (Chen et al., 2019). We use their reported
numbers for fair comparison. The results are shown in Table 8.2. As the code from
CMN (Zhu and Yang, 2018) and TAM (Cao et al., 2019) is not available at the time of
submission we do not include UCF101 results.

On Kinetics, we observe that our 3DFSV (pretrain) approach, i.e. without retrieval,
outperforms the previous best results by over 19% in 1-shot case (73.0% of TAM
vs 92.5% of ours), and by 12% in 5-shot case (85.8.0% of TAM vs 97.8% of ours).
On SomethingV2 dataset, we would like to first highlight that our 3DFSV (scratch)
significantly improves over TAM by 15.1% in 1-shot (42.8% of TAM vs 57.9% of
ours) and by surprisingly 22.7% in 5-shot (52.3% of TAM vs 75.0% of ours). This
is encouraging because the 2D CNN backbone of TAM is pretrained on ImageNet,
while our R(2+1)D backbone is trained from random initialization.

Our 3DFSV (pretrain) yields further improvement after using the Sports1M-
pretrained R(2+1)D. We observe that the effect of the Sports1M-pretrained model on
SomethingV2 is not as significant as on Kinetics because there is a large domain gap
between Sports1M to SomethingV2 datasets. Those results show that a simple linear
classifier on top of a pretrained 3D CNN, e.g. R(2+1)D (Tran et al., 2018), performs
better than sophisticated methods with a pretrained 2D ConvNet as a backbone.

Although as shown in C3D (Tran et al., 2015), I3D (Carreira and Zisserman, 2017),
R(2+1)D (Tran et al., 2018), spatiotemporal CNNs have an edge over 2D spatial
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ConvNet (He et al., 2016) in the fully supervised video classification with enough
annotated training data, we are the first to apply R(2+1)D in the few-shot video
classification with limited labeled data. It is worth noting that our R(2+1)D is
pretrained on the Sports1M while the 2D ResNet backbone of CMN (Zhu and Yang,
2018) and TAM (Cao et al., 2019) is pretrained on ImageNet. A direct comparison
between 3D CNNs and 2D CNNs is hard because they are designed for different
input data. While it is standard to use an ImageNet-pretrained 2D CNN in image
domains, it is common to apply a Sports1M-pretrained 3D CNN in video domains.
One of our goals is to establish a strong few-shot video classification baseline with
3D CNNs. Intuitively, the temporal cue of the video is better preserved when clips
are processed directly by a spatiotemporal CNN as opposed to processing them as
images via a 2D ConvNet. Indeed, even though we train our 3DFSV from the random
initialization on SomethingV2 dataset which requires strong temporal information,
our results still remain promising. This confirms the importance of 3D CNNs for
few-shot video classification.

Our R-3DFSV (pretrain) approach, i.e. with retrieved weakly-labeled video
clips, lead to further improvements in 1-shot case (3DFSV (pretrain) 92.5% vs R-
3DFSV (pretrain) 95.3) on Kinetics dataset. This implies that weakly-labeled videos
retrieved from the YFCC100M dataset include discriminative cues for Kinetics tasks.
In 5-shot, our R-3DFSV (pretrain) approach achieves similar performance as our
3DFSV (pretrain) approach however with an 97.8% this task is almost saturated. We
do not retrieve any weakly-labeled videos for the SomethingV2 dataset because it is
a fine-grained dataset of basic actions and it is unlikely that YFCC100M includes any
relevant video for that dataset. As a summary, although 5-way classification setting
is still challenging to those methods with 2D ConvNet backbone, the results saturate
with the stronger spatiotemporal CNN backbone.

8.4.3 Increasing the number of classes in FSV

Although prior works evaluated few-shot video classification on 5-way, i.e. the
number of novel classes at test time is 5, our 5-way results are already saturated.
Hence, in this section, we go beyond 5-way classification and extensively evaluate
our approach in the more challenging, i.e., 10-way, 15-way and 24-way few-shot
video classification (FSV) setting. Note that from every class we use one sample per
class during training, i.e. one-shot video classification.

As shown in Figure 8.3, our R-3DFSV method exceeds 95% accuracy both in
Kinetics and UCF101 datasets for 5-way classification. With the increasing number
of novel classes, e.g. 10, 15 and 24, as expected, the performance degrades. Note that,
our R-3DFSV approach with retrieval consistently outperforms our 3DFSV approach
without retrieval and the more challenging the task becomes, e.g. from 5-way to
24-way, the larger improvement retrieval approach can achieve on Kinetics, i.e. our
retrieval-based method is better than our baseline method by 2.8% in 5-way (ours
3DFSV 92.5% vs our R-3DFSV 95.3% ) and the gap becomes 4.3% in 24-way (our
3DFSV 82.0% vs our R-3DFSV 86.3%).
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Figure 8.3: Results of 3DFSV and R-3DFSV on both Kinetics and UCF101 in the
one-shot video classification setting (FSV). In this experiment we go beyond the
classical 5-way classification setting. We use 5, 10, 15 and 24 (all) of the novel classes
in each testing episode. We report the top-1 accuracy of novel classes.

The trend with a decreasing accuracy by going from 5-way to 24-way indicates
that the more realistic task on few-shot video classification has not yet been solved
even with a spatiotemporal CNN. We hope that these results will encourage more
progress in this challenging setting of many-way few-shot video classification setting.

8.4.4 Evaluating base and novel classes in GFSV

The FSV setting has a strong assumption that test videos all come from novel classes.
In contrast to the FSV, GFSV is more realistic and requires models to predict both
base and novel classes in each testing episode. In other words, 64 base classes
become distracting classes when predicting novel classes which makes the task more
challenging. Intuitively, distinguishing novel and base classes is a challenging task
because there are severe imbalance issues between the base classes with a large
number of training examples and the novel classes with only few-shot examples.
In this section, we evaluate our methods in the more realistic and challenging
generalized few-shot video classification (GFSV) setting.

In Table 8.3, on the Kinetics dataset, we observe a large performance gap between
base and novel classes in both 1-shot and 5-shot cases, i.e., 3DFSV only achieves
7.5% on novel classes vs 88.7% on base classes. The reason is that predictions of
novel classes are dominated by the base classes. Interestingly, our R-3DFSV improves
3DFSV on novel classes in both 1-shot and 5-shot cases, e.g., 7.5% of 3DFSV vs 13.7%
of R-3DFSV in 1-shot. A similar trend can be observed on the UCF101 dataset. Those
results demonstrate that our retrieval-based approach can alleviate the imbalance
issues to some extent. At the same time, we find that generalized few-shot video
classification (GFSV) setting, e.g. not restricting the test time search space only
to novel classes but considering all of the classes even though base classes are
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Kinetics UCF101
Method novel base novel base

1-shot
3DFSV 7.5 88.7 3.5 97.1
R-3DFSV 13.7 88.7 4.9 97.1

5-shot
3DFSV 20.5 88.7 10.1 97.1
R-3DFSV 22.3 88.7 10.4 97.1

Table 8.3: Generalized few-shot video classification results on Kinetics and UCF101

in 5-way tasks. We report top-1 accuracy on both base and novel classes.

PR SS RL VR BD BC Acc
X 27.1

X 48.9
X X 51.9

X X 92.5
X X X 91.4
X X X X 93.2
X X X X 95.3

Table 8.4: Ablation study on 5-way 1-shot video classification task on the meta-test
set of Kinetics. PR: pretrain R(2+1)D on Sports1M; SS: self-supervised model of
AVTS (Korbar et al., 2018); RL: representation learning on base classes; VR: retrieve
unlabeled videos with tags (Thomee et al., 2015); BD: batch denoising. BC: best clip
selection.

distracting, is still a challenging task and hope that this setting will attract interest of
a wider community for future research.

8.4.5 Ablation study and retrieved clips

In this section, we perform an ablation study to understand the importance of each
component of our approach. After the ablation study, we evaluate the importance of
the number of retrieved clips to the few-shot video classification (FSV) performance.

Ablation study. We ablate our model in the 1-shot, 5-way video classification task
on Kinetics dataset with respect to six critical parts including pretraining R(2+1)D on
Sports1M (PR), self-supervised model of (Korbar et al., 2018) as the backbone (SS),
representation learning on base classes (RL), video retrieval with tags (VR), batch
denoising (BD) and best clip selection (BC). Table 8.4 shows the results.

We start from a model with only a few-shot learning stage on novel classes. If
a PR component is added to the model (first result row in Table (8.4), the newly-
obtained model can achieve 27.1% accuracy which is only slightly better than random
guessing performance (20%). It demonstrates that a pretrained 3D CNN alone is
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Figure 8.4: The effect of increasing the number of retrieved clips, left: on Kinetics,
right: on UCF101. Both experiments are conducted on the one-shot, five-way
classification task, reporting top-1 accuracy in the few-shot video classification (FSV)
setting.

not sufficient for a good performance. Besides, it also indicates that there exists a
domain shift between the pretraining dataset, i.e. Sports1M, and our target Kinetics
dataset.

Adding RL component to the model (the second result row) means to train
representation on base classes from scratch, which results in a worse accuracy of
48.9% compared to our full model. The primary reason for worse results is that
optimizing the massive number of parameters of R(2+1)D is difficult on a train
set consisting of only 6400 videos. Interestingly, if we adopt the self-supervised
pretrained 3D CNN (MC3 pretrained on Kinetics without using any label) of (Korbar
et al., 2018), i.e., SS, we immediate get 3.0% performance gains (the third result row)
over training from random initialization. Adding both PR and RL components (the
fourth row) obtains an accuracy of 92.5 which significantly boosts adding PR and
RL components alone.

Next, we study two critical components proposed in our retrieval approach.
Comparing to our approach without retrieval (the fourth row), directly append-
ing retrieved videos from YFCC100M (VR) to the few-shot training set of novel
classes (the fifth result row) leads to 0.9% performance drop, while performing the
batch denoising (the sixth row) in addition to VR obtains 0.7% gain. This implies that
noisy labels from retrieved videos may hurt the performance but our batch denoising
technique handles the noise well. Finally, adding the best clip selection (BC, the
last row) after VR and BD gets a big boost of 2.8% accuracy. In summary, those
ablation studies demonstrate the effectiveness of the six different critical parts in our
approach.

Influence of the number of retrieved clips. Intuitively, when the number of re-
trieved clips increases, the retrieved videos become more diverse, but at the same
time, the risk of obtaining negative videos becomes higher. We show the effectiveness
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Figure 8.5: Top-5 retrieved video clips from YFCC100M for 8 novel classes on Kinetics.
The left column is the class name with its one-shot query video and the right column
shows the retrieved 16-frame video clips (middle frame is visualized) together with
their users tags. Negative retrievals are marked in red.

of our R-3DFSV with the increasing number of retrieved clips in Figure 8.4.
On the Kinetics dataset (left of Figure 8.4), without retrieving any videos, the

performance is 92.5%. As we increase the number of retrieved video clips for each
novel class, the performance keeps improving and saturates at retrieving 8 clips per
class, reaching an accuracy of 95.4%. On the UCF101 dataset (right of Figure 8.4),
retrieving 1 clip gives us 1.6% gain. Retrieving more clips does not further improve
the results, indicating more negative videos are retrieved. On the other hand, our
batch denoising strategy is able to tolerate the noise to some extent. We observe a
slight performance drop at retrieving 10 clips because the noise level becomes too
high, i.e. there are 10 times more noisy labels than clean labels.

8.4.6 Qualitative results

In Figure 8.5, we visualize the top-5 video clips we retrieve from YFCC100M dataset
with video tag retrieval followed by the best clips selection. Here we only show
8 novel classes of Kinetics dataset due to the space limitation and visualization of
other classes are in supplementary.

We observe that the retrieved video clips of some classes are of high quality,
meaning that those videos truly reveal the target novel classes. For instance, retrieved
clips of class “Busking” are all correct because user tags of those videos consist of
words like “buskers”, “busking” that are close to the class name, and the best clip
selection can effectively filter out the irrelevant clips. It is intuitive those clips can
potentially help to learn better novel class classifiers by supplementing the limited
training videos.

Failure cases are also common. For example, videos from the class “Cutting
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watermelon” do not retrieve any positive videos. The reasons can be that there are
no user tags of cutting watermelon or our tag embeddings are not good enough.
Those negative videos might hurt the performance if we treat them equally, which is
why the batch denoising is critical to reduce the effect of negative videos.

8.5 conclusion

In this work, we point out that a spatiotemporal CNN trained on a large-scale
video dataset saturates existing few-shot video classification benchmarks. Hence, we
propose new more challenging experimental settings, namely generalized few-shot
video classification (GFSV) and few-shot video classification with more ways than
the classical 5-way setting. We further improve spatiotemporal CNNs by leveraging
the weakly-labelled videos from YFCC100M using weak-labels such as tags for text-
supported and video-based retrieval. Our results show that generalized more-way
few-shot video classification is challenging and we encourage future research in this
setting.
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Significant progress has been made across various computer vision tasks in
recent years. Deep neural networks have achieved great breakthrough in
reliable object recognition for up to 1000 object categories (He et al., 2016), in

widely-applicable activity recognition (Carreira and Zisserman, 2017) and in robust
semantic image segmentation (Chen et al., 2018) for autonomous driving. Despite
the success, training a deep neural network always requires a massive amount of
labeled instances. In real world applications, labeled instances are often expensive
and difficult to obtain because annotating data requires expert knowledge. Training
a standard deep neural network on a small training set will lead to overfitting. It
is thus of great importance to study the problems of learning with limited labeled
data. This thesis aims to push the progress of the field by exploring how to transfer
knowledge from known classes with enough labeled instances to novel classes with
only limited labeled instances. More specifically, we focus on the following three
directions, (1) zero-shot image classification where novel object classes have zero
training examples, (2) few-shot image classification where each novel object class has
only a few training examples, and (3) zero-shot and few-shot learning for semantic
image segmentation and video action recognition. After a summary of the thesis
with respect to the three directions in the following, we discuss our contributions
and future perspectives.

First, we examined zero-shot image classification. The goal of the task is to
recognize novel object classes without observing any image instances of them by
transferring knowledge from known to novel classes. In order to capture the complex
correlation between image and semantic embedding spaces, we propose a piece-
wise linear label embedding approach called LatEm that learns multiple linear
transformation from image embedding space to the semantic embedding space. As
there is no agreed upon zero-shot image classification benchmark, we first define
a new benchmark by unifying both the evaluation protocols and data splits of
publicly available datasets. We re-evaluate a significant number of methods on our

143
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benchmark. Our analysis shows the status of the field and advocates to study the
realistic generalized zero-shot learning problem where both known and novel classes
are predicted during the test phase. To tackle the extreme data imbalance issue in
generalized zero-shot learning, we introduce a feature generation framework, namely
f-CLSWGAN, that synthesizes visual features for novel classes. We empirically show
that f-CLSWGAN is effective to balance the base and novel class performance and the
generated features can be applied to any zero-shot learning methods. Additionally,
we extend f-CLSWGAN to a stronger version called f-VAEGAN-D2, which combines
VAE and GANs for a better generative model and can learn from unlabeled data as
well.

The second direction of this thesis is concerned with few-shot image classification.
The goal of the task is to recognize novel object classes after observing only a few
instances of them. While human beings naturally have such ability, deep neural
networks are difficult to be trained on a small training set due to the high risk of
overfitting. While most of few-shot learning methods only rely on images of base
class for knowledge transfer, we argue that semantic embeddings e.g., attributes,
word embeddings and class hierarchy, provide complementary information that
would benefit novel classes. Therefore, we extend our zero-shot learning approaches
i.e., LatEm and f-VAEGAN-D2, to work in the few-shot learning setting. To this end,
we generate few-shot learning splits on public datasets what are widely used for zero-
shot learning. We show that our approaches have an edge over the standard linear
classifier in few-shot image classification, indicating the benefits of using semantic
embeddings. In addition, it is encouraging that our f-VAEGAN-D2 outperforms the
state-of-the-art few-shot approaches on challenging large-scale few-shot benchmarks
as well. Our experimental results also demonstrate that f-VAEGAN-D2 is able to
obtain further improvement from unlabeled data .

The third part of the thesis looks at zero-shot and few-shot learning tasks be-
yond the image classification. More specifically, we tackle both semantic image
segmentation and video action recognition with limited training examples. While
most few-shot and zero-shot works are tackling image classification, there are little
works on other computer vision tasks. To this end, we introduce the zero-label and
few-label semantic segmentation problems and new data splits on public semantic
segmentation datasets i.e., COCO-Stuff and Pascal-VOC. The task is to segment novel
classes with few or zero instances. Inspired by our previous experience in zero-shot
image classification, we develop a novel approach called SPNet, that projects each
pixel into the semantic embedding space for knowledge transfer. Our SPNet can
be incorporated into any semantic segmentation networks. We empirically show
that it achieves decent results in zero-label setting and outperforms the state-of-
the-art methods in the few-label setting. In addition, we study the few-shot video
classification problem. We found that previous methods focus only on developing
complicated few-shot methods but fail to adopt strong video representation that
captures better temporal information. Our work shows that video representation
with strong temporal modeling is critical for few-shot video classification. Moreover,
we propose to leverage weakly-labeled videos from a large-scale video dataset to
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expand the few-shot training set, leading to further improvement.
In summary, this thesis defines a new zero-shot image classification benchmark.

In order to improve the benchmark performance as well as few-shot image classifica-
tion, we present a multi-modal learning approach and another two methods that
generate synthetic visual features. We further tackle few-shot and zero-shot learning
challenges for semantic segmentation and video action classification tasks.

9.1 discussion of contributions

The goal of this thesis is to develop efficient methods to improve the performance of
learning with limited labeled data. To this end, we study zero-shot and few-shot
learning problems which aim to learn novel classes with zero or only a few training
examples. In the following we will discuss the contributions and steps we made
towards these goals and tasks with respect to the individual chapters.

First, we presented a novel latent variable model, Latent Embeddings (LatEm),
for learning a nonlinear (piece-wise linear) compatibility function for the task of
zero-shot classification in Chapter 3 . LatEm is a multi-modal method, it uses images
and class-level side-information either obtained through human annotation or in
an unsupervised way from a large text corpus. LatEm incorporates multiple linear
compatibility units and allows each image to choose one of them – such choices
being the latent variables. We proposed a ranking based objective to learn the
model using an efficient and scalable SGD based solver. We empirically validated
our model on three challenging benchmark datasets for zero-shot classification of
Birds, Dogs and Animals. We improved the state-of-the-art for zero-shot learning
using unsupervised class embeddings i.e., word embeddings, on AWA and on
two fine-grained datasets (CUB and Stanford Dogs). On AWA, we also improve
the accuracy obtained with supervised class embeddings i.e., human-annotated
attributes. This demonstrates quantitatively that our method learns a latent structure
in the embedding space through multiple compatibility units. We also presented a
qualitative analysis of our results and showed that the latent embeddings learned
with our method leads to visual consistencies. We proposed a new method for
selecting the number of latent variables automatically from the data by pruning. Such
pruning based method speeds up the training and leads to models with competitive
space-time complexities compared to the cross-validation based method. We further
extended our application domain to generalized zero-shot and generalized few-shot
learning setting where at training time we assume the availability of either no or a
few labeled samples from unseen classes. On the other hand, both at training and test
time the search space includes all the class embeddings from seen and unseen classes.
As expected, our evaluation on generalized zero-shot learning setting showed a
significant loss of accuracy compared to the standard zero-shot learning setting
which we analyzed through visualizations and quantitative results. Our evaluation
on generalized few-shots setting showed that with as few as two to ten samples
from unseen classes, unsupervised class embeddings can outperform the supervised
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attributes. Therefore, with increasing number of additional training samples, the
difference between different class embeddings are reduced.

Second, in Chapter 4, we evaluated a significant number of state-of-the-art
zero-shot learning methods, i.e. (Lampert et al., 2013; Zhang and Saligrama, 2015;
Xian et al., 2016; Akata et al., 2015c; Romera-Paredes et al., 2015; Changpinyo et al.,
2016; Socher et al., 2013; Norouzi et al., 2014; Frome et al., 2013; Akata et al., 2015a;
Kodirov et al., 2017; Verm and Rai, 2017; Ye and Guo, 2017), on several datasets, i.e.
SUN, CUB, AWA1, AWA2, aPY and ImageNet, within a unified evaluation protocol
both in zero-shot and generalized zero-shot settings. Our evaluation showed that
generative models and compatibility learning frameworks have an edge over learning
independent object or attribute classifiers and also over other hybrid models for the
classic zero-shot learning setting. We observed that unlabeled data of unseen classes
can further improve the zero-shot learning results, thus it is not fair to compare
transductive learning approaches with inductive ones. We discovered that some
standard zero-shot dataset splits may treat feature learning disjoint from the training
stage as several test classes are included in the ImageNet1K dataset that is used to
train the deep neural networks that act as feature extractor. Therefore, we proposed
new dataset splits making sure that none of the test classes in none of the datasets
belong to ImageNet1K. Moreover, disjoint training and validation class split is a
necessary component of parameter tuning in zero-shot learning setting. In addition,
we introduced a new Animal with Attributes (AWA2) dataset. AWA2 inherits the
same 50 classes and attributes annotations from the original Animal with Attributes
(AWA1) dataset, but consists of different 37, 322 images with publicly available
redistribution license. Our experimental results showed that the 12 methods that
we evaluated perform similarly on AWA2 and AWA1. Moreover, our statistical
consistency test indicated that AWA1 and AWA2 are compatible with each other.
Finally, including training classes in the search space while evaluating the methods,
i.e. generalized zero-shot learning, provides an interesting playground for future
research. Although the generalized zero-shot learning accuracy obtained with 13

models compared to their zero-shot learning accuracy is significantly lower, the
relative performance comparison of different models remain the same. In summary,
our work extensively evaluated the good and bad aspects of zero-shot learning while
sanitizing the ugly ones.

Third, in Chapter 5, we propose f-CLSWGAN, a learning framework for feature
generation followed by classification, to tackle the generalized zero-shot learning task.
Our f-CLSWGAN model adapts the conditional GAN architecture that is frequently
used for generating image pixels to generate CNN features. In f-CLSWGAN, we
improve WGAN by adding a classification loss on top of the generator, enforcing
it to generate features that are better suited for classification. In our experiments,
we have shown that generating features of unseen classes allows us to effectively
use softmax classifiers for the GZSL task. Our framework is generalizable as it can
be integrated to various deep CNN architectures, i.e. GoogleNet and ResNet as a
pair of the most widely used architectures. It can also be deployed with various
classifiers, e.g. ALE, SJE, DEVISE, LATEM, ESZSL that constitute the state of the



9.1 discussion of contributions 147

art for ZSL but also the GZSL accuracy improvements obtained with softmax is
important as it is a simple classifier that could not be used for GZSL before this work.
Moreover, our features can be generated via different sources of class embeddings,
e.g. Sentence, Attribute, Word2vec, and applied to different datasets, i.e. CUB, FLO,
SUN, AWA being fine and coarse-grained ZSL datasets and ImageNet being a truly
large-scale dataset. Finally, based on the success of our framework, we motivated
the use of GZSL tasks as an auxiliary method for evaluation of the expressive power
of generative models in addition to manual inspection of generated image pixels
which is tedious and prone to errors. For instance, WGAN (Gulrajani et al., 2017) has
been proposed and accepted as an improvement over GAN (Goodfellow et al., 2014).
This claim is supported with evaluations based on manual inspection of the images
and the inception score. Our observations in Figure 5.4 and in Figure 5.6 support
this and follow the same ordering of the models, i.e. WGAN improves over GAN
in ZSL and GZSL tasks. Hence, while not being the primary focus of this chapter,
we strongly argue, that ZSL and GZSL are suited well as a testbed for comparing
generative models.

Fourth, in Chapter 6 , we develop a transductive feature generating framework
that synthesizes CNN image features from a class embedding. Our generated
features circumvent the scarceness of the labeled training data issues and allow us to
effectively train softmax classifiers. Our framework combines conditional VAE and
GAN architectures to obtain a more robust generative model. We further improve
VAE-GAN by adding a non-conditional discriminator that handles unlabeled data
from unseen classes. The second discriminator learns the manifold of unseen classes
and backpropagates the WGAN loss to feature generator such that it generalizes
better to generate CNN image features for unseen classes. Our feature generating
framework is effective across zero-shot (ZSL), generalized zero-shot (GZSL), few-shot
(FSL) and generalized few-shot learning (GFSL) tasks on CUB, FLO, SUN, AWA
and large-scale ImageNet datasets. Finally, we show that our generated features
are visually interpretable, i.e. the generated images by by inverting features into
raw image pixels achieve an impressive level of detail. They are also explainable via
language, i.e. visual explanations generated using our features are class-specific.

Fifth, in Chapter 7, we propose SPNet to semantically segment novel classes with
no labeled examples or with only a few samples, within the new tasks of zero-label
semantic segmentation and few-label semantic segmentation respectively. This model
consists of a visual-semantic embedding module that encodes images in the word
embedding space and a semantic projection layer that produces class probabilities.
Our SPNet is both conceptually and computationally simple but surprisingly effective
and end-to-end trainable. We have shown its applicability across zero-shot image
classification to zero-label and few-label semantic segmentation tasks on various
benchmark datasets.

Finally, in Chapter 8, we point out that a spatiotemporal CNN trained on a
large-scale video dataset saturates existing few-shot video classification benchmarks.
Hence, we propose new more challenging experimental settings, namely generalized
few-shot video classification (GFSV) and few-shot video classification with more
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ways than the classical 5-way setting. We further improve spatiotemporal CNNs by
leveraging the weakly-labelled videos from YFCC100M using weak-labels such as
tags for text-supported and video-based retrieval. Our results show that generalized
more-way few-shot video classification is challenging and we encourage future
research in this setting.

9.2 future perspectives

The content of this thesis mainly focuses on establishing benchmark and tackling
imbalanced issues for few-shot and zero-shot learning in various computer vision
applications. Despite the progress we achieved, few-shot and zero-shot learning
are still not saturating. In the following we first discuss items of future work with
respect to the different directions of the thesis. In the last section we give a broader
outlook for the field.

9.2.1 Zero-shot image classification

Most of zero-shot learning methods as well as proposed approaches in this thesis
rely on deep representation that is pretrained or finetuned following the standard
supervised learning setting. We postulate there exists special image representation
that is more efficient for zero-shot learning. In addition, as semantic embeddings play
an important role in zero-shot learning, it is promising to explore better unsupervised
semantic embeddings rather than annotating attributes. We layout the following
directions for future work.

Explainable zero-shot learning. This thesis has been adopting human annotated
attributes for several datasets i.e. CUB, AWA and SUN. While decent zero-shot
results have been achieved with the attributes, we still lack an explainable
approach that tells us how the zero-shot prediction is made. One possible way
to improve the visual explainability is by localizing semantic parts i.e., “head
of a bird”, “beak of a bird”, etc. Previous works (e.g. Zhang et al., 2016b, 2014)
directly tackle the bird part detection problem by using the part annotation,
which is expensive to obtain. In a future work, we are interested in introducing
new intermediate layers into a CNN architecture such that bird parts can
be localised using only class-level attributes. We believe such representation
network will naturally have better interpretibility and potentially lead to better
fine-grained zero-shot learning performance due to its better locality.

Improving locality and compositionality of the image representation Zero-shot learn-
ing aims to achieve generalization on novel tasks. However, most of existing
zero-shot learning works rely on the standard CNNs, which has a different
goal of achieving the same task generalization. In a future work, we are
interested in exploring special representation learning framework for zero-
shot learning. We are inspired by (Sylvain et al., 2019) which points out that
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locality and compositionality are the two representation learning principles
that attribute to a good performance in zero-shot learning. Local features
have been widely used in computer vision for a long history. The traditional
hand-crafted features e.g., SIFT (Lowe, 2004), SURF (Bay et al., 2008), extract
statistics within local patches in an image and aggregate them to form a global
image representation. Similarly, CNNs (LeCun et al., 2015) perform convolution
operation on local patches in the images followed by some non-liearity and
pooling. By stacking multiple such convolutional layers, CNNs increase its
receptive and get more global features. Local features can beneficial to novel
task generalization because local information is often shared by many classes.
On the contrary, global information is often category-specific and requires a lot
of training examples to learn the within-class variations. Another direction is
to explore compositionality of the representation. The key insight is that the
representation will be able to encode classes more efficiently if representation
is compositional of visual primitives. The challenge is that how we define the
compositional function and how we learn visual primitives.

Compositional zero-shot learning. Most of the existing zero-shot learning works
rely on attribute annotation to achieve the best performance. In real-world
applications, attribute annotation is often not available. Compositional zero-
shot learning (Purushwalkam et al., 2019) is a special zero-shot learning problem
where attribute annotation is not available, but visual concepts are assumed to
be composed by an adjective and an object e.g. “red apple” and “green apple”.
The goal is to predict novel visual concepts that are unseen compositions of
existing adjective and objects. Interesting research ideas could be to explore
how our feature generation idea can be adapted to this problem and how we
learn compositional representation.

Graph convolutional networks (GCN) for large-scale zero-shot image classification.
The zero-shot learning performance on the large-scale ImageNet is limited by
the weakness of noisy word embeddings. Recently (Wang et al., 2018b) signifi-
cantly improves the large-scale zero-shot learning performance by adopting a
graph CNN (Kipf and Welling, 2017) on the wordnet hierarchy. But (Wang et al.,
2018b) simply takes as input the original class hierarchy, ignoring the special
tree structure of the wordnet and visual similarities. The GCN used in (Wang
et al., 2018b) also has over-smoothing issues. Therefore, we are interesting in
exploring a better graph construction method and a new graph convolutional
neural network technique for the large-scale zero-shot learning performance.

Learning unsupervised semantic embeddings. It is clear in this thesis that the se-
mantic embeddings play a critical role in zero-shot learning performance.
Attributes often achieve the best results but they require expert knowledge
to annotate. Unsupervised word embeddings i.e., word2vec (Mikolov et al.,
2013b) and glove (Pennington et al., 2014), are easier to obtain but it has a
big performance gap behind the attributes. Recently, a new language model
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called BERT (Devlin et al., 2018) has created new state-of-the-art on a wide
range of NLP tasks. We believe it is promising to enhance the unsupervised
embeddings by incorporating BERT (Devlin et al., 2018).

9.2.2 Few-shot image classification

Both zero-shot and few-shot learning share the same goal of novel task generalization.
Therefore, we believe technique that work for zero-shot learning can potentially
work well in few-shot learning as well. For this reason, it is interesting to investigate
image representation with better locality and compositionality for few-shot learning.
In addition to that, we would consider the following topics as promising directions.

Cross-domain few-shot learning. Significant improvement has been made in the
few-shot learning setting where both base and novel classes belong to the
same dataset i.e., Mini-ImageNet and Omniglot. However, in many real-world
applications, novel classes are likely from a different domain. For example, if
the target novel classes belong to the medical image domains, it is difficult to
collect sufficient amount of base class data from the same domain. Therefore,
we consider that learning to learn adaptation with limited labeled data would
be an important direction for future few-shot learning research. Unlabeled
data from novel classes could potentially help to domain adaptation.

Generalized few-shot learning. Majority of few-shot learning methods are evalu-
ated in the meta-learning setup where a new set of classes is sampled from
all the novel classes in each episode and the goal is to improve the novel class
accuracy over many episodes. However, such evaluation protocol is not realistic
because it ignores the base classes. In real-world applications, we are interested
in the generalized few-shot learning where the model has to predict both base
and novel classes. Similar setting in zero-shot learning has attracted increasing
attention, but there are not much few-shot learning works that tackle this
problem. We believe it is an important direction as well.

Semi-supervised few-shot learning. While obtaining labeling data is difficult, un-
labeled data is often easy to collect. Therefore, it is of great importance to
study semi-supervised few-shot learning field where the training set consists
of few-shot labeled examples and a large number of unlabeled examples. Pre-
vious approaches are limited to adopt the classical semi-supervised learning
technics like label propogation or semi-SVM. We are interested in combining a
few-shot learning objects on the labeled data with self-supervised learning ob-
jectives on unlabeled data. Given the success of recent self-supervised learning
approaches (e.g. Chen et al., 2020; He et al., 2019), we believe those technics
would benefit few-shot learning.

Meta-learning. Meta-learning or learning to learn, is a popular subfield of few-
shot learning. The key insight is to exploit training classes for the purpose
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of learning “a meta procedure”, e.g., initialization, optimization algorithm,
that generalizes well to novel classes. This concept sounds appealing, but
we concern the limitation of their evaluation setting. More specifically, most
of papers are only evaluated on 5 classes with 1 or 5 samples per class in
each episode. Recently, (Triantafillou et al., 2019) proposes a new large-scale
meta-dataset that addresses those issues. We think it is interesting to work on
meta-learning field on this more realistic benchmark.

Bayesian few-shot learning. Most of few-shot learning approaches produce a single
model after learning from only a small amount of training examples. However,
there are a lot of uncertainties about the novel classes due to the small training
set, resulting ambiguous description of novel classes. It is impossible that
a single model could achieve accurate results on those novel classes. We
believe that Bayesian learning could address the ambiguity issues by learning
a distribution of models for novel classes. Unfortunately, previous Bayesian
few-shot approaches (e.g. Gordon et al., 2018; Yoon et al., 2018; Finn et al., 2018)
still do not achieve state-of-the-art results on Mini-ImageNet and recent realistic
meta-learning benchmark (Triantafillou et al., 2019). It would be important to
further push the performance of Bayesian approaches such that they are more
appealing in practice.

9.2.3 Zero-shot and few-shot learning beyond image classification

In addition to the image classification, there are many other computer vision applica-
tions naturally facing the few-shot learning problems. Here we list a few applications
we are interested in.

Learning stronger temporal information for few-shot videos classification. Our ap-
proach for few-shot video classification does not capture long-term temporal
information, which can be critical for recognizing actions. We are currently
working on a project that aims to learn long-term temporal correlation in video
through self-attention (Vaswani et al., 2017). Although the self-attention has
been well established in the standard setting, it is not trivial on how to extend
it to the few-shot learning setting.

Few-shot learning for medical image analysis. Medical image analysis has always
been an important field of computer vision research. The tasks for medical
images analysis include image segmentation, computer-aided disease diag-
nosis, and image registration for scanned images from CT, fMRI, and X-ray.
CheXNet (Rajpurkar et al., 2017) achieves radiologists-level pneumonia detec-
tion performance by learning a deep CNN on a large-scale chest X-ray dataset.
However, such large-scale medical image dataset is not always feasible due to
the huge cost of collecting medical images. For novel diseases or other medical
image tasks, the few-shot learning challenges remain there. We are excited to
extend our expertise in few-shot learning to disease diagnosis from medical
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images. In particular, we plan to investigate knowledge transfer technics for
novel diseases.

Improving zero-label and few-label semantic segmentation. This thesis has made
the first step towards the zero-label and few-label semantic segmentation
problems. While we have shown that a semantic project layer followed by the
cross-entropy loss works well, we believe that exploring better loss functions is
likely to lead to big improvements in the predictions. Furthermore, we found
that the performance of generalized zero-label semantic segmentation is still
unsatisfied, we believe that exploring better semantic embeddings and special
normalization technics are promising directions for this issue.

Few-shot 3D computer vision. 3D computer vision is a critical field for virtual
reality, robotics and autonomous driving because the real world is obviously
in 3D. Typical 3D vision tasks include 3D reconstruction, 3D human body
modeling and 3D scene understanding like detection and tracking problems.
Although deep learning has achieved big breakthrough in 2D vision , we have
not seen the same progress in 3D vision because collecting and processing 3D
training data are difficult. We do not have much expertise in 3D vision and it
is hard to suggest any good ideas but we are definitely interested in studying
it in the near future.

9.2.4 A broader view on the topic

Our long-term goal is to develop machine perception that can generalized well after
observing only limited labeled examples of novel tasks. Few-shot and and zero-shot
learning are simply two directions towards this goal. From a broader view, topics of
learning with limited labeled data include but not limited to self-supervised learning,
and long-tailed recognition problem and multi-modal learning.

Semi-supervised and self-supervised learning. Semi-supervised and self-supervised
learning are both two practical solutions for learning with limited labeled data.
While semi-supervised learning leverages unlabeled data in addition to labeled
data, self-supervised learning learns from a completely unlabeled dataset by
solving other proxy tasks that make use of the structure of the input data. I am
interested in develop an efficient learning algorithm that combines low-shot
learning, semi-supervised learning and self-supervised learning.

Long-tailed recognition problem. Real-world datasets inherently follow a long-tail
distribution i.e., the number of samples per class is decreasing exponentially.
A reliable visual recognition system should perform well on all the classes by
balancing the dataset and transferring knowledge from known classes to novel
classes. This is a very challenging task because it must handle imbalanced clas-
sification and low-shot learning at the same time. I believe developing robust
novelty detection algorithms, special sampling methods, and normalization
technics to calibrate the prediction are promising directions.
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Multi-modal learning. Learning from multiple modalities of data has been shown
to the amount of necessary training instances because different modalities
often contain complementary information. In fact, human beings learn from
multiple sensory modalities i.e., the five classic types of human perception
are senses of vision (sight), audition (hearing), tactile stimulation (touch),
olfaction (smell), and gustation (taste). While there have been a lot of studies in
learning with vision and language, little research has been done in combining
those five sensory modalities (or subsets of them). I feel it hold the potential to
improve self-supervised learning by predicting the correspondence between
two or multiple modalities.
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