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In this paper, we investigate the hypothesis that people use feature correlations to detect inter- and intra-
categorical structure. More specifically, we study whether it is plausible that people strategically look for
a particular type of feature co-occurrence that can be represented in terms of rectangular patterns of 1s
and 0s in a binary feature by exemplar matrix. Analyzing data from the Animal and Artifact domains, we
show that the HICLAS model, which looks for such rectangular structure and which therefore models a
cognitive capacity of detecting feature co-occurence in large data bases of features characterizing exem-
plars, succeeds rather well in predicting inter- and intra-categorical structure.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction German shepards, poodles, rottweilers, etc. Artifacts are likewise
Ever since Rosch and her collaborators (Rosch & Mervis, 1975;
Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) published
their influential studies on semantic concepts in the mid seventies,
both the structure between categories and the structure within
categories have been studied extensively in cognitive psychology
(see Medin, Lynch, & Solomon, 2000; Murphy, 2002, for over-
views). Moreover, an important topic of debate – on which we fo-
cus in this paper – is how people detect this inter- and intra-
categorical structure.
1.1. Inter- and intra-categorical structure of semantic categories

Regarding inter-categorical structure, or the structure between
categories, Rosch et al. (1976) focused on the hierarchical nature of
many semantic concepts. The Animal category, for instance, falls
apart into mammals, birds, fish, insects, reptiles, etc., that is, into
mutually exclusive categories that are defined at a lower level of
abstraction. Each of these lower level categories is further subdi-
vided into less abstract categories. The mammal category, for in-
stance, consists of dogs, cats, cows, horses, elephants, and so on,
and categories such as dogs can even be further subdivided into
ll rights reserved.
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ly to this paper.
structured hierarchically. A particular object can be referred to as
a jazz guitar, a guitar, a string instrument, a musical instrument,
or an artifact.

Regarding intra-categorical structure, or the structure within
categories (Rosch et al., 1976; Rosch & Mervis, 1975) convincingly
showed that not all exemplars are equally good examples of a cat-
egory. People agree rather well on how typical exemplars of com-
mon semantic categories are. For example, most people agree that
a cow is a better instance of a mammal than a whale (even though
they will agree that both of these Animal kinds are mammals) and
that a piano is a better instance of a musical instrument than an
Indonesian gamelan (McCloskey & Glucksberg, 1978). Moreover,
ratings of typicality are quite consistent over time (Barsalou,
1987; Hampton, 2006). The graded structure of semantic catego-
ries, as measured by rated typicality, has been shown to predict
performance in many other category-related tasks, such as induc-
tive reasoning (Osherson, Smith, Wilkie, López, & Shafir, 1990),
exemplar production (Storms, 2001), category naming (Storms,
De Boeck, & Ruts, 2000), priming effects (Rosch, 1977), memory
interference effects (Keller & Kellas, 1978), and response times
from a speeded categorization task (Hampton, 1979). It thus seems
that semantic categories display a stable internal structure that
needs to be accounted for by any theory of concept representation.

Both the inter- and the intra-categorical structure are reflected
in two aspects of semantic concepts: the extension and the inten-
sion. The extension of a concept corresponds to the class of entities
that the concept refers to. The intension of a concept is the idea
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Table 1
Hypothetical exemplar by feature data matrix D.

Exemplar Feature

Has
nipples

Breastfeeds Warm-
blooded

Soft Feathers Air
sacs

Whale 0 1 1 0 0 0
Zebra 1 1 1 1 0 0
Blackbird 0 0 1 1 1 1
Woodpecker 0 0 1 1 1 1
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associated with the concept, or, the set of salient or psychologically
important features that delineate the concept.

The inter-categorical structure is reflected extensionally in
which entities belong to which of a series of (contrasting) catego-
ries. For instance, carrots and tomatoes belong to the vegetable cat-
egory, while apples and oranges belong to the category of fruits.
The intra-categorical structure is reflected extensionally in the ex-
tent to which a particular exemplar of a category is typical of the
category. Pears are generally considered to be more typical for
the fruit category than water melons. But one can also look at inter-
and intra-categorical structure from an intensional point of view.
The features belonging to the intension of a semantic concept X
but not to the intension of another concept Y and the features
belonging to the intension of Y but not to that of X are thus crucial
to the differentiation between both concepts, or, to use different
words, to the inter-categorical structure of both concepts. Tasting
sweet, for instance, is important in distinguishing fruits from vege-
tables. Finally, the intra-categorical structure is reflected intension-
ally in the features that contribute in making exemplars more or
less typical of a category. Though strawberries and blackberries
are fruits that do not grow on trees, more typical fruit exemplars
like apples and oranges do grow on trees.

Since semantic concepts are, as mentioned above, usually hier-
archically structured, intra-categorical structure (i.e., which fea-
tures apply to which exemplars) and inter-categorical structure
(i.e., which features differentiate exemplars from non-exemplars)
cannot be separated. Of course, if a category X, defined at a hierar-
chically higher level, falls apart into categories A, B, and C at a
lower level, then intra-categorical structure of X reflects inter-cat-
egorical structure of A, B, and C.

1.2. Studying the cognitive capacity to detect inter- and intra-
categorical structure

The question how people learn to assign stimuli to categories
has drawn a lot of attention, which resulted in the development
of a large number of (formal) categorization models that have been
tested extensively in experiments with artificial categories. For an
overview, see for instance, Ashby and Maddox (2005) and Smith
and Minda (2000).

The related question of how people carve up common entities in
the real world into more or less homogeneous categories is more
difficult to answer. Many categories like Animal sorts and Artifact
categories are learned by children in non-verbal ways at very early
ages, which makes the process difficult to study in rigorously con-
trolled settings. As a result, researchers are forced to study young
children using indirect measures (Mandler, 2000), or take refuge
in studying categorization of novel stimuli into well-known cate-
gories in adults (e.g., Ameel, Storms, Malt, & Sloman, 2005; Smits,
Storms, Rosseel, & De Boeck, 2002; Storms, De Boeck, & Ruts, 2001).

Another way to study how the virtually infinite diversity of
entities in the world gets carved up into categories is by developing
models that mimic human categorization. Recently, Rogers and
McClelland (2004) proposed a parallel distributed-processing ap-
proach to model the category learning process faced by children.
In this paper, we take another approach and explore the possibility
that people deduce the inter- and intra-categorical structure of
semantic concepts from the correlational structure of psychologi-
cally salient features in the entities in the world (Storms & De
Boeck, 1997; Storms, Van Mechelen, & De Boeck, 1994) and we
model this process by using hierarchical classes analysis (HICLAS:
De Boeck & Rosenberg, 1988).

Thus, the central idea to our approach is that the world outside
us is structured in such a way that the entities are carved up into
categories that are characterized by similar patterns of psycholog-
ically important features and, as Rosch and Mervis (1975) argued
in the seventies, that intra-categorical structure arises from corre-
lational structure within categories. Moreover, if people are sensi-
tive to this correlational structure, they may learn to use some
features to divide the entities in the world into separate categories,
while using other features to determine typicality within the cate-
gories and ignoring still other features when structuring categories
at a particular level of abstraction (note, for instance, that the mod-
el of Zeigenfuse and Lee (2010) incorporates the assumption that
people ignore some features).

The way we approach the problem of predicting inter and intra
categorical structure is by analyzing exemplar by feature data and
by looking for dense regions in the data, after reorganizing rows
and columns of the exemplar by feature matrices. Such dense re-
gions reflect (near) monothetic or rectangular patterns and, as will
be explained below, they can be found by applying the disjunctive
HICLAS model (De Boeck & Rosenberg, 1988). As such, the HICLAS
model mimics the potential cognitive ability of finding correla-
tional structure in the data.

In the remainder of this paper, we will first briefly describe the
HICLAS model and then continue with a presentation of the results
of the HICLAS analyses of two data sets: one consisting of exemplar
by feature data from the Animal domain and another data set with
Artifact data. The paper will be concluded with reflections on the
cognitive implications of the use of data analytic tools such as HI-
CLAS to study inter- and intra-categorical structure.

2. HICLAS

The HICLAS model (De Boeck & Rosenberg, 1988) is a structural
model for a binary I exemplars by J features data matrix D. In the
following paragraphs, we will use the hypothetical four exemplars
by six features matrix in Table 1 as a guiding example. In this table,
a value of 1 indicates that the corresponding exemplar is character-
ized by the feature in question; a value of 0 implies that this is not
the case. For instance, it can be read that a zebra is warm-blooded,
but has no air sacs.

Given a binary I exemplars by J features data matrix and a rank
R, HICLAS approximates the data by a binary I exemplars by J fea-
tures model matrix M, such that the following loss function is
minimized:

L ¼
XI

i¼1

XJ

j¼1

ðdij �mijÞ2; ð1:1Þ

subject to the restriction that, permuting the exemplars and fea-
tures, M contains R possibly overlapping rectangles of ones. This
approximation is achieved by reducing the exemplars and features
to R overlapping clusters, called bundles, using an alternating least
squares or simulated annealing procedure (Ceulemans et al., 2007).
From the exemplar and feature bundles, the exemplar by feature
model matrix can be computed by means of the following associa-
tion rule:

mij ¼ �
R

r¼1
eirfjr ; ð1:2Þ



Table 2
HICLAS model matrix M of rank 2 for the data in Table 1.

Exemplar Feature

Has
nipples

Breastfeeds Warm-
blooded

Soft Feathers Air
sacs

Whale 1 1 1 1 0 0
Zebra 1 1 1 1 0 0
Blackbird 0 0 1 1 1 1
Woodpecker 0 0 1 1 1 1
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where � denotes the Boolean sum (i.e., 1� 1 ¼ 1), and eir and fjr

indicate the entries of the exemplar bundle matrix E and the feature
bundle matrix F, respectively. For instance, Table 2 shows a HICLAS
model matrix of rank 2 for the data in Table 1, which is obtained by
reducing the exemplars and features to two bundles. The corre-
sponding exemplar and feature bundle matrices E and F are given
in Table 3. Comparing Tables 1 and 2, one can derive that this HI-
CLAS model has a loss function value of 2.

The bundles of the exemplars and the features are linked to one
another, implying that exemplars that belong to a specific exem-
plar bundle are characterized by all features that belong to the cor-
responding feature bundle. For instance, Table 2 shows that in the
HICLAS model blackbird and woodpecker are characterized by is
warm-blooded, is soft, has feathers, and has air sacs. This is reflected
in Table 3, as blackbird and woodpecker belong to the second exem-
plar bundle and is warm-blooded, is soft, has feathers, and has airs
sacs constitute the second feature bundle.

The one-to-one correspondence of the exemplar and feature
bundles imply that exemplars and features that belong to linked
exemplar and feature bundles, constitute a rectangle of 1s in the
data matrix. Similarly, exemplars and features that do not belong
to the corresponding exemplar and feature bundles, form a rectan-
gle of 0s in the data matrix. For instance, in Table 3, blackbird and
woodpecker belong to the second exemplar bundle only, whereas
has nipples and breastfeeds belong to the first feature bundle only.
This is reflected in Table 2 in that these two exemplars and two
features constitute a rectangle of 0s. It can be concluded that
whereas each rectangle of 1s represents a category, the corre-
sponding exemplar bundle represents the extension of the cate-
gory and the corresponding feature bundle represents its
intension. For instance, in Table 3, the first exemplar and feature
bundles constitute the category of mammals; zebra and whale are
the extension of this category, and has nipples, breastfeeds, is
warm-blooded, and is soft are the intension.
whale blackbird
2.1. Hierarchically organized classifications

An important feature of the HICLAS model is that it includes
hierarchically organized classifications of the exemplars and fea-
tures. This hierarchical structure is obtained by applying a closure
operation to the bundle matrices E and F at the end of the alternat-
ing least squares or simulated annealing procedure (see e.g., Ceule-
mans et al., 2007); this closure operation does not alter the loss
function value of the obtained solution. With respect to the classi-
Table 3
Bundle matrices E and F of rank 2 for the data in Table 1.

Exemplar Bundles Feature Bundles

I II I II

Whale 1 0 Has nipples 1 0
Zebra 1 0 Breastfeeds 1 0
Blackbird 0 1 Is warm-blooded 1 1
Woodpecker 0 1 Is soft 1 1

Has feathers 0 1
Has air sacs 0 1
fication, exemplars that are characterized by the same set of fea-
tures constitute an exemplar class, whereas features that apply
to the same set of exemplars constitute a feature class. These clas-
sifications of the exemplars and the features are represented in the
bundles, in that all the elements of a class belong to the same set of
bundles. For instance, from Table 2 it can be read that zebra and
whale are characterized by the same set of features (has nipples,
breastfeeds, is warm-blooded, is soft); hence, these two animals be-
long to the same exemplar class. This is reflected in Table 3 in that
both zebra and whale belong to the first bundle, but not to the sec-
ond one. Similarly, has feathers and has air sacs constitute a feature
class, as both features apply to the same two exemplars (i.e., black-
bird, woodpecker). As such, has feathers and has air sacs have iden-
tical bundle patterns in Table 3.

With respect to the hierarchical organization of the classifica-
tions of the exemplars and the features, an exemplar class is hier-
archically lower than another exemplar class if the set of features
that apply to the first class is a subset of those that apply to the lat-
ter class. Similarly, a feature class is hierarchically lower than an-
other feature class if the set of exemplars that are characterized
by the first class is a subset of the set of exemplars that are char-
acterized by the latter class. The hierarchical relations between
the exemplar classes and the feature classes are also represented
in the bundles, in that the bundle pattern of a hierarchically lower
class is a subset of that of a hierarchically higher class. For instance,
Table 2 shows that has feathers and has air sacs are hierarchically
lower than is warm-blooded and is soft, because the first two fea-
tures only apply to blackbird and woodpecker, whereas the last
two features apply to all exemplars. This hierarchical relation is
represented in Table 3 in that has feathers and has air sacs only be-
long to the second bundle, whereas warm-blooded and is soft be-
long to both bundles.
2.2. Graphical representation

A graphical representation of the HICLAS model in Tables 2 and
3 is given in Fig. 1. In this figure, the hierarchical classifications of
the exemplars and the features are drawn in the upper and lower
half of the representation, respectively, where the feature hierar-
chy is represented upside down. The classes are indicated by the
boxes and the hierarchical relations between the classes by the
lines between the boxes. Finally, the zigzags represent the linking
structure between the exemplar bundles and the feature bundles.
2.3. Model selection

In practice, the structure of binary exemplar by feature data can
only be perfectly reconstructed (i.e., loss function value equals
zero) by means of a HICLAS model with a large number of bundles.
Such models are too complex to be useful, however. Therefore, one
will usually look for a model that describes the data well without
zebra woodpecker

has nipples
breastfeeds

has feathers
has air sacs

is warm-blooded
is soft

I II

Fig. 1. Graphical representation of the HICLAS model in Table 2.
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being overly complex. This is achieved by fitting HICLAS models
with increasing numbers of bundles R to the data. Subsequently,
the solution that best balances fit to the data (i.e., low L-value)
and complexity (i.e., number of bundles R) is selected by applying
some model selection procedure.

Recently, a range of such procedures has been proposed, includ-
ing a numerical convex hull-based extension of the well-known
scree test (Ceulemans & Van Mechelen, 2005), a pseudo-binomial
test (Leenen & Van Mechelen, 2001), and, recasting HICLAS in prob-
abilistic terms, a pseudo-AIC criterion (Ceulemans & Van Meche-
len, 2005), Bayes factors and posterior predictive checks (Leenen,
Van Mechelen, Gelman, & De Knop, 2008). In this paper, we only
consider the original, deterministic HICLAS model, and will there-
fore use the numerical convex hull-based procedure and the pseu-
do-binomial test.

The numerical convex hull-based procedure selects the solution
on the lower boundary of the convex hull of a number of bundles
vs. loss function value plot, after which the decrease in loss func-
tion levels off (Ceulemans & Kiers, 2006; Ceulemans & Van Meche-
len, 2005). The pseudo-binomial test selects the smallest rank or
amount of bundles R, for which the probability of observing a value
X smaller than the loss function value of the model of rank R + 1 is
greater than some small number, say, .0001 given that X is binomi-
ally distributed as follows: X � bin(IJ, LR/IJ), with IJ equaling the
number of cells in the data matrix and LR indicating the loss func-
tion value of the solution with R bundles (Leenen & Van Mechelen,
2001).

2.4. Fit measures

Apart from the loss function value, which boils down to the
number of discrepancies between the data and the model (i.e.,
the number of cells with a 0 in the data and a 1 in the model or vice
versa), another fit measure that is often used in HICLAS analysis is
the Jaccard goodness-of-fit index (Sneath & Sokal, 1973), which
takes values between 0 and 1:

J ¼ nD¼1;M¼1

nD¼1;M¼1 þ nD¼0;M¼1 þ nD¼1;M¼0
; ð1:3Þ

where nD¼1;M¼1 indicates the number of cells with a 1 in the data and
a 1 in the model, nD¼0;M¼1 indicates the number of cells with a 0 in
the data and a 1 in the model, and nD¼1;M¼0 indicates the number of
cells with a 1 in the data and a 0 in the model. This Jaccard index
can be calculated for the overall model as well as for each exemplar
and each feature separately. Through the varying Jaccard values for
the exemplars and the features, the HICLAS model leaves room for
gradedness, both on the extensional and on the intensional side
(Storms et al., 1994). Specifically, the Jaccard indices for the exem-
plars can be considered a measure of prototypicality and the Jaccard
indices for the features a measure of category relevance. For in-
stance, the Jaccard indices for zebra and whale equal 4/
(4 + 0 + 0) = 1 and 2/(2 + 2 + 0) = .5 respectively, indicating that ze-
bra is a more prototypical mammal than whale. Note that the Jac-
card index is closely related to the similarity index sij between a
pair of objects i and j in the ratio model of Tversky (1977), which
takes the common and distinctive features of both objects into
account.

2.5. Relations to other models

In the past decades, many models and associated algorithms
have been proposed that can be applied to binary exemplar by fea-
ture data in order to obtain a clustering of the exemplars as well as
the features (for an overview of two-mode clustering methods, see
Van Mechelen, Bock, & De Boeck, 2004). The models differ in many
respects, however: Are the models deterministic or stochastic?
Does the induced clustering of the exemplars and the features take
the form of a partition or is it an overlapping clustering? Is the
number of exemplar and feature clusters fixed throughout the esti-
mation procedure or is it dynamically updated?

Comparing HICLAS to two two-mode clustering techniques that
have recently been proposed in the categories and concepts litera-
ture, i.e., the Infinite Relational Model (Kemp et al., 2006) and the
CrossCat model (Shafto et al., 2006) shows that HICLAS differs in all
three respects from these models: whereas the Infinite Relational
Model and the CrossCat model are stochastic, the original HICLAS
model that is used in this paper, is deterministic (for a minimal sto-
chastic extension of HICLAS, see Leenen et al., 2008). HICLAS yields
an overlapping clustering of the exemplars and the features, which
also implies a partitioning of both sets however, based on the sub-
set of the overlapping clusters to which an exemplar or feature be-
longs; applying the Infinite Relational Model and the CrossCat
model results in partitions of exemplars and features. Finally, the
existing HICLAS algorithms require the specification of the number
of overlapping clusters (bundles), whereas the Infinite Relational
model and the CrossCat model determine the number of clusters
dynamically.
3. Applying HICLAS to detect inter- and intra-categorical
structure in semantic concepts

Two data sets out of the Leuven Natural Concept Database, ta-
ken from De Deyne et al. (2008) were analyzed with the disjunctive
HICLAS model (Ceulemans, Van Mechelen, & Leenen, 2007; De
Boeck & Rosenberg, 1988). The first data set consisted of a 129
exemplar by 225 feature matrix for the Animal domain (i.e., the
Type IV data set from De Deyne et al. (2008)). The exemplar set
contained a sample of 30 mammals, 30 birds, 23 fish, 26 insects,
and 20 reptiles and amphibians, representative in terms of pre-
sumed typicality, ranging from very atypical exemplars to very
typical exemplars of these categories, but with the restriction that
all the selected exemplars had to be familiar to the vast majority of
an adult population in the Dutch-speaking part of Belgium (note
that the participants in the generation study of Storms, 2001, on
which the exemplar selection was based, did not know the differ-
ence between reptiles and amphibians very well, generating a lot
of overlapping exemplars for both categories. Therefore, these
two categories were treated as a single category).

The features were selected from a feature generation task in
which participants were asked to name 10 features that define
(technically or loosely speaking) each of the five Animal categories.
They were encouraged to include different kinds of features,
including physical, perceptual, and functional features as well as
encyclopaedic knowledge. For each of the Animal categories, 20
different participants generated features. For the categories birds,
fish, insects, mammals, and reptiles, respectively 52, 58, 70, 60,
and 70 features were selected for inclusion in the exemplar by fea-
ture matrix, but note that some features overlapped.

The second data set consisted of a 166 exemplar by 300 feature
matrix for the domain of Artifacts (i.e., again the Type IV data set
from De Deyne et al. (2008)). Unlike the Animal categories, the
Artifact categories are not mutually exclusive and no generally ac-
cepted delineation of these categories exists (unlike for the Animal
categories, for which it is assumed that there is a biological taxon-
omy of non-overlapping categories). Several objects were gener-
ated frequently by participants as instances of more than 1 of the
6 Artifact categories under study. Assigning exemplars to the cate-
gories where they were generated with the highest frequencies,
the exemplar set included a sample of 27 musical instruments, 27
tools, 30 vehicles, 29 clothing items, 33 kitchen utensils, and 20 weap-
ons. Again these exemplars were selected to be representative in



mammals
orca (F)

whale (F)
dolphin (F)

9 feat.

birds reptiles fish insects

11 feat. 14 feat. 25 feat. 16 feat. 76 feat.

4 feat. 2 feat. 2 feat. 4 feat. 3 feat. 1 feat.4 feat.

3 feat. 1 feat. 1 feat. 1 feat. 3 feat.5 feat.

5 feat. 4 feat. 2 feat. 6 feat. 1 feat.

22 feat.

Fig. 3. HICLAS model with five bundles for the Animal data set.
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terms of presumed typicality, ranging from very atypical exem-
plars to very typical exemplars of these categories, but with the
restriction that all of the selected exemplars had to be familiar to
the vast majority of an adult population in the Dutch-speaking part
of Belgium.

The features were again selected from a feature generation task
in which participants were asked to name 10 features that define
(technically or loosely speaking) each of the six Artifact categories.
As for the Animal data set, they were encouraged to include differ-
ent kinds of features, including physical, perceptual, and functional
features as well as encyclopaedic knowledge. For the categories
clothing, kitchen utensils, musical instruments, tools, vehicles, and
weapons, respectively 71, 73, 74, 79, 62, and 54 features were se-
lected for inclusion in the exemplar by feature matrix, but note
that some features overlapped.

The entries in the analyzed Animal and Artifact exemplar by
feature matrices were the number of subjects (out of four) who
judged (for every feature-exemplar pair) whether the feature char-
acterizes the exemplar or not. The reliability of the two exemplar
by feature matrices was estimated by De Deyne et al. (2008) using
the Spearman–Brown split-half technique. As there are only three
different ways to divide four subjects in two groups of two, all
three possible splits were evaluated, resulting in reliability esti-
mates of .89, .90, and .87 for the Animal matrix, and .85, .84,
and.84 for the Artifact matrix.

As a measure of the intra-categorical structure, we used typical-
ity ratings in the eleven studied categories, also gathered by De
Deyne et al. (2008). The reliability of these ratings was quite high,
with estimated values all above .90, except for the category of in-
sects, where the estimated value was .87.

3.1. Results and discussion of the analysis of the animal data set

The 129 animals by 225 features data matrix was dichotomized
using a majority rule, that is, by replacing values ranging from 0 to
1 by 0 and values ranging from 2 to 4 by 1. HICLAS solutions
including 1–8 bundles were obtained, of which the loss function
values and the Jaccard goodness-of-fit indices are shown in
Fig. 2. Both the numerical convex hull-based model selection pro-
cedure (Ceulemans & Kiers, 2006; Ceulemans & Van Mechelen,
2005) and the pseudo-binomial test (Leenen & Van Mechelen,
2001) indicated the selection of the HICLAS solution with five bun-
dles. Fig. 3 shows a graphical representation of this solution. In this
figure, the Animal classes are labeled by indicating to which of the
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Fig. 2. Loss function values (divided by data size) and Jaccard indices of the HIC
five underlying categories – mammals, birds, reptiles, fish, insects –
(most of) the Animals in the class belong. Additionally, Animals
for which the class and category membership do not correspond
are printed in italics, with the category membership indicated be-
tween brackets.

Inspecting Fig. 3, one immediately notices that the exemplar
structure, consisting of five classes only, is much simpler than
the feature structure, which is composed of 25 classes. Moreover,
the five Animal classes, which each belong to only one bundle, per-
fectly correspond to the underlying categories – mammals, birds,
reptiles, fish, and insects – with three exceptions only: orca, whale,
and dolphin are assigned to the mammal bundle instead of the fish
bundle. This makes perfect sense as, although these three animals
were generated as exemplars of fish in the exemplar generation
task (De Deyne et al., 2008), according to a biological taxonomy
they are mammals and not fish. It can be concluded that HICLAS
yields a perfect delineation of the Animal categories under study
and as such succeeds in recovering the inter-categorical structure.

Though we concentrate on the exemplar structure in this paper,
it is important to notice that the feature structure is complicated,
but clearly interpretable. Examples of good-fitting features (with
a Jaccard index above .90) in the bundle specific feature classes
corresponding to mammals, birds, reptiles, fish, and insects, were
has nipples, has feathers, is cold-blooded, breathes through gills, and
has feelers, respectively. The features in the hierarchically higher
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classes were equally well-interpretable. Lays eggs, for instance,
shows up in a feature class that spans all categories except mam-
mals, and features like eats and has brains are assigned to the fea-
ture class that applies to all animals.

As stated in the introduction, not all exemplars are equally good
examples of a category, implying that semantic categories have a
graded structure. This intra-categorical structure is reflected in
the rated typicality of the exemplars for the categories. To study
whether HICLAS retrieves this intra-categorical structure, the Jac-
card goodness-of-fit indices of the animals within a category were
correlated with the corresponding typicality ratings. Note that
orca, whale and dolphin were excluded from these calculations, be-
cause their typicality ratings concerned typicality for the category
fish instead of typicality for the category mammal. For reptiles
(r = .51, p = .02), insects (r = .43, p = .03), fish (r = .57, p = .01), and
birds (r = .66, p < .0001), the obtained correlations were signifi-
cantly positive. For mammals, however, the correlation coefficient
amounted to .04 (p = .85) only.

A possible explanation for this low correlation may be our
familiarity with the mammal category. As Barsalou (1987) showed,
typicality is highly correlated with familiarity as expressed in word
frequency. In order to control for the effect of word frequency, we
first predicted typicality in the mammal category from (the loga-
rithm of) word frequency (De Deyne et al., 2008) and then corre-
lated the residuals with the Jaccard goodness-of-fit indices from
the HICLAS analysis. As a result, the predictive correlation rose to
.36, a value that is nearly significant (p = .06).

Another consequence of our extensive familiarity with mam-
mals is our detailed knowledge of this collection of species, which
makes the mammal category less homogeneous than the other (rel-
atively lesser known) Animal categories. As we will explain below
(see Section 4), the resulting presence of subcategories in the mam-
mal category may also account for the decreased correlation be-
tween fit and typicality.

3.2. Results and discussion of the analysis of the Artifact data set

Like the Animal data set, the 166 artifacts by 300 features data
matrix were dichotomized by replacing values ranging from 0 to 1
by 0 and values ranging from 2 to 4 by 1. The dichotomized data
matrix was analyzed with the HICLAS algorithm with the number
of bundles varying from 1 to 8. Applying the numerical convex
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Fig. 4. HICLAS model with six bun
hull-based procedure and the pseudo-binomial test to Fig. 2, which
shows the loss function values and the Jaccard goodness-of-fit
indices of the eight resulting HICLAS solutions, resulted in the
selection of the solution with six bundles. Fig. 4 shows a graphical
representation of this solution; note that only the hierarchical clas-
sification of the artifacts is displayed, as the hierarchical classifica-
tion of the 300 features is very complex (i.e., it consists of 33
classes).

With respect to inter-categorical structure, it can be read from
Fig. 4 that some Artifact categories can be more easily delineated
by means of HICLAS than others: Whereas musical instruments
and clothing are clearly separated from the other categories, vehi-
cles, weapons, tools, and kitchen utensils are slightly intertwined.
This is no surprise as the Artifact categories under study are not
mutually exclusive and no generally accepted delineation of these
categories exists. Indeed, De Deyne et al. (2008) report that in the
Artifact generation task multiple artifacts were generated fre-
quently by participants as instances of more than one of the six
Artifact categories. For instance, axe and rope were generated as in-
stances of weapons as well as tools. Note also that, as in the analysis
of the Animal data, the categories detected by HICLAS are, in terms
of the vertical structure of semantic concepts (Rosch et al., 1976)
defined at the superordinate level.

As in the analysis of the Animal data, the feature structure is
complicated, but clearly interpretable. Examples of features with
a Jaccard index above .90 in the feature classes that are linked to
kitchen utensils, musical instruments, tools, and clothing only, were
is used by cooks, is used in orchestras, is used to work with, and is
sewn, respectively. The features in the hierarchically higher classes
were again easily interpretable. Is a good invention, for instance, is
classified in a feature class that spans all categories except weap-
ons, and features like can wear off and is available in different types
are assigned to the feature class that applies to all artifacts.

With respect to intra-categorical structure, correlation coeffi-
cients were computed between the typicality ratings of the arti-
facts and their Jaccard goodness-of-fit indices. In these
calculations only the artifacts that belong to the hierarchically low-
est Artifact classes (i.e., the classes with the category labels) were
used, thus excluding artifacts that were assigned to more than
one bundle and also discarding artifacts for which the typicality
ratings did not concern the category to which they were assigned
to by HICLAS (e.g., lawnmower, cart, apron). For clothing (r = .64,
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p = .0002) and tools (r = .60, p = .0049) the obtained correlations
were significantly positive. For the other categories, however, the
correlation coefficients were not significant, implying that the in-
tra-categorical structure could not be predicted on the basis of
the HICLAS solution.
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4. General discussion

In this paper, we investigated the hypothesis that people use
feature correlations to detect inter- and intra-categorical structure.
More specifically, we studied whether it is plausible that people
use a strategy of looking for a particular type of feature co-occur-
rence that is reflected by rectangular patterns in a binary feature
by exemplar matrix. Analyzing data from the Animal and Artifact
domains, we showed that the HICLAS model, which looks for such
rectangular structure and which therefore models a cognitive
capacity of detecting feature co-occurence in large data bases of
features characterizing exemplars, succeeds rather well in predict-
ing structure between categories, and even, to a certain degree,
within categories.

Regarding inter-categorical structure, HICLAS was capable of
splitting up a large number of animals in the correct number of
underlying superordinate categories and of classifying all animals
into the appropriate category. Interestingly, the model even suc-
ceeded in correctly assigning animals such as orca, whale, and dol-
phin to the mammal category, rather than to the fish category, in
which these animals would be categorized if the judgments were
solely based on superfluous perceptual and behavioral features.
Furthermore, even though nothing prevented the model from clas-
sifying exemplars into hierarchically higher exemplar classes that
correspond to the intersection of the base categories (i.e., the
exemplar classes that belong to one bundle only), it assigned each
of the 129 animals to one of the base categories, just like human
subjects do when classifying living creatures in these categories.
In line with common sense expectations, the feature structure con-
sisted of clearly interpretable feature classes that apply exclusively
to a single base category as well as feature classes that apply to
multiple categories.

Looking at the results of the six-bundle solution for the artifacts,
it is obvious that the base categories used to compose the stimulus
set of the Artifact domain can be clearly distinguished. Unlike in
the solution of the Animal domain, several exemplar stimuli were
classified as belonging to multiple categories. The fact that HICLAS
puts forward mutually exclusive categories in the Animal domain
and overlapping categories in the Artifact domain fits nicely with
findings from the literature that Artifact and natural kind catego-
ries have a different nature in this respect (Ruts, Storms, & Hamp-
ton, 2004; Sloman & Malt, 2003). The feature structure of the
Artifact solution was again complicated, but clearly interpretable.

Regarding intra-categorical structure, the fit of the Animal
exemplars within the base category to which they were assigned,
succeeds in predicting typicality well for four of the five categories.
Only in the mammal category the prediction turned out to be poor.
We hypothesized that this lack of predictive power resulted from a
relatively more elaborate knowledge, which results in a further de-
tailed structure in this category. More specifically, we think that
the fit of an exemplar within a bundle-specific class reflects typi-
cality only if the corresponding category is rather homogeneous.
If, on the contrary, this category falls apart into several subcatego-
ries, that is, if some of the relevant features for the category func-
tion to distinguish between the subcategories, then the
applicability of the relevant feature set as a whole will poorly pre-
dict the typicality ratings of the exemplars for the category.
Phrased yet differently, we hypothesize that typicality ratings in
a heterogeneous category reflect a complicated relation towards
one or more of the subcategories that does not straightforwardly
correspond to the number of relevant category features that apply
to the exemplar.

Looking in detail at the scatter plot of the typicality ratings ver-
sus the Jaccard goodness-of-fit indices of the exemplars, we saw
that, for most categories with non-significant correlations, differ-
ent subclusters could be clearly distinguished. For kitchen utensils,
for instance, the group of electrical kitchen appliances yielded rel-
atively low goodness-of-fit values in the HICLAS solution, but was
rated as highly typical (see Fig. 5). The other exemplars showed a
fairly linearly increasing pattern between fit and typicality that
was broken by this subcategory of electric appliances. Likewise,
for weapons, a fair correlation between fit and rated typicality
was broken by a subcategory of fire arms with relatively low fit
values, but that was rated as highly typical. A similar pattern
was not immediately obvious in the mammal data, but because this
Animal category is a very familiar one, about which we have de-
tailed knowledge, it probably falls apart into a much larger number
of subcategories.

In order to further test the hypothesis that the lack of correla-
tion between typicality and goodness-of-fit is – at least partly –
caused by the presence of clearly separate subcategories, we
looked at the HICLAS solution with just one bundle for the Animal
data. This means that the (very heterogeneous) Animal category,
which – as we showed earlier – falls apart into several subcatego-
ries, and is treated as a single concept. Ratings of the typicality of
all 129 animals for the category of Animals were gathered from
11 participants. They rated typicality on a 7-point scale, with a
1-value referring to very atypical and a 7-value referring to very
typical animals. In line with our expectations, the correlation be-
tween rated typicality and goodness-of-fit within this heteroge-
neous Animal category were very low (r = .04).

4.1. Relating the HICLAS model to theories about semantic concept
representation

HICLAS (Ceulemans, Van Mechelen, & Leenen, 2007; De Boeck &
Rosenberg, 1988) is a data analytic technique for binary two-way
two-mode data that can be used to obtain hierarchical classifica-
tions of the elements of both modes. One may ask the question
why the results of a HICLAS analysis can be interpreted as evidence
for a particular type of cognitive processing of semantic concepts.
As stated before, we entertain the hypothesis that people use a
particular type of feature correlations to detect inter- and intra-
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categorical structure. The type of feature correlations that HICLAS
is sensitive to corresponds to a monothetic view on categories. In
other words, if the rectangular patterns that HICLAS looks for are
‘perfect’ rectangles (i.e., rectangles constituted by a complete fea-
ture set that applies perfectly to a complete exemplar set), then
the application of HICLAS corresponds to the classical view (Sutc-
liffe, 1993), where concepts are assumed to be represented by
defining (i.e., singly necessary and jointly sufficient) features. How-
ever, as is generally known, this classical view on semantic con-
cepts has been proven wrong in lots of empirical studies
(Murphy, 2002; Smith & Medin, 1981). Completely in line with
this, perfect rectangles will, of course, allow no differential predic-
tions of typicality, as every exemplar within a category would
show a perfect goodness-of-fit index.

Despite the overwhelming evidence against classically defined
concepts, a weaker version of the same idea has been proposed
by several authors, in which concepts are assumed to be repre-
sented by characteristic instead of defining features. Such charac-
teristic features are not strictly necessary for every category
exemplar, but they have substantial probabilities of occurring in
the different instances of the concept. For examples of such a view,
see for instance, Rosch and Mervis’ (1975) family resemblance
view and Hampton’s (1979) prototype view. Also, when assuming
that semantic concepts consist of relatively coherent clusters of
exemplars (and equating the animal names with the exemplar le-
vel), the so-called exemplar view on semantic concepts (Nosofsky,
1986; Storms, 2004) is also compatible with approximate
rectangles.

When the HICLAS model is used to parsimoniously describe the
important patterns in binary data, the input exemplar by feature
matrix is not perfectly, but approximately, represented by a HI-
CLAS solution with a limited number of bundles. This implies that
the rectangles that HICLAS looks for are not perfect rectangles, but
approximate rectangles. Such approximate rectangles correspond
to semantic concepts being represented by characteristic features.
Furthermore, the goodness-of-fit of the exemplars (which is a func-
tion of the number of 1s in the discovered rectangles and of the 0s
in the non-rectangular areas of the matrix) should then predict
rated typicality within the concepts. As was shown in our study,
the goodness-of-fit of the exemplars does correlate significantly
to rated typicality and thus corresponds with the intra-categorical
structure, at least in sufficiently homogeneous semantic concepts.

Finally, one may wonder whether our use of HICLAS as a cogni-
tive model implies that we assume that concepts are organiza-
tional principles of an ‘objective’ material reality. In other words,
do we adhere to a radical realist ontological view on concepts, in
which the structure between and within concepts is given by the
outside world (Van Mechelen, De Boeck, Theuns, & Degreef,
1993), rather than assuming that the concepts are mental repre-
sentations, as is usually held by cognitive scientists? A fundamen-
tal answer to this question would require philosophical arguments
that cannot be dealt with in this paper. Suffice it to say that the fea-
tures on which the input data are based were taken from a feature
generation study in which participants selected relevant properties
of the studied categories, and that this selection process roots our
usage of the HICLAS model at least partly at the mental level, rather
than solely at the objective material reality.
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