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Abstract 

 

My thesis aims to critically examine three methods in the current state of Computer Music 

Analysis. I will concentrate on Music Information Retrieval, Optimization, and Machine 

Learning. My goal is to describe and critically analyze each method, then examine the 

intersection of all three.  I will start by looking at David Temperley’s The Cognition of Basic 

Musical Structures (2001) which offers an outline of major accomplishments before the turn of 

the 21st century. This outline will provide a method of organization for a large portion of the 

thesis. I will conclude by explaining the most recent developments in terms of the three methods 

cited. Following trends in these developments, I can hypothesize the direction of the field. 
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Glossary  

 

Algorithm: a set of steps followed in calculations or problem-solving operations to achieve 

some end result. 

Computer Music Analysis: analysis of music using a computing software or algorithms. This is 

a ‘catch all’ term referring to all of the smaller aspects using computers for music analysis 

including, Music Information Retrieval (MIR), Optimization, and Machine Learning. According 

to a 2016 book, entitled Computational Music Analysis, by David Meredith, a general definition 

is “using mathematics and computing to advance our understanding of music […] and how 

music is understood.” (Meredith 2016) 

Machine Learning: teaching of a computer to analyse and find features, so as to gain 

knowledge of musical conventions. Machine learning is a route that is parallel to MIR, 

Preference Rule Systems (PRSs), and Probabilistic models. Like a human learning, “a computer 

learns to perform a task by studying a training set of examples.” (Louridas and Ebert 2016) 

Following this, a different example is given, and the effectiveness is measured in several ways 

depending on the task.   

Music Information retrieval (MIR): research concerned with making all aspects of a music file 

(melody, instrumentation, form etc.) searchable. MIR will eventually lead to a search engine for 

music. 

Optimization: a term used in calculus or business that refers to maximizing use of space or 

resources. Resources are still important in the musical sense, but they refer to time and energy. 

This is done through accessibility and more efficient computer tools and algorithms. Examples 

given below to show that it is possible to optimize analysis by integrating more mathematics and 

computer tools. 

Piano-roll input: a graphic representation of a score with notes on the vertical axis and timing in 

millisecond s on the horizontal.  

Preference rule system (PRS): a set of instructions for a computer in a hierarchy. These can be 

created as a system where there are multiple sets with a hierarchy within “criteria for evaluating 

possible analysis of a piece.” (Preface Temperley and Bartlette 2002) This is known as a rule-

based grammar in Manning et al 2001. 

Parallelism rule (as a type of preference rule): the idea that the similar construction of a 

musical element be regarded as important in a PRS.” Prefer beat intervals of a certain distance to 

the extent that repetition occurs at that distance in the vicinity.” (Temperley and Bartlette 2002, 

134) 

Probabilistic Methods: a method of analysis based in probability. The word “Probabilistic” 

means for an idea to be based on or adapted to a theory of probability, this term encompasses 

even distant uses of probability in computer models. This is a term used by Temperley referring 

to a computational method that uses probability.  



 
 

Chapter 1- Introduction and Literature Review 

 

1.1 Overview  

 

 My interest in Computer Music Analysis stems from my fascination with 

interdisciplinarity in music analysis. Computer Music Analysis intersects with mathematics, 

computer science, psychology, and, of course, music. My thesis will take a small sampling of 

interdisciplinary tools in Computer Music Analysis from Music Information Retrieval (MIR), 

Optimization, and Machine Learning.  MIR aims to make music searchable, primarily through 

online databases. Optimization encompasses many different tools with the eventual goal to 

understand human perception of music. Machine Learning, on the other hand, teaches the 

machine, often a computer, to perform a task, making the tool itself the end goal.  

For this thesis, I preface my work with Peter Manning’s entry, entitled “Computers and 

Music,” in the Grove Dictionary of Music and Musicians as a way to understand the existing 

conventions and uses of computers in music prior to the year 2000. Manning does not offer a 

specific definition, but instead discusses the common uses and devices of the computer as it 

relates to music. He states, “Computers have been used for all manner of applications, from the 

synthesis of new sounds and the analysis of music in notated form to desktop music publishing 

and studies in music psychology; from analysing the ways in which we respond to musical 

stimuli to the processes of music performance itself.” (Manning et al 2001). This quote 

exemplifies how interdisciplinary Computer Music Analysis is.  Manning’s work touches on 

composition, performance, and analysis addressing a key critical issue: human error. A computer 

is only useful because of its human programmer no matter what the application. With every new 

application of the computer—or tool—there are more issues and limitations. For example, a tool 
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that identifies duple metrical structures cannot identify compound meter and has a margin of 

error. The idea of the human creation of a computer model, and its limitations, is the focus of my 

thesis and is explored in three branches of Computer Music Analysis: Music Information 

Retrieval (MIR), Optimization, and Machine Learning. Manning’s entry coupled with the 

Literature Review provide a foundation on which I build this thesis.  

 

1.1.1 General Mission Statement  

 

This thesis aims to critically examine specific tools in Music Information Retrieval 

(MIR), Optimization –a term referring to improvements in Preference Rule Systems and 

Probabilistic Models– and Machine Learning individually. The exploration of MIR, 

Optimization, and Machine Learning will do two things: act as a survey of the literature and 

show trends within these subfields.  In the conclusion, I show how the three aspects can interact. 

Most branches in Computer Music Analysis run in parallel (Meredith 2016), and few researchers 

take inspiration from the parallel branches. It is not my intent to show that there is no interaction, 

but merely to show opportunities for more interaction.  

To survey the literature, I first look at the developments—prior to the turn of the 21st 

century, the period when the field of Computer Music Analysis was born. The background 

comes primarily from David Temperley’s book the Cognition of Basic Musical Structures (2001) 

as well as from works covered in the Literature Review and the Sketch of the Computer-Music 

Relationship sections.  To explore current trends, I restrict myself primarily to the literature from 

2000 to 2016. These texts build from the turn of the century and show how researchers utilize 

new technology to push the field further. This area constitutes the body of the thesis and shows 
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where the field has gone and where it is going. Additionally, using a critical examination of the 

literature, I explore recent trends in Computer Music Analysis and offer points of entry for new 

research. I use models drawn from World Music Research. I concentrate on the three areas of the 

field, as mentioned above. This research can be applied to other similar areas like Mathematical 

Music Theory, which represents basic musical structures in a mathematical form, or 

Computational Musicology, which investigates the simulation of computer models in music.  

 

1.1.2 A Critical Overview of Computer Music Analysis: Music Information Retrieval, 

Optimization, and Machine Learning  

 

The current state of the field in Computer Music Analysis sees a shifting of positions 

among the three areas: Music Information Retrieval (MIR), Machine Learning, and 

Optimization. Music Information Retrieval is the most rapidly evolving field of the three; due in 

large part to developments in and the spread of computers and the Internet – specifically an 

increase in computing capacity. The second field is Machine Learning; this is similarly due to 

computing capacity and the Internet, but also because of its widespread use in other disciplines, 

which music researchers are drawing from at greater and greater lengths. The third field is 

Optimization, which has stagnated. However, Optimization borrows from other disciplines, and 

contributes to the advances made by MIR and Machine Learning. As such, we can see that 

Optimization is currently evolving, even if other two fields are moving at a much greater pace. 

  To sketch in greater detail, there are crucial differences and overlapping areas between 

the three fields that explain their current situations. Machine Learning is a precise endeavor that 

aims to create specific tools to meet well-defined goals or serve finite tasks. MIR, on the other 

hand, works with large bodies of data and serves goals that are often ill-defined if not undefined. 



 
 

4 
 

Conversely, Optimization is presently in a state of coming together– in fields other than music – 

and, therefore, would appear not to be advancing as quickly. But, in fact, Optimization in its 

current state is laying a framework for major developments. 

 Though there is overlap between MIR, Optimization, and Machine Learning, it is limited 

to a few researchers and projects. Examples include the following: Darrell Conklin using 

probability and bioinformatics in conjunction with Machine Learning; Giraud et al, who are 

creating a tool for MIR and Optimization; and, most notably, CompMusic—a database for six 

subsets of World Music—that uses both Optimization and Machine Learning to create an MIR 

database. These will be discussed in the later parts of the thesis.  

 

1.1.3 Persaud’s Five Critical Issues 

 

From the critical perspective adopted in this thesis, several issues arise. Some of which 

have been addressed in the literature surveyed. Unfortunately, they have not been brought 

together in such a fashion to yield an overall critical perspective of the current field. To this end, 

I have isolated five central critical issues, which I address here. During the remainder of the 

thesis, I make reference to these from time to time, by means of a numbered list set out below 

and in Fig. 1. I refer to these as Persaud Critical Issues, since, to my knowledge they have not 

been catalogued in this fashion. 

 

Persaud’s Critical Issue 1. Human Error. 

  Firstly, data entry is still largely human-dependent and with large amounts of data—like 

with an MIR database—a person will often make mistakes. This was discussed by both Peter 

Manning in his definition and David Huron about The Humdrum Toolkit. As Huron and Manning 
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explain, the machine is limited by the programmers themselves. Outside of research, artificial 

intelligence (AI) is being used to complete simple tasks and can learn, by itself, various other 

tasks. Similarly, quantum computers are becoming more common instead of using simple binary 

code. Both of these devices are making their way into day-to-day life and eventually will end up 

in multidisciplinary research. In terms of what is being used currently, data entry could be 

improved by the application of Machine Learning. Certain parameters could be handled by 

machine input rather than human input. These advances are being made elsewhere but have not 

been seen in the area of music research, except in world music database creation [see conclusion 

of the thesis]. We need to see more inroads made by Machine Learning in the analysis of 

Western music and Ancient music. 

Human limitations are not only evident in data entry but also in setting parameters, in 

annotations, and in the creation of algorithms in general (Huron 1988). Setting parameters is a 

vital aspect of Optimization. It enables the most accurate analysis of the data provided and, 

therefore, generate more accurate outcomes. Because the parameters are calibrated by humans, 

there is an implicit limitation. This similar to the annotation of pieces in MIR databases and the 

creation and application of an algorithm in Machine Learning.  

 

 Persaud’s Critical Issue 2. Input Specification  

Input modes are not well-defined by researchers to be easily understood. To a certain 

extent, this is a problem of writing and communication, one that arises from research silos. This 

could be resolved by creating common standards and modes of discourse for describing 

computer research in music, and specifically the modes of input involved. Complementary to 

input specification due to research silos, input modes change from generic type to type. For 
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example, popular music is not often scored, while ancient music is not performed in its original 

form. As such, the input for popular music would most likely be an audio file, while for ancient 

music, an image of a score is more likely. Furthermore, the input could differ from a full form, 

such as all tracks on a song, to a simpler form, such as main melody only. This further 

complicates the situation.  

  In addition to genre, input modes depend upon translation into computer compatible 

formats. Though an MP3 audio format is widely available, it is not easily readable for analytical 

us. As a work around, researchers use either a MIDI format, or the input is further broken down 

into tracks. In the study of ancient music, image data cannot be read by a computer and must 

endure multiple passes of analysis using computer-based algorithms and processes, but this 

method still yields errors.  

  

Persaud’s Critical Issue 3. No Consistent Mode of Evaluation for Non-MIR Tools 

Music Information Retrieval Evaluation eXchange (MIREX), is a method of formally 

evaluating MIR systems and algorithms. This does not exist for other branches of Computer 

Music Analysis like Optimization and Machine Learning. These unknown standards for 

algorithms and tools result in an end-product that may not have any further use beyond its 

creation. Furthermore, without a widespread knowledge of the tools and algorithms, they cannot 

be used for MIR or other branches of Computer Music Analysis simply due to unknowingness.  

 

Persaud’s Critical Issue 4. The Interdisciplinary Problem (Downie 2003) 

The Interdisciplinary Problem is one that is examined and discussed by Stephen J. 

Downie in his article “Music Information Retrieval.” Though this is an issue in MIR specifically, 
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it extends to other branches of Computer Music Analysis such as Optimization and Machine 

Learning.  It simply refers to the lack of coordination between researchers and research fields 

when it comes to creating a tool and the different uses of the same terminology. Some tools and 

systems are made overly difficult for someone without programming knowledge, even though 

the outcomes of the tool would be useful to them. 

 

Persaud’s Critical Issue 5. “What’s the point?” Lack of Defined Goals and Frameworks  

Research in Computer Music Analysis often comes as small creations and discoveries 

rather than a large finished tool. As Computer Music Analysis often concentrates on the method 

to an output, these smaller steps cannot be used by another researcher until it is completed. 

Furthermore, the specific usage of the individual step is unknown or has very few applications, if 

any, so the “What’s the point?” argument returns. This argument also does not take into account 

the full potential of each field and is created by a lack of understanding for the goals of each 

branch in Computer Music Analysis.  
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Figure 1 Graphic representation of the five critical issues 
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1.2 A Sketch of the Relationship between Computers and Music  

 

1.2.1 Composition and Performance 

 

Music and computers have a lengthy history that touches on three fields: composition, 

performance, and music research. To understand the current state of Computer Music Analysis, 

the history needs to be discussed. In fundamental terms, the above-mentioned disciplines helped 

shape Computer Music Analysis 

In terms of composition, computer music was one of the principal areas of early research. 

One main source for understanding this research was the Computer Music Journal, founded in 

1977. This journal examines crossroads between computers and music such as composition with 

computers, MIDI, synthesizer theory, and analytical models using the computer (Computer 

Music Journal). Though the material is broad, there have been specific issues that address 

analytical models included in this thesis. This publication includes articles about CompMusic—

an organization committed to database creation for World Music—, which I will return to in my 

conclusion. The publication also includes Donnelly and Sheppard’s “Classification of Timbre 

Using Bayesian Networks” which is one of the few instances of cross-branch research.  

While the original inroads made into computer music composition were slow and 

burdened by clumsy and awkward hardware, this situation soon changed. Curtis Roads is a 

composer of electronic music and an author. His 1985 book, Composers and the Computer, is 

interview-based to get the composer’s perspective. According to Appleton’s review, Roads’s 

main point is that arts and science are becoming closer to create new music (Appleton 1986). 

Furthermore, Appleton explains the importance of understanding the means in music creation 

and the method of computer usage is vital for listening to computer music compositions. “If […] 
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the principles of serial technique are necessary to an intelligent hearing of the works of Webern, 

Carter, Babbitt, or Boulez, then surely an appreciation of the principles of algorithmic 

compositional techniques and the possibilities of digital sound synthesis are required for the 

through audition of works by Xenakis, Chowning, Risset, and Dodge (Appleton 1986, 124).” 

This quote situates the importance of method in music and how the new computer capabilities 

enhance the composition process.    

In 1986, a symposium on computer music composition was held and a review was 

written in the Computer Music Journal. This symposium was a “product of a questionnaire sent 

in 1982,1983, and 1984, to over 30 composers experienced in the computer medium” (Roads et 

al, 40). The review examines, in a similar manner to Roads’ book, what brought the composer to 

the computer and how they choose to use it. The review states that “articles in Computer Music 

Journal and other publications point to the broad application of computers in musical tasks, 

especially to sound synthesis, live performance, and algorithmic or procedural composition” 

(Roads et al 1986, 40).   

Music Representation Languages (MRLs) are another important milestone in the history 

of Computer Music Analysis. An MRL is a type of format that the computer can understand 

(Downie 2003), and these are vital to composition. An example of this is Musical Instrument 

Digital Interface commonly known as MIDI. MIDI revolutionized sound processing by enabling 

the user to store real input, such as playing on a synthesizer, into movable and changeable blocks 

of sound easily understood by the computer. It has two-way variability because there is a 

disparity from the player of an external synthesizer and the producer can move and change the 

blocks of sound after the player has played (Manning et al 2001). It provides more control to all 

parties for its end result and MIDI is now widely used.  
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Another significant creation in computer music composition is music notation software. 

This software, like Finale, often include a MIDI playback. According to Manning “it quickly 

became apparent that major composition and performance possibilities could be opened up by 

extending MIDI control facilities to personal computers” (Manning et al 2001, 169). This new 

MIDI playback on music notation software gave the composer the ability to create music 

digitally with the option to hear what it would sound like.  

Computer music composition, of course, continues today. Recent developments include 

ChucK, a programming language specifically for music and is prevalent for laptop orchestra use 

(Wang et al 2015), and melodic idea generation and evaluation—which is the creation of a 

motive and the assessment of it (Ponce de Leon et al 2016). Both tools are used for the creation 

of musical ideas. ChucK, for example, can create a complete piece in real time. Though 

computer music composition is important to the relationship between computers and music, it 

will not be further discussed in this thesis. The field of Computer Music Analysis has moved 

away sufficiently to be treated as a separate endeavour, at this point.  

It should be noted that composition with computers is only one aspect of computer assisted 

musical creation. According to Manning’s “Computers and Music”, the uses of computers in 

music can be separated into two branches: performance and music theory. For performance, 

MIDI is highlighted as a major development, but more performer-like methods are being 

developed  such as DARMS (Manning et al 2001). DARMS is a “comprehensive coding system 

[…] which has the capacity to handle almost every conceivable score detail” (Manning et al 

2001, 176).  For current performances, Laptop Orchestra is becoming more prevalent at 

universities. Though computer use in performance is important, I will not be concentrating on it. 
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1.2.2 Applications in Music Theory and Analysis  

 

 Music research uses for computers are more complex and have been based around two facets: 

1. The first is identification of recurrent features. Recurrent features are an important aspect 

of analysis as it can show that a set of items is a pattern rather than a coincidence. “One 

of the earliest uses of the computer as a tool for analysis […] involves the identification 

of recurrent features that can usually be subjected to statistical analysis.” (Manning et al 

2001, 174). Statistical analysis further strengthens a pattern by utilizing quantitative 

measures. Statistical analysis is still present today and will be discussed in Chapter 3.  

2. The second concerns the application of two kinds of “Rule-based analysis.” Analysis 

used for generative purposes and analysis used in and of itself or as an analytic method. 

As Manning describes rule-based analysis in general: “rule-based analysis methods 

presuppose that the processes if composition are bound by underlying structural 

principles that can be described in algorithmic terms. […] At this level it becomes 

possible to establish links with computer-based research into musical meaning” (Manning 

et al, 174).  

Now I will present examples of both facets. Both show, in a simple fashion, the above two ideas 

and, also, demonstrate the main sources of error and limitation in Computer Music Analysis. 

 

1.2.2.1 Recurrent features: Databases 

 

A major database software for computer music research was the Humdrum Toolkit 

created by David Huron and its files finished revision in 2001. Huron is based at the Ohio State 

University School of Music and commonly researches Music Cognition, Computational 
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Musicology, and Systematic musicology.  The Humdrum Toolkit runs using UNIX software 

tools, but it is compatible with previous versions of Windows and Mac platforms. This database 

gives the public access to information on scores, and renotes scores in a format that is useable 

with the Humdrum Toolkit. It is also possible to import or export files from Finale software for 

scores that are not available in the database.  “Humdrum” itself is composed of the Humdrum 

Syntax and Humdrum Toolkit. The syntax, like other programming language, enables the user to 

search for files and other elements using the Humdrum Toolkit. This programming language, 

however, must be learned to adequately use the software.  

The Humdrum Toolkit is used for recurrent features because of its capabilities. The 

capabilities of Humdrum include searching between sets of pieces for motives, syncopation, 

harmonic progression, dynamics, pitch, and meter. These elements of music can be searched by 

genre, by composer, and by any other grouping for an overarching and statistical analysis, 

therefore, this use for computers in music aligns with Manning’s definition in Grove. However, 

some of the above-mentioned elements are more easily found using the Humdrum Toolkit 

software than others. Firstly, this is due to “the interdisciplinary problem” since some queries 

need a complex search using programming language. Programming knowledge is something that 

is not consistent between all database users. Secondly, human error is always a possibility with a 

completely manmade database. Like all tools, this one is imperfect. Huron found three reasons 

for mistakes when using computers because of “Humdrum” (Huron 1988). They are as follows: 

1. Errors in actual score 

2. Errors in transcription of score 

3. Errors by program 
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These errors according to Huron, are human. 1 

 

1.2.2.2 Structural Models: Analysis and Counterpoint 

 

P. Howard Patrick in 1978 used computers for analysis of suspensions in the Masses of 

Josquin Des Prez. Patrick made an important distinction between music theory for the 

composition student and music theory for the computer rule-based structural model: music 

theory is often a description, but a computer needs a set of steps to follow. To get the computer 

to properly parse and identify the data, Patrick looked at the errors and changed criteria as 

needed. (Alphonce 1988) 

Arthur Mendel inspired Patrick’s study in a seminar by looking for the criteria of 

structure in Josquin’s work. Patrick outlined the goal of this project as getting computer 

programs to print a reduction of a score by, first, going through a succession of tests and then 

finding the “most consonant pitch” (Patrick 1974, 325). Patrick tested three randomly selected 

texts to outline the problems that he described as “Non-Suspensions (Patrick 1974,326)” and 

“Problem Suspensions.” (Patrick 1974, 328) These errors were due to the computer’s now 

‘preconceived’ notion of what a suspension is, but the largest error, as explained by Patrick, are 

the questions that people ask the computer.  

Criticism for this type of analysis is that it only yields a result that can be found by a 

person doing the research by hand and thus is susceptible to the same kinds of errors humans 

might make. As stated by Patrick, “The limitations of the computer are overshadowed by the 

inherent limitations of the user.” (Patrick 1974,321) This means that the computer can find any 

                                                           
1 These sources of error are paraphrased from Huron 1988, 254 
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solution, but only if it can be fathomed by the user. Some larger scale problems are too difficult 

to solve without help from another source, such as a computer. In this sense, Patrick thought the 

computer-aided analysis route was the most useful. This set the groundwork for development in 

Computer Music Analysis that do not mimic “research by hand.” 

 

1.2.3 Music Information Retrieval Versus Optimization 

 

Music Information Retrieval (MIR) is interdisciplinary, due to its computer-based 

information, and originated from the same point as Optimization. But, the two fields have 

different goals.  

By Music Information Retrieval, I mean the sector of Computer Music Analysis that aims to 

create a database, either analytical or non-analytical, drawn from characteristics of a musical 

document such as a score, so as to further research. MIR aims to look into musical documents to 

find features or commonalities between different works of music. MIR approaches recurrent 

features by creating a database with annotations, or another searchable method, so a user can 

search for a specific feature.  

Optimization, which concerns itself with preference rules, probability, and statistical models, 

does not detach itself from the human experience. The following quotation demonstrates the 

distinctiveness of Optimization for MIR: “Computational research in music cognition tends to 

focus on models of the human mind, whereas MIR prefers the best‐performing models regardless 

of their cognitive plausibility” (Burgoyne et al 2016, 214). In summary, Optimization is tied to 

music cognition (Burgoyne et al 2016) while MIR is not.  

MIR has turned into an ever-growing and prevalent field due to the internet (Fujinaga and 

Weiss) and is present in commonly used items like Google Books (Helsen et al 2014), but it 
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originally came from a small field of research in comparison. According to Burgoyne et al, in 

1907, C.S. Myers studied Western folksong using MIR, which required tabulation done by hand 

examining the intervals present in folksongs. Similarly, in ethnomusicology a year earlier, 1906, 

a similar method was used to find features in Non-Western music to differentiate it from Western 

music (Burgoyne et al 2016). The practice of “Finding Features” has become a standard use for 

Computer Music Analysis. These are the earliest examples of Music Information Retrieval even 

though the term itself was not used until the 1960s.  

From 1907 to the 1960s Music Information Retrieval was ignored, but, “interest grew in 

computerized analysis of music” (Burgoyne et al, 215) because of the prevalence and 

accessibility of computers. The beginning of MIR concentrated on methods to input music into 

the computer (Burgoyne et al) such as notational software or standardized audio file formats like 

MP3 and MIDI (Fujinaga and Weiss). This made it possible for the computer to ‘understand’ the 

musical items. These methods grew into more complex software applications like Humdrum 

which was discussed in section 1.2.2.1 

This history of MIR is written in brief, however it gives a basic outline of its developments 

that is important to the thesis. Since, this field re-emgered because of the internet and increasing 

availability of computers, the tabulations could be done using a software instead of by hand. 

After creating a form of music that can be understood by a computer, databases, like Humdrum, 

were more easily produced. Creating a database of music recognizable by a computer, according 

to Andrew Hankinson—a Digital Humanities and Medieval Music researcher—, is the first step 

in a large retrieval system (Helsen et al 2014). Large databases of different varieties will be 

further discussed Chapter 2.  
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1.3 Literature Review  

 

I aim to explore the major works I use for this thesis in the literature review. The order is 

to mirror the order of the thesis: first Optimization then Machine Learning. MIR has a more 

complicated Literature base, so I discuss it in Chapter 2.  I commence with David Temperley’s 

works in chronological order because I incorporate their organization tools and major ideas into 

Chapter 3. Parallelism is highlighted because it grows from a single- line preference rule to a 

multi-level set of ideas. Since perception is key to Optimization, I include David Huron for the 

link from computers to perception. Huron’s paper examines voice-leading rules, which are 

common knowledge and vital to music theorists, thus act as a stable starting point. The final 

work is Darrell Conklin and Ian Whitten’s paper investigating the multiple-viewpoint system. 

This article is one of the first that examine Machine Learning in music and should, therefore, be 

included.  

 

1.3.1 David Temperley The Cognition of Basic Musical Structures (2001) 

 

 David Temperley is centred at the Eastman School of Music and writes extensively on 

music theory and music cognition. I will concentrate on specific sections of his book The 

Cognition of Basic Musical Structures (2001), that explain Preference Rule Systems or 

Computational models. Temperley outlines the following six Preference Rule Systems in the first 

half of the book, Metrical Structure, Melodic Phrase Structure, Contrapuntal Structure, Tonal-

Pitch-Class Representation, Harmonic Structure, and Key Structure, and the second half explores 

the expectation of the listener, Rock Music, African music, composition, and recomposition. The 

first half of the book is where I will concentrate this review. Temperley states that the goal of the 
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book is to explore the “’infrastructural’ levels of music,” meaning the basic building blocks of 

music perception, because there is very little research on the subject. 

Before presenting the Preference Rule System (PRS), Temperley outlines previous 

research on musical structure as it relates to each section. For example, Temperley describes at 

length the Desain and Honing model for beat induction in the chapter on Metrical Structure. The 

specificities of each section is discussed in Chapter 3 of this thesis . He notes that each PRS is 

based on a piano-roll input for the computer. The PRS itself is a group of rules the computer 

follows to narrow a set of possible choices. Within each rule there is a preference—hence the 

name preference rule. The end choice is selected because more rules are preferred in a specific 

hierarchy.  

After presenting Preference Rule Systems, Temperley describes the tests he goes through 

to ensure well-functioning systems. Meter, unlike the others, has had plenty of research 

concerning theoretical and computational models. Temperley builds upon the Lerdahl and 

Jackendoff Generative Theory of Tonal Music (1983) by adapting it for a preference rule 

approach. The meter section takes the Well Formedness definition from Lerdahl and Jackendoff 

where grouping and hierarchy are most important and Temperley explains it as “every event 

onset must be marked by a beat [and] that a beat at one level must be at all lower levels” 

(Temperley 2001,30). This is used in all successive PRSs. Similarly, for Key Structure there is 

sufficient research from music cognition and computational methods to improve upon. 

Temperley uses the Krumhansl-Schumckler Key-Finding Algorithm and discusses problems and 

solutions.  

 The other four PRSs take a list of rules and within each have a list of preferences in a 

specific order, so the computer knows which item is the most important or most common. For 
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example, the Phrase Structure Preference Rules (Temperley 2001 Melodic Phrase Structure 

Chapter pp. 68-70) comprise of three rules.  

1. Gap Rule:  Prefer to Locate phrase boundaries at 

a. Large inter-onset intervals and 

b. Large offset-to-onset intervals 

2. Phrase Length Rule: Prefer phrases to have roughly 8 notes 

3. Metrical Parallelism Rule: Prefer to begin successive groups at parallel points in the 

metrical structure 

This is for only well-formed, by the previously mentioned definition, monophonic melodies. For 

implementation of each of these rules, a formula, score or other quantification is applied. The 

best “score” is the best analysis for a melody.  

Temperley’s Preference Rule Systems gives me multiple examples of how the computer 

evaluated different problems which I can then relate to other models for evaluation. In this 

regard, Temperley’s 2001 book acts as a springboard for my thesis. It gives important 

background information in Computer Music Analysis and shows me how Temperley’s 

subsequent work has built upon it. The book will be further discussed in Chapter 3: 

Optimization. 

 

1.3.2 David Temperley and Christopher Bartlette “Parallelism as a Factor in Metrical Analysis” 

(2002) 

 

 This text builds upon the previous Temperley book by adding further information to the 

“Metrical Parallelism Rule.” (Temperley 2001,70). The “well-formedness rule,” as mentioned in 

Temperley 2001, still applies in this article, as does the need for monophony. The goal of this 
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article is to build upon the book for clarity, accuracy and precision when dealing with 

Parallelism.  

 Temperley and Bartlette examine the effect of Parallelism and realized that the definition 

must be modified. Parallelism is defined as a repetition either of the exact sequence or the 

contour. The Parallelism Rule is now redefined to “prefer beat intervals of a certain distance to 

the extent that repetition occurs at that distance in the vicinity.” (Temperley and Bartlette 2002, 

134) This is useful to the thesis because it gives a more inclusive definition to Paralellism as a 

term and a rule and, also, because of the influence it had on the later treatment of parallelism.  

 

1.3.3 David Temperley Music and Probability (2007) 

 

 Though Temperley was content with the 2001 book, it seemed like more should be added 

to the approach because preference rule models could not be applied to “linguistics or vision”  

(Temperley 2007, ix). The goal of the 2007 book is to use specific Bayesian probability tool, as a 

link between perception and style. In the perception of linguistics and vision, Bayesian 

probability techniques such as probability of an event following another are more common in 

computer analytic tools. To quote Temperley, “I realized that Bayesian models provided the 

answer to my problems with preference rule models. In fact, preference rule models were very 

similar to Bayesian models” (Temperley 2007,x) meaning that the existing PRSs can be easily 

turned into Bayesian models.  

 The book shows a new trend in Computer Music research: probability. It uses the Essen 

Corpus, also known as the Essen Folksong Collection, 2 to test for the central distribution of the 

                                                           
2 The Essen Folksong collection is a set of folksongs from Germany, China, France, Russia and more collected by 

Helmut Schaffrath. http://essen.themefinder.org/ 
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aspects of music (and relies on a method of representation created by Lerdahl and Jackendoff in 

1983, which, by this point, was familiar to music theorist). The book itself touches on Rhythm, 

Pitch, Key, Style, Composition, and, like the first computer music analytic tools, error detection 

in its main chapters.  

 

1.3.4 David Huron “Tone and Voice: A Derivation of the Rules of Voice-Leading from 

Perceptual Principles” (2001) 

 

I have included this work in the literature review because we must remember that all 

computer models tie back to perception, in some way, to be correct. It should be noted that 

Huron’s text was also referenced in Temperley’s work because the psychological principles 

behind musical aspects make computational modelling difficult. 

Huron’s 2001 work shows the relationship between voice-leading and auditory 

perception using perception. The article presents a set of the voice-leading rules, then derives 

them from the perception principles, and finally it makes ties to genre. Each voice leading rules 

is scrutinized under three questions: 

1. What goal is served by the following rule? 

2. Is the goal worthwhile? 

3. Is the rule an effective way of achieving the purported goal? (Huron 2001, 1) 

Huron brings up the important concept of culture. With analysis, it remains unknown if 

these principles of auditory perception are inherent in all people or if they are created by 

cultures. However, Huron notes that “perceptual principles can be used to account for a number 

of aspects of musical organization, at least with respect to Western music” (Huron 2001,1) and 
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concludes that six principles in perception account for most voice leading rules in Western 

Music.  

Another important aspect brought up is the compositional goals because the composer 

plays with the perception of the listener. For example, Huron mentions “Bach gradually changes 

his compositional strategy. For works employing just two parts, Bach endeavors to keep the parts 

active (few rests of short duration) and to boost the textural density through pseudo-polyphonic 

writing. For works having four or more nominal voices, Bach reverses this strategy” (Huron 

2001, 47). This deceives the listener because a four-voice work may sound more sparse while a 

two-voice work sounds more dense making these voice-leading rules more like compositional 

options. 

  

1.3.5 Darrell Conklin and Ian H. Witten “Multiple Viewpoint Systems for Music Prediction” 

(1995)  

 

 Darrell Conklin concentrates on research in Machine Learning and Music at the 

University of Basque Country in Spain. This article has been cited in Temperley’s works such as 

The Cognition of Basic Musical Structures (2001). The paper takes an “empirical induction 

approach to generative theory” (Conklin and Whitten 1995, 52) by exploring previous 

compositions for style and patterns. More specifically, this article uses Bach Chorale as a starting 

point for choral music.  

 Conklin and Whitten describe Machine Learning, applied to music research, as follows: 

“Machine learning is concerned with improving performance as a specific task. Here the task is 

music prediction” (Conklin and Whitten 1995, 55). Since much of Machine Learning uses 

context models, but that requires exact matches. Music does not always use exact matches 
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because similarity is enough for auditory perception, Conklin and Witten take a multiple-

viewpoint system. Each viewpoint is an aspect of music, to derive musical ideas that take style 

into account.  

Conklin and Whitten describe the next steps in this field as:  

1. Research on prediction and entropy of music  

2. The creation of “a general-purpose machine learning tool for music” (Conklin and 

Whitten 1995,71) for all musical genres  

Their work adds to the thesis by providing the beginning of Machine Learning. From this, the 

rest of the accomplishments in Machine Learning and music can be put into perspective.  

 

1.4 Conclusion  

 

In the introductory chapter of this thesis, I have described my goal: to critically examine 

aspects of Music Information Retrieval (MIR), Optimization, and Machine Learning. Between 

MIR and Optimization there is a common starting point, but they differ in goal. MIR aims to 

create a database or multiple databases for further analysis while Optimization uses a computer 

model to understand the human perception of a musical structure. Machine Learning is different 

than the other two since it concentrates on the creation of a tool and not necessarily the uses.  

I have surveyed specific literature in the field of computer music analysis for a 

background and inroad to the research from 2000 to 2016. For a historical context, I have 

brought in Manning’s multi-faceted explanation of the relationship between computers and 

music. This mentions composition, performance, and analysis and displays the many important 

developments prior to the turn of the century. The developments include Music Representation 

Languages (MRLs)—like MIDI—and notation software because they created a widespread 
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usage.  This literature touches on MIR, Optimization, and Machine Learning and, also, exposes 

some critical issues in Computer Musical Analysis.  

I have set out a list of five critical issues, that I use to gain critical perspective on the 

field. The first issue is Human Error which refers to human limitations and the capacity to make 

mistakes. This was brought up by both Peter Manning and David Huron. Second is input 

specification, which is a recurring issue since articles do not specify what input is used for a tool. 

The input is largely genre-based due to availability. Consistent Evaluative Principles are needed 

for all branches of Computer Music Analysis, so that there is a reliable set of algorithms and 

methods to be drawn upon. The Interdisciplinary Problem is an issue with term usage and level 

differences in tools creation and is evident through all of the authors in the literature review. This 

is because each author uses their own set of terms based on their usual field of research. “What’s 

the Point?” refers to the lack of reason for a specific tool because, for a branch like Optimization, 

the tools are working towards understanding human perception. This means a specific tool may 

not have a specific usage at its inception. Using this chapter as a basis, I begin my analysis of 

specific tools in each of the three subfields starting with Music Information Retrieval.   
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Chapter 2- Music Information Retrieval 

 

2.1 Introduction 

 

Music Information Retrieval (MIR) is a subsection of Computer Music Analysis that is 

growing exponentially because of current technology. MIR is concerned with examining music, 

either by locating or by analysing, and often aims to make music searchable. The locating branch 

is often aimed at examining the metadata of a large set of works. The analysis/production branch 

concerns itself with a smaller number of pieces but goes into much greater detail (Downie 2003) 

as is stated by Downie: “Analytic/Production systems usually contain the most complete 

representation of music information” (Downie 2003, 308). Databases created for MIR can be 

accessible through the internet, so they are used by all researchers if they have the background 

knowledge needed. 

 The goal of this chapter is to begin a critical comparison of tools and problem-solving 

methods in MIR. This will be accomplished by discussing three projects: a large completed tool, 

a large tool in progress, and a small tool. These tools are just the “tip of the iceberg” when it 

comes to MIR, but they have been chosen to show different stages within the evolution of a tool. 

The large completed tool is VocalSearch where song lyrics can be searched to identify their 

presence in a song. The in-progress tool is a research project called the Single Interface for 

Music Score Searching and Analysis (SIMSSA). The small milestone studied here is Patrick 

Donnelly and John Sheppard’s approach to timbre identification using probability. In fact, 

Donnelly and Sheppard’s project provide a solution to a specific problem which in turn can 

provide help to a larger database. This final milestone will show how smaller projects in 

Computer Music Analysis can help solve larger problems and thus help move the field forward.  
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2.1.1 MIR Overview and Applications  

 

 The purpose of this section is to give a description of major terms in Music Information 

Retrieval (MIR) and to show the different systems at work in MIR. I will not be going in depth 

about all systems, but I would like to show the complexity of MIR. I will first explain the two 

main types of MIR systems: locating and analytic/production. Then I will outline the different 

types of data. I will then explain how the different types of musical information fit into each of 

the data categories and systems.  

MIR examines multiple facts of music information in many different forms. According to J. 

Stephen Downie— the creator of MIREX and specializing in information sciences at the 

University of Illinois—there are two different types of MIR systems: locating and 

analytic/production (Downie 2003) as mentioned in the introduction.  

The locating systems are used by people searching for music either as a consumer on a 

website or as a researcher in a recordings database. A locating system looks at many works, but 

does not go in depth, and often locates information on the title, composer, performer etc. This 

type of information is called metadata.  An analytic/production system generally looks at a small 

number of works, but in much greater detail. These systems, for example, can look at audio 

recordings, pictures of scores, and/or symbolic forms of scores. (I will not go into detail about 

specific systems at this point since they will be discussed later in the chapter.) 

The different types of possible data in music, as mentioned above, are metadata, audio, 

symbolic, and image. Metadata is simply data about data, so, in music, this is information about 

the performers or pieces performed, such as title, composer, etc. Audio data is a recording. Most 

commonly, MP3 files are used for audio data because they are easily read by computers and this 
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is often the data used for popular music. In certain regards, images and symbolic forms are 

similar; image data refers to images of scores, while symbolic data is a format that a computer 

can understand, such as a score notated in Finale or some other notation file. These different 

types of data have specific limits and uses. For example, metadata, which was explained above, 

is used in all search engines that look through bibliographic data. Audio on the other hand is not 

as easy to search but is very easy to obtain in standard MP3 format.  

According to Burgoyne et al in Chapter 15 of the 2016, A New Companion to Digital 

Humanities, audio data is difficult for feature extraction—when a user aims to identify a 

particular query—because it comes in the form of large files. Historically “query-by-humming” 

(Burgoyne et al 2016) has been a popular MIR for feature extraction if it has been properly 

annotated. For query-by-humming, a user hums a tune in a microphone and the tune is matched 

with a piece. This, however, is by no means a complete picture of what audio can be used for. If 

an audio recording could be transferred to symbolic data, it would be more useful to MIR 

(Burgoyne et al 2016).  

Symbolic Data, often is in the form MIDI or a readable score format, is easily recognizable 

by a computer and is used for information retrieval, classification, music performance, and music 

analysis. A symbolic form can retrieve sets of pitches (together making themes), rhythms, 

harmonic progressions, and more.  Classification using symbolic formats identifies stylistic 

“emblems” such as a specific harmonic progression or the usage of specific intervals. This 

emblem is a defining characteristic. In terms of music performance, symbolic data is also used 

for expressive timing studies. Finally, for music analysis, symbolic format is used for automated 

analysis (this also overlaps with optimization) and for pitch spelling when MIDI is used 

(Burgoyne et al 2016). 
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Image data, like audio data, is difficult for a computer to recognize, and at present there is no 

consistent recognized form for sharing it. A score itself can be transcribed or turned into a MIDI 

format but that is time consuming. Optical Music Recognition (OMR) was created to solve this 

issue. OMR is a tool that can identify musical characters much like Optical Character 

Recognition can identify letters in typed images. This renders score images readable by 

computers (This will be further discussed in the section on SIMSSA, Single Interface for Music 

Score Searching and Analysis). 

MIR is a multifaceted, multicultural, multidisciplinary tool. There are also seven facets of 

music information (Downie 2003):  

1. Pitch 

2. Temporal 

3. Harmonic 

4. Timbral 

5. Editorial 

6. Textual 

7. Bibliographic 

 

In the following graphic, I have given a representation of the overall shape of MIR, as it 

currently stands. The reader will note the breakdown into two large parts, locating and 

analytic/production, as discussed above. And within these, the reader will find the various of 

these fields as described above.   
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Figure 2 The second row and the last set of facets are the two categories of MIR system 

explained by J. Stephen Downie in his 2003 article. The four types of data are from chapter 15 

by Burgoyne et al 2016 

 Though the graphic looks as if it represents a concrete situation, these lines are blurring 

due to changes since the turn of the century. These changes are being examined by ISMIR, the 
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International Society of Music Information Retrieval, and MIREX, the Music Information 

Retrieval Evaluation eXchange (Burgoyne et al 2016), but, as stated in their names, they only 

look at MIR tools (this is one of my five critical issues). This graphic representation has been 

included as a comparison point for the rest of Chapter Two, so I will be referring these types of 

data (Metadata, Audio, Image, Symbolic), facets (Pitch, Temporal, Harmonic, Timbral, Editorial, 

Textual, Bibliographic), and systems (Locating, Analytical/Production).  

 

2.2 The MIR Tools 

 

In this part of the thesis I shall look at several tools in MIR. Some of which are to be used 

by researchers in MIR and others for layperson use. First, I start with VocalSearch, which is now 

unavailable online but gives valuable information to the thesis. Next, I discuss three Single 

Interface for Music Score Searching and Analysis (SIMSSA) tools: Search the Liber Usualis, 

Cantus Ultimus, and Electronic Locator of Vertical Interval Successions (ELVIS). Finally, I 

examine a smaller tool which is Donnelly and Sheppard’s Bayesian Network Algorithm that 

investigates timbre identification.  

 

2.2.1 Vocalsearch  

 

 Vocalsearch is a web-based tool which was available to everyone and is used to identify 

unknown songs without metadata (Pardo et al 2008). Metadata is the information about the song 

such as title, artist, album, etc (Burgoyne et al 2016) and, without it, it is difficult to identify a 

song (Orio 2008). Vocalsearch was created by teams from University of Michigan and Carnegie 

Mellon University (Birmingham, Dannenbery, and Pardo 2006). I have chosen to include it as a 
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tool that is ‘complete’—as research grows this project may change, but it is a complete database 

when compared to the tools that follow in my discussion. This tool lets the user search—by 

humming a segment, by providing music notation, and by providing lyrics—using Melodic 

Music Indexing and Query-by-Humming technology. 

 Melodic Music Indexing is a way for the computer to understand the melodic content of a 

song. A song is annotated with the melodic content; often this is done through MIDI sequencing. 

MIDI is easily understood by a computer because it gives both pitch and duration. When a query 

is hummed, the computer matches it to the corresponding song. Song matching is problematic. 

Often, when a query-by-humming platform does not work, it is because the user did not hum the 

melody clearly or chose a different song layer, perhaps another instrument or vocal line 

(Dannenberg et al 2007). The tool must also equalize and understand the query, and, for 

Vocalsearch, this is done using a probability algorithm (Birmingham, Dannenberg Pardo 2006). 

The approach measures the similarity between the MIDI and the sung query for the large 

database.  

Within MIR, Vocalsearch builds upon the existing audio data recognition and locating 

systems. It lets a specific song or number of songs be located using various queries recognized 

both through a typed search and a hummed audio search. Vocalsearch uses usual metadata 

searches if needed but seems to be more useful for unusual queries like, humming or notational 

search. The database itself is used for music with a lyrical content, hence the name, but the site is 

now unavailable, so the data from a user’s perspective is limited. A common issue with a 

database is that music is constantly being created, but this database of music will keep growing 

because a user can add songs (Pardo et al 2008).  
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2.2.2 SIMSSA 

 

As I mentioned above, the in-progress tool is a research project called the Single 

Interface for Music Score Searching and Analysis (SIMSSA). In this section of the thesis, I 

describe three SIMSSA projects: “Search the Liber Usualis,” “Cantus Ultimus,” and “ELVIS.” 

These all have different goals and technologies, so including all three gives a well-rounded view 

of what goes into a tool.   

 

2.2.2.1 Search the Liber Usualis 

 

 The Liber Usualis contains valuable information for those working on early music. The 

text is over 2000 pages, so it is difficult to locate the needed information. To solve this problem, 

SIMSSA decided to render its contents searchable and make it all available online. This tool lets 

researchers search the text for pitch sequences (either transposed or exact),neumes, contour, 

intervals, and, of course, text (Search the Liber Usualis Website is located at liber.simssa.ca). To 

do so, SIMSSA has used Optical Text Recognition (OTR), sometimes referred to Optical 

Character Recognition (OCR), and Optical Music Recognition (OMR). 

 OMR, as previously mentioned, is a computer method involved in “turning musical 

notation represented in a digital image in a computer-manipulable symbolic notation format 

(Vigliensoni et al 2011 423).” Using OMR with neumes, or square-note notation, is difficult 

because it is a precursor to standard musical notation. Because this notation is a precursor, there 

is no standard notation software, so the tool must translate the square-note notation to the 

standardized one. OMR must be configured to translate the first notation to the required notation. 

The translation to standard notation requires computer understanding of eleven neumes. SIMSSA 
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decided to use the ‘Music Staves Gamera Toolkit’ as a bank of algorithms to perform an analysis 

on 40 test pages of the Liber Usualis. The test pages were manually classified and annotated to 

double check the output of the algorithms. The algorithms used did the following tasks: created 

the staff lines, removed the staff, added ledger lines, and classified the types of neumes. When 

classifying neumes, the algorithm did not work 100%, so the final version was examined by a 

human to ensure perfection. These algorithms, however, do not tackle clef recognition and note 

identification. 

 Note Identification was made possible using horizontal projection of neumes, but this 

only worked for a subset of the eleven neumes. In conjunction with the algorithms used prior for 

determining types and placement of neumes relative to the staff, the starting pitch of the neume 

was identified using the average size of the neume and its “center of mass (Vigliensoni et al 

2011, 426).” The clef was then identified and each neume was given a pitch relative to the clef. 

This was possible because the clef is always the first neume-like image in the line. The 

remaining set of neumes often have multiple pitches, so they were treated as exceptions to the 

above-mentioned method. These neumes were first split so the resulting output would correctly 

identify the multiple pitches. In conclusion, a different algorithm from the Music Staves Gamera 

Toolkit was used for each of the procedures, but, together, the algorithms rendered the scores 

from the entire book searchable.   

 The scores were made searchable using algorithms, then, the text was searchable through 

OTR technology in a simpler fashion to the scores. The “Search the Liber Usualis” project fits in 

the MIR chart above by being analytical and as a tool for locating scores and text. It is analytical 

because it uses an image of a text and looks at contour and interval, these being elements of 
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analysis and locating because it finds specific ideas based on the searched criteria. This is 

possible because of the computer’s ability to ‘read the music’ once the algorithms translate it.  

 

2.2.2.2 Cantus Ultimus 

 

 The “Search the Liber Usualis” can be seen as an initial test, laying the groundwork for 

the Cantus Ultimus. Their goals, however, are different. For the Liber, the goal was to make it 

searchable and make it easy for researchers to use the book. With the Cantus Ultimus, the aim is 

to preserve the ancient manuscripts digitally before they deteriorate further. The database shows 

images of the searched score, with typed lyrics, and standard notation on the side bar (Cantus 

Ultimus is located at cantus.simssa.ca/). Only a few sets of images have been added, but this 

project is still growing. 

The Cantus Ultimus is part of SIMSSA primarily located at McGill University. This tool 

builds upon the existing Cantus Database with more digitized scores and Optical Music 

Recognition (OMR) technology.  Researchers and plainchant enthusiasts can search through the 

database by text, genre, office, and by reference to the associated liturgical feast. Text queries 

include lyrics of the chant and the metadata for each. They can also make musical search using 

“Volpiano searches” which are searches using notes specifically. This can either be a normal 

search where A-B-C would show results for A-B-C, D-E-F, and any other series with the same 

intervals or a literal search where only A-B-C sequences would be shown (cantus.simssa.ca/).    

Each query can yield multiple results, so, in effect, it is a locating system. The system 

locates based on notes, and lyrics, but, more importantly, it is an image searching database. The 



 
 

35 
 

ability to search through images was made possible through OMR and OCR with all of the 

algorithms used in the “Search the Liber Usualis.”  

 

2.2.2.3 Electronic Locator of Vertical Interval Succession ELVIS 

 

 The Electronic Locator of Vertical Interval Succession (ELVIS) was created to give 

counterpoint the attention it deserves. In fact, a presentation on ELVIS, by Christopher Antila, 

won first prize at the 2014 Montreal Digital Humanities Showcase and is funded by a Digging 

into Data Challenge award (located at https://elvisproject.ca/). The goal of ELVIS is to look at 

musical style in terms of changes in counterpoint (Antilla and Cumming 2014). ELVIS is a set of 

downloadable scores in a database, a web-based application, and a downloadable tool. These 

three aspects have taken many people to create it. Most of the people, such as Ichiro Fujinaga 

and Peter Schubert, are from McGill University in Montreal, those working on the harmonic side 

of counterpoint are headed by Ian Quinn from Yale University, and the University of Aberdeen 

has also been involved with this project. But, the software for the downloadable tool, music21, 

was created by Myke Cuthbert at the Massachusetts Institute of Technology (Music21)   

 Music21 is a python based “toolkit for computer-aided musicology” (music21) that 

allows the user to search though any imported scores using basic programming language. What 

this means is, by using commands such as if x then y, then a desired output can be found. This 

works especially well for big data queries in MIR (Antilla and Cumming 2014). Using the 

ELVIS database, the scores can be imported and searched using music21. The scores in the 

database can be searched through the ELVIS website and, using the web app, patterns are 

located. The Downloadable software is a VIS, Vertical Interval Succession—meaning a set of 
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harmonic intervals in a particular order—, framework used on music21 (ELVIS project). The 

framework uses n-grams when referring to the number (n) of vertical interval successions. This 

analysis uses intervals without quality instead of note names to compare many works regardless 

of key (Antilla and Cumming 2014). This software is used on Python, a standard programming 

language, so those with a knowledge of programming commands can get the most out of it. For 

those who do not have programming knowledge there is a Counterpoint web app 

(counterpoint.elvis.ca). 

The application for ELVIS is called the Counterpoint Web App on their website (ELVIS 

project) and is specifically for pattern recognition. This web app continues to use a VIS 

framework, but it is more limited in query possibilities than the downloadable extension for 

music21. Getting to the application through the website is problematic because of a broken link 

or, perhaps, the web application is not finished. As previously mentioned, SIMSSA is building 

tools and many of the tools are still in progress.  

Music Sonification is used in the ELVIS project to turn the music notation data into 

sound but can be manipulated by the researcher. Accessibility, in this case, was the main concern 

because not all researchers will have in depth knowledge of recording or sound mixing software. 

To solve this problem, the ELVIS team have created a graphic user interface. This is a graphic 

representation of music and the most useful audio tools for interval analysis. The concentration 

on interval analysis is because ELVIS is for contrapuntal analysis and pattern recognition 

(ELVIS project). ELVIS is both a locating and analysis tool. The locating part is from the web 

app because it only locates patterns. The analytical axis, however, is much more in depth and is 

available for a wide variety of early music using the VIS Framework and the programming 

language. Though the intention of the project was for counterpoint alone, the VIS Framework, 
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music21, and the use of pandas libraries—where the scores themselves are kept—make 

possibilities endless (ELVIS project). 

 

2.2.3 Donnelly and Sheppard Bayesian Network Algorithm  

 

 Donnelly and Sheppard—researchers from University of Notre Dame and Montana State 

University respectively—found that timbre has not been fully explored in MIR, so they have 

modified an existing algorithm derived from Bayesian probability Networks. This new system of 

steps identifies different timbres in music. This can be used to establish another way of 

organizing and searching through music in a large corpus. In Donnelly and Sheppard’s article, 

“Classification of Musical Timbre Using Bayesian Networks,” nearest neighbour and vector 

machine as timbral identification models are compared to this new model. Upon comparison to 

the other models, the Bayesian algorithm better differentiates strings, but still has drawbacks. 

The other models better differentiate between aerophones, like woodwinds and brass, but, 

together, it appears the models can differentiate all instruments together. This seems to still be 

useful as a method for categorizing string instruments and, in conjunction with the other tools, 

can categorize all instruments.  

The target audience for this method, are researchers and others who want to organize a 

database using instruments within a musical track. This can grow the locating section for audio 

as an alternative to metadata, but this would be for smaller tasks examining instruments. This is 

included as a smaller technology that has capabilities for MIR and to show the possibilities for 

connection between MIR and Optimization, which is the following chapter. 
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2.3 Critical Analysis  

 

 This chapter thus far has explained what each of the tools do. This section examines each 

tool critically. I discuss the assumptions made, and further extensions of the tool that were not 

examined in the articles themselves. I go through each of the tools in this order that they were 

previously presented, so first I examine VocalSearch, SIMSSA—Cantus Ultimus, Liber Usualis, 

and ELVIS—and finally the Bayesian Networks presented by Donnelley. 

 

2.3.1 VocalSearch 

 

 VocalSearch takes audio input, which is difficult because audio input must be taken apart 

to match a specific line in a song. However, it is not mentioned if a melody sung in a different 

key from the original will match a song to the input. Though melodies are often remembered in 

the original key, the user may not have the range to do so. Also, this article does not mention the 

matching of a song from the database to a slightly inaccurate input, so it likely would not work in 

such a case. 

 VocalSearch achieves its goal of being able to reach a large audience using the internet 

and having multiple ways of searching queries. Setting up such a database takes a large body of 

songs, but to keep a database like this current, new songs must be added regularly. To do this, the 

makers of VocalSearch have included a function that allows users to add content to the database. 

There are a few issues with users adding content. As previously stated in the Introductory 

chapter, the errors made by a computer program are due to human error. This human error can be 

in the programming itself, but more often it is in the input for the program. As mentioned with 

VocalSearch, there are multiple methods of searching, so the person who inputs a song must 
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enter all correct information. If incorrect information is added, then the tool will not work 

correctly rendering it inutile.  

 

2.3.2 SIMSSA 

 

 SIMSSA has multiple projects, so I will critically analyze each of the projects from 

SIMSSA. Overall, SIMSSA uses scores images and creates databases using OMR, OTR, and 

other technologies.  

 

2.3.2.1 Search the Liber Usualis 

 

 Using optical text recognition (OTR) and optical music recognition (OMR) the Liber 

Usualis is searchable. Meaning that, by typing in a search bar, matching text or music is 

highlighted and, by using the colour coating available on the web-based tool, multiple searches 

can be highlighted at once. This is useful for researchers who need specific information from this 

1000+ page text. More information on the tool can be found in section 2.3.  

 OMR and OTR are used when the file format ha come from images and are, therefore, 

not searchable. These technologies make the document searchable by translating the image data 

into a format recognized by the computer. For OTR, this translates the image of a letter to the 

letter itself while OMR must attach the letter name and the function of note. This increases the 

margin of error. An issue I have found when using the tool is that coloured highlighting box 

around the searched content is not completely accurate. With some searched content, the box is 

around a set of words that do not contain the searched item. Also, an assumption made is that the 

user wants the entire sentence highlighted when searching for a specific word or group of words. 
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This calls into question how OTR works because if it turns a text searchable, then it should only 

highlight what is searched. 

 

2.3.2.2 Cantus Ultimus 

 

Cantus Ultimus uses digitized scores and OMR, to create an interactive and searchable 

score database. This not only gives a researcher the access to the database, but also lets them 

search the score in multiple ways. Furthermore, the database gives the researcher access to the 

manuscript image online with the typeface version in the righthand menu. For example, if there 

are neumes in very small writing on the score image then the right-hand menu will give the 

modern notation of the score.  

Currently, there are only a few scores or manuscripts, so the obvious improvement is to 

have more scores. The process to add a score, however, is very long even using OTR and OMR 

because all scores should be checked. Because the manuscripts have aged, can be faded, or 

overall difficult for a computer to read, checking is imperative to a proper database entry. What 

could help are Machine Learning and Optimization models that are discussed in further chapters. 

 

2.5.2.3 Electronic Locator of Vertical Interval Successions (ELVIS) 

 

 ELVIS gives counterpoint priority in research by combining a database with a web app 

and music21. The database gives the user access to a set of scores while the web app and 

music21 lets the researcher search through the scores. The web app is designed for a non-
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programmer to find recurring patterns, and music21 has more features and the entire score can be 

searched using programming language.  

 This tool attempts to cater to both the programmer and the non-programmer by using 

music21, that is based on python—a common programming language--, and the web app. 

However, the web app only allows the user to find recurring features, so a non-programmer has 

limited usage with this tool. It is assumed that a non-programmer will only want to use this tool 

to find recurring features while they could, also, be looking for specific vertical interval 

successions, or a specific set of notes.  

 

2.3.3 Bayesian Networks  

 

 As previously stated, this model gives timbre attention because it can be used to add in a 

search. This model is, however, limited in its ability to distinguish between aerophones, but can 

better differentiate between strings. To approach this problem, the tool must be combined with 

others to achieve greater accuracy. 

 The goal of this tool is to differentiate between instruments and, eventually, search 

through a database and render it searchable by instrument. Another way to approach this is to 

look at the metadata which often contains instrument data. Using an OTR-like algorithm, the 

metadata can be searched for contributing artists and musicians. This would render a set of works 

searchable by the contributors which will often contain the name of the instrument each 

contributor plays and, therefore, the set of works would be searchable by instrument.  

 This approach is useful specifically for works where the contributors’ instrument is 

unknown, and the unknown instruments are stringed. Upon combining this method with other 

similar methods, the usefulness will increase because all instruments can be identified. 
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Chapter 3: Optimization  

 

I use the term “optimization” to refer to the increase of output for less time and energy in 

music analysis—the optimization of effort so as to achieve a result. More specifically, this 

section will look at Preference Rule Systems (PRSs) and Probabilistic and Statistical Models. 

The goal in optimization is to understand and reproduce a human perception of an input.  My 

goal is to show that, by integrating more mathematics and computer tools, analysis can be 

optimized. This term was inspired by its customary use in the areas of Calculus or Business, 

where the optimization of space and resources is described in term of optimization problems. In 

music, the term pertains to David Temperley’s progression in analytical approaches.  

Temperley’s the Cognition of Basic Musical Structures (2001) took a preference rule 

approach to musical elements. For each element, a set of Preference rules were outlined for a 

computer tool to analyze a piece of music for information. Following this, Temperley took a few 

of the elements examined in the 2001 book and applied a probabilistic approach to them using 

Bayesian Probability —a term referring to extensions of the acceptance of Bayes’ Rule3— to 

match the approach of similar perceptual fields. The 2007 book, Music and Probability, aims to 

build upon the previous set of preference rules and move further in the research. This is the 

method of Optimization to be addressed here. 

 This section of the thesis will explain a previous way of approaching a problem and 

explain how a new method has helped to optimize the older one. Like both of Temperley’s 

approaches, there will be a section on organization by Preference Rules and a section examining 

Probability and Statistical models.  In the Preference Rule section, Temperley’s approach will be 

                                                           
3 Bayes’ rule is expressed as follows: P(A|B) = 

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  where probability is P and items A and B are distinct and 

different. Upon acceptance of this theorem, a branch of probability is built called Bayesian Probability 
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discussed first. Following this, other preference rule methods and computer tools will be 

presented as they relate to Temperley’s Cognition of Basic Musical Structures (2001). The 

second section will show various approaches to music analysis that involve different aspects of 

Probability and Statistics. Some of these approaches, like Temperley, use Bayesian Probability, 

and others concentrate on statistical analysis. Though the two sections are split in this thesis they 

are related since the hierarchy built in a PRS carries through into Probability. I have separated 

them in the thesis to better explain how a newer model has built upon Temperley’s work bit they 

are related. This is represented graphically in figure 3 where the dashed line represents the 

implicit link between the two main sections, even though they are distinct in their principal focus 

(i.e. a PRS or application of probability). The items under each of the main headings are the 

topics that are covered in this chapter. Bayesian Probability can encompass all of the 

subheadings under Preference Rules, but Harmonic Vectors and the application of 

Bioinformatics later in the chapter relate more specifically to other subheadings. This is also 

represented through dashed lines. 
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Figure 3 This is a graphic representation of the aspects of the field I concentrate on. It shows 

that Preference Rules and Probability and Statistics are not completely separate from each 

other.  
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3.1 Preference Rules 

 

This section on Preference Rules will start by outlining David Temperley’s Preference 

Rule Systems (PRSs) from The Cognition of Basic Musical Structures (2001). I concentrate on 

the first section of the book. Temperley uses a piano roll input for the computer and, based on the 

subsection in question, specific tests are performed to examine the usefulness of the approach. 

The subsections of this book—Metrical Structure, Melodic Phrase Structure, Contrapuntal 

Structure, Tonal-Pitch-Class Representation, Harmonic Structure, and Key Structure—will serve 

as subsections of the following chapter. Parallelism is the final subsection in this chapter and it 

was added because of a 2002 Temperley and Bartlette article, “Parallelism as a Factor in 

Metrical Analysis,” that further explains the importance of parallelism (This article also gives a 

broader definition to parallelism which is important to further research). For each subsection, 

Temperley’s findings from 2001 will be presented followed by the research that has built upon 

the findings.  

 In this part of the thesis, I take Temperley’s model and examine how the next 16 years of 

research has built upon it. I will present a set of the comparable models and give a brief 

explanation of the element of Temperley the model builds upon. Following this section, I will 

critically examine the newer models and tools through comparison. I begin, however, with 

Temperley’s 2001 book The Cognition of Basic Musical Structures. 

 

3.1.1 Metrical Structure 
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 As David Temperley explains in The Cognition of Basic Musical Structures (2001), the 

computer must concentrate on that beat induction when examining metrical structure. Beat 

induction is when the computer must understand or tap the beat. In some senses, the term refers 

to a ‘foot tapping’-like induction, but for the Temperley PRS it is for inferring meter. The meter 

is shown in a Lerdahl Jackendoff graphic model with different hierarchies of beats as shown in 

figure 4. This is a Metrical grid for 2/4 time where the lowest set of dots indicates the eighth note 

lever (the division of the beat level), the middle set of dots are the main beat (1, 2, etc.) and the 

highest level is the strong beat (the downbeat).   

 

Figure 4 This is a beat hierarchy and described by Lerdahl and Jackendoff 

For finding metrical structure, Temperley outlines the rules as followed:  

1. Event rule:  Prefer event on a strong beat onset 

2. Length rule: prefer long events on strong beats 

3. Regularity rule: prefer evenly spaced beats at each level 

4. Grouping rule: “Prefer a strong beat at beginning of groups (Temperley 2001, 

38)” 

5. Duple bias rule: Prefer duple or triple levels (for example 3/4 instead of 6/8) 

6. Harmony rule: strong beats align with harmonics change 

7. Stress rule: prefer strong beats with loud events 

8. Linguistic stress rule: prefer stressed syllables on strong beats 

2 

4 
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9. Parallelism rule: prefer the same metrical structure to the same segments 

 

What these rules consolidate to is a set of preferences for a computer system to go through to 

find the “best-fit” for metrical structure. The computer will attempt to fit different meters onto a 

piece of music and chose a version where the most parameters are preferred. Because these are 

preference rules, in other words the computer does not have to have all of them true when 

choosing a meter, so the “best-fit” refers to the meter with most of the preferences.  

 Tempo is a bottom-up and a top-down process depending on how long someone listens to 

a piece of music in the same tempo. It is a bottom-up process because we need a few notes to 

perceive a tempo, but following these few notes it is a top-down process because we apply the 

tempo we have perceived to the music—as evident through foot-tapping, head bobbing etc. 

However, if the tempo were to change suddenly for expressivity, a person could catch it quickly. 

According to Desain and Honing, “beat induction is a fast process [since] only after a few notes a 

strong sense of beat can be induced” (Desain and Honing 1999,29), and, therefore, a computer 

inducing tempo is a large undertaking. 

 In Temperley’s writing he mentions the “most important work in the area of quantization 

(Temperley 2001, 27)” is a 1992 Desain and Honing study entitled “Time Functions Function 

Best as Functions of Multiple Times.” I mention this article because of its comparative approach 

and use of much the same rule-based models as Temperley. The 1992 article is a connectionist 

approach that uses stationary units and interactive units that change based on the surrounding 

material. The approach does not keep the length of notes the same but keeps the onset the same, 

which is problematic for Temperley. Even though this model offers multiple beats per time 

interval it cannot handle expressive timing (Temperley 2001) 



 
 

48 
 

The 1999 Desain and Honing study, “Computational Models of Beat Induction: The Rule 

Based Approach” used a rule-based model for beat induction of musical input and aims to 

explore the perception of tempo in people and in computers. The goal of this article is to look at 

rule-based models and provide an understanding of how these models create an initial beat 

structure. Desain and Honing examined the contribution and robustness of rules in different rule-

based models. The important aspect taken from this article is that models, regardless of year 

created, can work more optimally with rules taken from other models. This points towards the 

mixing of rules and ideas which is in fact what Temperley has done to create his PRS.  

 Smith and Honing (2008) explains how the problem of expressive timing could be 

overcome. This study used rhythmically isolated segments –meaning that there was only rhythm 

as input—to incorporate expressive timing. This accounts for the fact that a person can easily 

change their original beat structure to incorporate expression. A technique based on Morlet 

Wavelengths was used to do so because of its similarity to human hearing and prediction4. This 

remains consistent with the overall goals of Optimization, which is to explain with greater and 

greater efficiency perception and human signal processing. These wavelets, however, are best 

used for short bursts of input similar to that of expressive timing at the ends of phrases.  

 The article first looks at the analytical techniques and the application of Morlet Wavelets 

to create a continuous wavelet (one that uses expressive timing). A wavelet is a representation of 

the repetitive rhythmic structure, such as a repeated rhythm or time signature. Then it puts the 

rhythmic findings into a hierarchy. Following this, the article finds the “foot tapping rate” (Smith 

and Honing 2008, 83) which is the basic tempo and, finally, the model is complete by showing 

                                                           
4 Definition taken from an Online Dictionary on time frequency. https://cnx.org/contents/SkfT37_l@2/Time-

Frequency-Dictionaries 

https://cnx.org/contents/SkfT37_l@2/Time-Frequency-Dictionaries
https://cnx.org/contents/SkfT37_l@2/Time-Frequency-Dictionaries
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the incorporation of expressive timing (Step 1 with Step 3). Overall, this model will provide an 

accurate analysis of foot-tapping. It will be further discussed in Section 3.2. 

 Hardesty in 2016 goes a different direction in building upon Temperley as well as Huron 

and Lerdahl and Jackendoff’s A Generative Theory of Tonal Music (1983). His approach aims to 

identify rhythmical features and examine music prediction from the rhythmic and parallelism 

point of view. This will be further discussed in the parallelism section. 

 

3.1.2 Contrapuntal Structure 

 

 As mentioned in Chapter 2 with the ELVIS project, counterpoint often does not get the 

attention it deserves. Temperley examines counterpoint with the goal of understanding the 

perception behind it.  It is worth mentioning that the PRS for contrapuntal structure is geared 

towards a piano roll representation of a piece. Temperley uses the concept of “streams” which 

are a group of ideas in the same voice with minimal white squares. The white squares refer to 

moments of silence. Temperley’s Preference rules are as follows:  

1. Pitch Proximity Rule: prefer to avoid large leaps in a stream 

2. New Stream Rule: prefer the least number on streams 

3. White Square Rule: prefer the least number of white squares in a stream 

4. Collision Rule: prefer cases where a square is in one stream 

5. Top Voice Rule: prefer a single voice as the top voice, so there is minimal voice 

exchange 

I would like to clarify that a stream does not refer to a phrase because, in contrapuntal structures, 

a stream can have multiple phrases. For example, one voice in a 4-part fugue would start with the 
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melody which can be multiple phrases, then the same voice will play contrapuntal variations 

with multiple phrases; this voice acts as one stream  

 A 2015 Komosinki article examined analysis of counterpoint for compositional research 

by using a method called “dominance relation.” This is a method that uses multiple criteria to do 

analysis like a PRS. It specifically looks at first species counterpoint and can produce an output 

of a composition. Because this is a composition tool, I will concentrate on the evaluative module 

of the method. The model will first always generate the first species counterpoint, but each item 

is evaluated by the following criteria:  

1. Direct motion 

2. A repeated note 

3. A vertical imperfect consonance 

4. A skip 

5. A vertical perfect consonance reached by direct motion 

6. Skips by tritone or larger than P5 except m6 

These criteria are examined through the generated piece and they are all counted.  

The output produced by a dominance relation will be either “dominated” or “non-

dominated.” Using rules based upon the counterpoint method of Fux (Fux 1965), dominated 

counterpoint will have another counter point that is ‘better’ and this evaluation will repeat until a 

final, non-dominated counterpoint is found. This article builds upon Temperley’s rules but only 

in a general sense. Temperley’s rules are used to narrow down choices and find the best fit, while 

this method tests all rules on each counterpoint, and eventually finds the counterpoint that most 

exemplifies the rules.  
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 Giraud et al in 2015 builds upon research on fugues. The input has the voices in the fugue 

already separated. This is much the same as Temperley’s streams and uses “generic MIR 

techniques” (Giraud et al 2015, 79). I have decided to put this into the Optimization section for 

two reasons. First, it is an example of work lying between optimization and MIR. Secondly, it 

acts more as an Optimization tool than an MIR tool because of its small scale. The goal is not to 

create a database. Instead, the goal is to be used as an evaluative model for fugues.  

This tool needs input that is already separated for computer use, so it uses files from the 

Humdrum toolkit because they have been previously separated into voices. This method 

concentrates on using tools to examine pattern repetitions and gives a complete analysis. It does 

so by identifying the subject, and countersubject(s), the key for individual occurrences, harmonic 

sequence, cadence, pedals, and overall structure.  Giraud et al tested this method on 36 Bach and 

Shostakovich fugues. They found that, for some pieces, the analysis was complete and correct, 

but the method still gets false positives. Other results were completely unusable, but these were 

mostly double and triple fugues. More specifically, if the subject was correctly identified the 

overall analysis was more correct. Like any computer method, this one can be made better and 

Giraud et al makes suggestions on how. To make this optimal, Giraud et al suggests that the 

current method can be combined with probabilistic models. Probabilistic models will be 

discussed in the following section. 

 

3.1.3 Tonal-Pitch Class Representation and Harmonic Structure 

 

 Tonal-Pitch Class Representation is important to the PRS of Harmonic Structure. The 

term Tonal-Pitch Class is taken from Temperley and I have understood it to mean the set of pitch 

classes creating a tonal structure (i.e. key area). Tonal-Pitch Class representation is the sorting of 
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the pitches in a piece to a specific key. The Preference rules outlined by Temperley are as 

follows: 

1. Pitch Variance Rule: prefer to label such that nearby events within the same key 

2. Voice-leading Rule:  events a half step apart are preferred to be different letter names  

3. Harmonic Feedback Rule: prefer a Tonal Pitch Class where the harmonic structure is 

good (meaning that there is a logical progression) 

These rules help to decide a specific key and minimize notes outside of a chosen key. All keys 

would be tested for a specific idea and the best-fit would be chosen. The PRS for Harmonic 

Structure builds upon this assignment by adding roots and chords to the piece. These rules create 

a hierarchy of possibilities for the individual chords and, because the last rule for Tonal-Pitch 

representation considers harmonic progression, the progression is relatively accurate. This does 

not eliminate the analyst, however, because this is not 100% accurate. The PRS for Harmonic 

Structure are as follows:  

1. Compatibility Rule: Prefer roots in the following order-> 1,5,3, flat3, flat7, flat5, flat9, 

ornamental (all others) 

2. Strong Beat Rule: prefer chords on strong beats 

3. Harmonic Variance Rule: prefer the next root to be on the circle of fifths  

4. Ornamental Dissonance Rule: [ornamental dissonance is “if it does not have a chord-tone 

relationship to the chosen root] Prefer ornamental dissonances where the next or prior 

note is a tone or semitone away and/or on a weak beat 

The PRS for Harmonic Structure still considers chords that are not part of the original key, and 

thus modal mixture and other temporary key changes are possible. This method also considers 

proximity, so modulation can be addressed.  
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 To add to this, De Haas et al in 2013 created HarmTrace which stands for Harmonic 

Analysis and Retrieval of Music with Type-level Representation of Abstract Chord Entities. This 

tool is useful for tonal works to separate data using harmonic similarity estimation, chord 

recognition, and automatic harmonization.  To explain further, this tool can recognize chords and 

show that different aspects of a piece are similar because of the harmonic structure or 

progression. This tool can do so by taking all the chord possibilities into consideration for the 

specific beat and extracting the most correct one. (The tool can also harmonize a progression 

which is useful for the performer, but not within the scope of this paper.) This article was 

included because it furthers Temperley’s PRS: it can provide the automatic harmonization and 

similarity estimation. It does not need the previous Tonal-Pitch class representation PRS to 

figure out the specific chords. Instead it puts the possibilities into a hierarchical structure. The 

authors claim that this model can be used for MIR because it moves beyond theoretical uses and 

is practical as an internet-based method (De Haas et al 2013).  

 

3.1.4 Melodic Phrase Structure 

 

Melodic Phrase Structure is involved in multiple levels of a piece because melody itself often 

adheres to specific rules and works with other musical structures such as meter and harmony 

(Temperley 2001). Thus, Temperley’s PRS must take all of these into account to be accurate. 

The rules are as follows: 

1. Gap Rule:  prefer boundaries either at time between intervals or at a time at a rest before 

and interval 

2. Phrase Length Rule: prefer 8 note long phrases 
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3. Metrical Parallelism Rule: prefer phrases that start at the same point in the metrical 

structure 

The first rule refers to the time that could be between phrases or in a phrase. The Gap Rule is to 

make phrase boundaries at a rest or after a longer note value because these are both possibilities. 

An extension of this model will be discussed in 3.1.5 parallelism.  

 

3.1.5 Parallelism  

 

 In The Cognition of Basic Musical Structures (2001), parallelism was mentioned and 

treated, and was revisited in Temperlay and Bartlette 2002 article. Parallelism was redefined as 

follows: 

a) Parallelism: repetition either exact sequence or contour 

b) Parallelism rule: “prefer beat intervals of a certain distance to the extent that repetition 

occurs at that distance in the vicinity” (Temperley Barlette 2002, 134) 

This twofold definition kept the existing definition but added contour and sequence in essence. 

Emilios Cambouropoulos, from Aristotle University of Thessaloniki, in 2006 explored 

parallelism and melodic segmentation using a computer. Cambouropoulos wanted to incorporate 

parallelism into this method because it is often forgotten by analysts and has an impact on 

parsing data. Cambouropoulos used the pattern boundary strength profile (PAT) and the Local 

Boundary Detection Model (LBDM) to find phrase boundaries that take parallelism into account. 

PAT was first only able to extract patterns that are exactly the same, but Cambouropoulos 

modified it to extract patterns that are similar. The goal of this modification is to provide a more 

general application of parallelism which is exactly what Temperley wanted to do with the 

modification of his prior definition. Cambouropoulos was able to create a basic method for 
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melodic segmentation that incorporates parallelism, but it is not perfect as it does not provide the 

final segmentation of the piece. 

As previously mentioned, Hardesty in 2016 published an article on music prediction and 

generation for rhythm. This method was based on finding parallelism, Lerdahl and Jackendoff’s 

1983 publication –A Generative Theory of Tonal Music (1983) –, and the psychological 

understanding of music. The psychological aspect of rhythm is based on “rhythmic anticipation 

and parallelism” (Hardesty 2016, 39). This method was only conducted on binary rhythm where 

strong and weak beats alternate, so the assumption is that an attack on a weak beat is followed by 

an attack of the strong beat. The method takes derivation of a rhythm to find the underlying 

operations to generate rhythms. The goal is to “[define] a collection of rhythmic building blocks 

(Hardesty 2016 abstract)” while taking psychological aspects of rhythm and meter and 

parallelism into account. The result is a hierarchy of rhythms based on duration. An interesting 

point is that the final outcome can still be the same if the input is different so long as they are 

derived from the same rhythm.  

 

3.2 Probabilistic and Statistical models  

 

 Though this is a separate section from Preference Rules, Probability and Statistics 

encompasses the same hierarchical structure as a Preference Rule System. Often in Computer 

Music Analysis, different methods are layered to create an optimal outcome. The incorporation 

of Probability and Statistics stems from Temperley’s move away from PRSs to a model that is 

more similar to other fields studying perception.  

 

3.2.1 Introduction 
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In 2010, the Journal of Mathematics and Music published a special edition examining the 

first movement of Brahms’ String Quartet in C Minor Op. 5, no. 1 to show different perspectives 

on Computer Music Analysis (referred to in the article as “computer-aided analysis”). The 

edition brought to light three major developments I explore further: Music Information Retrieval, 

Optimization, and Machine Learning. This section, however, will concentrate on Optimization in 

terms of probability and statistics. This will touch on work by David Temperley, Philippe Cathé, 

and Darrell Conklin. I will also introduce a method of using probability to assist in MIR, 

introduced in the previous chapter.  

Temperley sought to improve Preference Rules with Bayesian Probability because it can 

do the job of preference rules. Preference rules are not used in other perception relation fields, 

like linguistics, so Temperley took their methods and adapted it for music. Temperley changed 

from a preference rule approach to a more generative approach using Bayesian Probability, 

which stems from the accepting of Bayes Rule as correct. This is when the probability of another 

event happening changes based on the occurrence of a previous event. Combining his previous 

work with that of Music and Probability (2007), Temperley created Melisma Version 2.0, 

available online for analysis.  

Philippe Cathé located at L’Université Paris-Sorbonne looks primarily at Harmonic 

Vectors and uses a computer to perform the statistical analysis. The computer, however, does not 

perform the analysis itself, but, instead, treats each as a data file. Cathé attempts to keep the 

music in mind by, after the statistical analysis, explaining the interaction between the music and 

the vectors. With Harmonic Vectors, the changes can be heard in recordings making the 

statistical analysis seem more factual.  



 
 

57 
 

 Darrell Conklin also employed probability, as well as bioinformatics for efficient pattern 

recognition. Finding patterns is an integral part of analysis but becomes subjective when 

choosing patterns for study. The goal of Conklin’s work is to create an algorithm to find the 

distinctive patterns, which are patterns frequent within the piece, the corpus, and infrequent in a 

selected set of pieces, the anticorpus. This gives the analyst a set of patterns that may be 

important.  

 

3.2.2 David Temperley’s use of Bayesian Probability  

 

In the Cognition of Basic Musical Structures (2001), David Temperley created a set of 

Preference Rules inspired A Generative Theory of Tonal Music (1983) by Lerdahl and 

Jackendoff. Similarly, Music and Probability (2007) takes a generative approach and combines it 

with Bayesian Probability. The reason for using probability was to use similar tools to language 

and vision because preference rules were not being used in these similar domains. Bayesian 

probability is a subset of probabilistic rules where the probability of an occurrence is affected by 

the occurrence of a previous event. This subsection will concentrate on select chapters from 

Music and Probability (2007). 

 The approach to analysis here is to first do a probabilistic analysis of the Essen Folksong 

Collection to find the probability of various musical building blocks, such as meter, keys—both 

in monophonic and polyphonic music—, and melodic ideas. This analysis sets the parameters for 

the computer program, so that the rest of the pieces analyzed will have a higher accuracy. Using 

the Essen Folksong Collection5, the parameters are set, and the analysis is completed through a 

                                                           
5 The Essen Folksong Collection is a collection of 10,000 folksongs collected by Helmut Schaffrath. These are 

located at http://essen.themefinder.org/  

http://essen.themefinder.org/
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generative process. A generative process works by finding a structure based on the surface 

content of a work and then generating a surface in multiple choices (keys, meter, etc.). After 

generating a surface, the program will decide which is the highest probability based on the 

underlying structure. This simplified method will now be explained for meter, key—both 

monophonic and polyphonic—, and melodic ideas.  

 Meter has been well studied prior to Temperley’s work in Music and Probability (2007), 

so this model aims to build upon previous models with a generative approach. A ‘metrical grid’ 

is generated from the piece based on the parameters set from the remainder of the Essen 

Folksong Collection, but there are many different possibilities of metrical grids for any given 

piece. As noted above metrical grid refers to the graphic representation of beats, strong beats, 

and main beat divisions in three levels as shown in figure 3 (Section 3.1.1) 

The following steps are used in creating the optimal grid: 

1. Decide time signature: choices between duple and triple meter and the individual time 

signatures within each category 

2. Generate the tactus: this is the middle or second level of beats and is based on the notes 

that are present (simultaneously with 3) 

3. Addition of upper level beats: indicates the actual beat division and is the highest level in 

the metrical grid (simultaneously with 2) 

4. Addition of lower level beats: indication of the subdivision required for the excerpt. This 

is the lowest set of points on the metrical grid  

5. Generate note onset: solid vertical lines that indicate where the actual notes line up on 

the metrical grid. (not in figure) 
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After generating many metrical grids, the tool would test the probability of the onset, with the 

assumption that the grid was correct. It would then multiple the grid by the probability of the grid 

itself. This would yield a probability value of statistically less than one and the highest scoring 

grid would be selected. 

Upon testing this model on multiple pieces, Temperley compared it to the software that 

previously used preference rules to find the best fit. The tests showed that the PRS was more 

accurate when compared to the Bayesian model. Temperley hypothesized reasons for this. The 

reasons for higher accuracy with the first model is because the perception of rhythm is based on 

harmony, note lengths, and parallelism as well. Longer note lengths most often occur on strong 

beats such as the beginning of the measure and the Bayesian Model at the time could not take 

that into consideration.  

 In creating a computer model that perceives key, the musical facets the mind isolates 

must be taken into consideration. A key, at least in monophonic pieces, is composed of both 

pitch proximity and range and Temperley poses the question “What kind of pitch sequence 

makes a likely melody?” (Temperley 2007). This, once again, is a generative process where all 

keys are tested, but there is no obvious starting point when examining key, so Temperley relies 

upon previous research on key-profile. The key-profiles are heavily based on the Krumhansl and 

Kessler 1982 experiment. The experiment asked participants to rate the degree to which audible 

pitches belonged to an established key and, from this, a correlation was created. This experiment 

was successful in major keys, but minor keys were problematic because there are multiple 

versions of a minor key. Temperley made the needed changes to the established key profiles to 

incorporate minor keys and began constructing a model using Bayesian Probability. 
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 To construct a generative process for key finding, Temperley used the key profiles as a 

starting point. He did an overall analysis of the Essen Folksong Collection to find a normal 

distribution, or bell-curve, of the pitches. Following this, a pitch is chosen at random from the 

peak area of the bell-curve to construct a range profile around it, and then, it is combined with a 

proximity profile. All keys are tested in this way and the key with the highest probability will be 

chosen as the key for the melody. This same method for key-finding is problematic for 

polyphony. This approach takes the structure from the surface material, but the surface of a 

polyphonic piece is dense and contains notes acting as passing or neighbouring tones. When 

examining a piece, many notes are not the tonic of a scale, so this would skew most computer 

programs. Temperley aimed to overcome this obstacle by segmenting the piece on the 

assumption that pieces stay in the same key for a little while. This assumption is based on the 

perception-based concept of ‘inertia’ where there is a lack of movement in an item (Larson 

2004). In this case, it means that the key will stay the same for the amount of time affected by 

inertia. This also helps with the second problem of modulation. 

 Modulation occurs when a new key is introduced for an indeterminate amount of time. 

This is difficult for computer because two, or more, notes act as the tonic at different times in the 

piece. In the case of polyphony, this is overcome by segmenting the piece into smaller sections, 

as is already needed to look at polyphonic works. The smaller segments will show a higher 

probability to one key and a section that modulates will show a higher probability of another key. 

The segmentation, in turn, will assist in both, identifying modulation and key-finding in 

polyphonic works.  

 Melodic ideas in this case often involve expectation or error detection where the model 

attempts to answer this question: ‘does this pitch work in this sequence?’ Pitch expectation is 
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tested in two ways. The first is if the participant expects a pitch and the second is whether a 

participant can add a pitch. 6 Temperley is concentrating on the first type of test and uses the 

Cuddy and Lunney (1995) experiment where participants rated the ‘fit’ of the next note in a 

corpus, not the Essen Corpus, from one to seven. The numbers were converted, by Temperley, 

into values to use the probability model. The values were used to test the strength of the fit of the 

note to explore the capabilities of the computer tool and to examine pitch sequence. Here, 

Temperley realized that the parameters work best if they were created by other pieces from the 

same corpus. The strength of best fit is much higher (from 0.729 to 0.870 in terms of correlation 

coefficient), but this shows that the computer tool does not work equally for all music but can 

give some insight. 

 

3.2.3 Statistics and Harmonic Vectors  

 

Harmonic Vectors is a newer harmony theory influenced by Riemann that aims to take a 

generative and systematic look at tonality that can be used for statistical analysis (Meeùs 2003). 

Nicolas Meeùs used this term from 1988 and wrote extensively on it into the twentieth century. 

My primary source for background information on Harmonic Vectors is a 2003 Meeùs article 

entitled “Vecteurs harmoniques.” This takes the motion of scale degrees and systematically sorts 

them into either Dominant (V) or Subdominant (SD) Vectors. The two types of vector are based 

on classification of progressions from Schoenberg and Sadaï, who wrote an extension of 

Schoenberg’s work. The reason for this analysis is the assumption that a chord alone has no 

meaning but creates its function within a succession of chords; therefore, the meaning is 

                                                           
6 Temperley refers to this as either the perception paradigm or the production paradigm 
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generative. These vectors can be graphically represented and can be used for statistical analysis 

but may not be representative if done on few works (Meeùs 2003).  

Philippe Cathé took Harmonic Vectors and combined it with Computer Music Analysis 

to dig deeper into a set of works. There are three levels of research with Harmonic Vectors: 

finding regularities, finding pendulums, and finding correlations between the other two levels 

and the music (Cathé 2010a). Cathé expands on vectorial pairs (Meeùs 2003), an analysis 

looking at the pairs of side-by-side vectors, and mono vectorial sequences, meaning the same 

vector repeated, as methods for finding regularities. Pendulums help to further differentiate 

composers based on their vector use. A pendulum is a series of three vectors where the first and 

third vector are the same and the second vector is different. The final level of research brings 

back the music and aims to find correlations between the music and vectors found. The goal is to 

understand why a vector is used (Cathé 2010a). These three stages help to further explore a set of 

works.  

The application of harmonic vectors for statistical analysis was mentioned and used by 

both Meeùs and Cathé. Both expressed the analysis in a table of percentages, organized by 

movement of scale degrees, the types of vector, and level, or with graphic representation, as line 

diagrams or graphs. The diagrams express the amount of each vector (Meeùs 2003), vector pair, 

mono-vectorial sequences, or pendulums (Cathé 2010a), most often in percentage, and break this 

down by era and composer. The computer has assisted Cathé in the three-level analysis by 

cutting down on the time and making the output as unbiased as possible. To perform 

comparisons, Cathé uses ‘Charles.’ ‘Charles’ is a computer program based on Microsoft Excel 

that gives proportions vectors (pair, pendulums, etc.) for a certain piece or a set of pieces, or data 

files. The output is expressed most often in charts or linear graphics. This gives the analyst 
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another method to represent the data and makes comparison easier between eras, composers, and 

compositions.  

The idea that works of music taken from different eras sound different is not new. 

Harmonic Vectors aims to show this through the change in proportions between eras. Each era 

has a different average of each vector, vector pairs, pendulums etc. that can be identified through 

larger scale comparative analysis (Cathé 2010b) and represented in the form of statistics. In 

addition to eras, a comparative statistical analysis of harmonic vectors can also be applied to 

composers and compositions. All composers and compositions are slightly different, so Philippe 

Cathé took ten versions of Vater unser im Himmelreich and compared the usage of Harmonic 

Vectors (Cathé 2010b). A composer uses different amount of each vector (pair, pendulums, etc.) 

by piece, but the percentage remains very close (Cathé 2010a). This can also be used to show the 

degree of difference between two composers meaning that a composer’s use of vectors is 

consistent by composer.  

 

3.2.4 Distinctive Patterns using Bioinformatics and Probability 

 

 Looking for patterns is needed in all analyses and finding patterns that are distinctive is 

paramount. According to Darrell Conklin, a distinctive pattern is one which is frequent within 

the corpus when compared to the frequency within the anticorpus. The algorithm that was 

created aims to find the distinctive pattern within the corpus to narrow down the possibilities for 

the analyst (Conklin 2008). The corpus is a specific piece or set of pieces that are examined, so 

the distinctive patterns found is over-represented in the corpus. The anticorpus, on the other 

hand, is a piece or a set of pieces, often by the same composer, where the distinctive pattern is 
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under-represented. The frequency needed for distinctiveness, the corpus, and the anticorpus are 

all determined by the analyst. I will now explain a few applications of distinctiveness. 

 In this section, I will look at two different applications of this method done by Darrell 

Conklin. The first is on the Essen Folksong Collection and the second is on Johannes Brahms’ 

String Quartet opus 51 no.1. The reason for choosing Conklin’s application is to look at the 

approach of a researcher who commonly examines Music and Machine Learning (from Basque 

University Webstire http://www.ehu.eus/cs-ikerbasque/conklin/) and to further explain 

distinctiveness with an analysis. Both of the analyses use the similar following formula:  

ΔP ≝  
𝑝(𝑃 ⊕⁄ )

𝑝(𝑃 ⊖⁄ )
  =  

𝑐⊕(𝑃)

𝑝(𝑃 ⊖⁄ ) ×𝑛⊕ 
 

The middle expression (between the two equal signs) refers to the probability of a pattern in the 

corpus (⊕) or in the anticorpus (⊖). The last expression is used to find the value of ΔP, also 

known as likelihood of P (I(P)). The numerator is the total number of a pattern in the corpus and 

the denominator is the probability of a pattern in the anticorpus multiplied by the total number of 

events in the corpus.  

 The first analysis was conducted on the Essen Folksong Collection, the same collection 

used by Temperley in his Music and Probability (2007), and, more specifically, the Shanxi, 

Austrian, and Swiss folksongs. Conklin was searching for the “maximally general distinctive 

patterns,” (Conklin 2008,1) which are patterns that can be used for classification but are not so 

general that they occur in almost all pieces. For a pattern to be considered interesting, or 

frequent, it must be in a minimum of 20% of the corpus. The likelihood (I (P)), also known as Δ 

P in later works, must be greater or equal to 3. This study showed that, for each region, there is a 

maximally general distinctive pattern that can be used for classification purposes (Conklin 2008).  

http://www.ehu.eus/cs-ikerbasque/conklin/
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 The second analysis was on the first movement of the Brahms String Quartet, opus 51 no 

1, and the anticorpus used was the string quartets no 2 and no 3. For the best comparison, 

Conklin only uses the first movement of no 2 and no 3. The goal was to show that the motives 

Forte found in his ariticle “Motivic design and structural levels in the first movement of 

Brahms’s string quartet in C minor” (1983) are found as distinctive using this analysis, 

excluding two motives that cannot be maximally general. This is converse to when David Huron 

revisited the same analysis in 2001, where Huron found that only the alpha motive was 

distinctive (Conklin 2010). 

I will now outline what was determined by the analysis. The minimum frequency, in this 

study, for a pattern is 10 and the likelihood of a pattern, renamed to the ΔP, is minimum 3 to be 

considered distinctive. The Humdrum kern formats were used for an easily available and 

computer compatible format. When the analysis was completed, all of Forte’s motives, not 

including the mentioned exception, were labeled as distinctive (Conklin 2010). This shows that 

the tool can be used to identify likely distinctive motives, but the analyst will still need to analyse 

the data for a complete picture.  

 

3.3 Critical Analysis: Optimization  

 

 The chapter thus far shows the progression made in research in general and specifically 

that David Temperley made from The Cognition of Basic Musical Structures (2001) to Music 

and Probability (2007) by exploring the previous research, reasons for looking at probability, 

and the use of Bayesian Networks. In essence, the recent research in Optimization builds upon 

what Temperley provides or upon developments mirrored by Temperley. (Temperley has more 

recent publications, but these will be discussed in the conclusion of the thesis.)  
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3.3.1 Preference rules: Metrical Structure 

 

 The Smith and Honing use of Morlet wavelets was discussed in 3.1.1 as a method to 

incorporate expressive timing into beat induction. This method has its limitations. Firstly, the 

method does not work by exposing the tool to the music because the input must be in an isolated 

rhythm form. This means the tool cannot perform beat induction on a non-separated piece. 

Another issue is the selection of tempo is not as sensitive as needed. This method has made leaps 

and bounds in testing and creation but cannot currently work as a stand-alone program. And, 

because of its current limitations, the method cannot be a simple online application at this point, 

so it is only useful to a small number of people. 

 The first improvement is to make it either a stand-alone program or an addition to another 

larger tool. As its own stand-alone program, it would have much use to a researcher but may be a 

teaching aid for a student to learn expressive timing or beat induction. A more wide-spread use 

of this tool would be in playback software for scores to determine the efficacy of a playback. If 

the tool could not find the tempo of a piece as played in a playback, then it would show that the 

playback is not as similar to human playing. However, this tool does help to further the goal of 

Optimization by getting closer to human beat induction. In time, if work on beat induction 

continues, researchers may understand how people can find the beat and adapt it quickly. 

 

3.3.2 Preference Rules: Counterpoint 

 

 The extensions of counterpoint from 2000 to 2016 have concentrated on the evaluative or 

compositional side, but they are still useful to analysts. The Komosinki article concentrates 
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heavily on composition but it gives an evaluative approach for the generated composition. On a 

smaller scale this tool is useful for evaluating a first species counterpoint which is taking an 

opposite direction than Temperley. It has been included to show a different use for Temeprley’s 

Preference Rules. It is useful to an analyst by giving a general outline of evaluative criteria 

needed by a computer. On its own, it needs to stay with a generative model because of the 

dominated vs. non-dominated output, but it is a good model for future evaluations of generative 

models.  

 The tool proposed by Giraud et al gives the analyst a strong head start on fugue analysis 

if the subject is properly identified. This tool is best used on a larger corpus of similar fugues 

(i.e. by the same composer in the same era) if it were to be combined with probabilistic models. 

The best probability of subject length, key notes used etc., is found when the corpus is evaluated 

independently. This was a trend in probability, because probability of certain gestures change 

based on the composer. This tool would indeed be best used in conjunction with a probabilistic 

model, but extra work needs to be done to separate a set of fugues into streams or voices. To 

separate the voices Temperley’s preference rules to examine streams can be used if they are 

indeed one in the same. However, neither of these tools examine fugues with multiple 

instruments. This is left for further work.  

 

3.3.3 Preference Rules: Tonal-Class representation and Harmony  

  

 HarmTrace can estimate the harmonic similarity, recognize chords, and automatically 

harmonize an input. This tool does not need a set of Tonal-Pitch Class rules or key profiles. 

Instead it uses a hierarchical structure to narrow down its choices. The authors of the article 

further say that this model can be used for MIR because it is practical as an internet-based 
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method. An issue that is not addressed is what kind of input can be used with HarmTrace this is 

one of my five Critical issues. If the input needs to be separated in some way then old Humdrum 

files could be used, but if there is an image score input then any clear scan of a score can be 

used. Another common input is a music notation software input (such as a Finale file), but these 

formats are specific to the notation software that is being used. Furthermore, an audio file input 

would be optimal because they are widely available, but this is not practical because no 

recording is perfect.  

 

3.3.4 Melodic Phrase Structure and Parallelism 

  

 The PAT—pattern boundary strength profile—and LBDM—Local Boundary Detection 

Model—have improved with Cambouropoulos’s modifications in 2006, but since then 

parallelism has not been in the forefront of research. This more generalized application of 

parallelism is imperative for pieces where a repetition is ornamented or changed slightly, but it is 

often not considered with analysis tools because they often examine recurring features or one 

specific task.  

 Boundary detection is generally used for parsing data and by incorporating parallelism 

the boundaries are more accurate. By putting HarmTrace and PAT/LBDM together, the output 

could have a higher accuracy and can provide a precise parsing of data as needed for analysis. 

The final segmentation could be obtained for the PAT/LBDM outputs by using the HarmTrace 

harmonic infrastructure. This would be a way to leverage the strengths of both models to provide 

the user with a more complete outcome. 

 The Hardesty 2016 tool for examining rhythm has a strong basis in rhythm and music 

generation. It has further uses in optimization because it incorporates psychological elements, 
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however, the goal is not completely realized. The tool can only process and generate binary 

rhythm, but, with further research, the tool can come close to the human music prediction. Thus, 

it furthers optimization’s goal in understanding how humans perceive rhythm and can predict it.  

 

 3.3.5 Probability and Statistics 

 

The tools presented in the section on Probabilistic and Statistical models take three 

different approaches to using probability and statistics in Computer Music Analysis. Temperley 

looked at Bayesian probability, the set of probabilistic principals following the acceptance of 

Bayes’ Rule, to incorporate his previous research in PRSs with cognition in similar fields to 

music. Cathé’s approach aims to always keep the music in mind, so the computer looks at every 

data file, music in this case, and the analyst makes the final comparisons and assumptions 

looking at both music and harmonic vectors. Darrell Conklin takes bioinformatics and 

probability for finding distinctive patterns, and the method parses music giving the analyst the 

patterns that may be important.  

Temperley’s use of Bayesian probability is to be used in his online database. Overall, the 

generated coefficients can be used in other probabilistic models and in other corpus studies. As 

was stated by Temperley, the coefficients are more accurate when generated for a specific 

corpus, so for maximal accuracy this should be done. Furthermore, these coefficients can be used 

in any generative theory if they are based on the same corpus. This is also its limitation since re-

analysing a set of works when investigating a different corpus is time consuming. This can 

sometimes defeat the purpose of a computer model as it does not save time and energy. 

Overall these models take a set of data and  provide an output of specific generalizations. 

For example, Cathé has generalized the percentage of use for each harmonic vector by composer, 
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meaning that each composer has a distinct percentage. This can be further combined with a study 

on authorship in 1963. This study was on literary works and measured the specific ratio of 

simple words such as upon, such etc. The amount some words were used is distinctive to the 

authors. The Poisson Process, a specific aspect of probability, was adapted to complete this 

method. This could potentially be adapted to music where, instead of words, harmonic vectors 

are used. This application is further discussed in the concluding section of the thesis. 
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Chapter 4- Machine Learning  

 

4.1 Introduction to Machine Learning  

 

 Machine Learning can be defined as the process of teaching a computer (the machine) to 

devise new tasks, and in the case of music, to perform these new tasks on musical works. This 

has applications for many aspects of Computer Music Analysis, but the focal point of Machine 

Learning is the tool itself. The tool or method must provide a relatively accurate output on a first 

stage analysis so that, in turn, the tool can reliably produce correct output for other pieces. This 

differs from MIR and Optimization, because for MIR the goal is a database, and for 

Optimization, as I have described it, the goal is to understand and reproduce a human perception 

of an input.  

 Music poses many challenges for any computer-based analytical tool, and, as such, the 

analysis of full works of music using complex ideas is not common in Machine Learning. 

Machine Learning is used in multiple disciplines. When used for music, the input is often over 

simplified (Widmer 2006). The field of Machine Learning as applied to music is still in its 

infancy. Thus, I can only give a cursory overview of some of its developments. (Recently, a 

special issue of the Journal of Mathematics and Music concentrated on Music generation in 

Machine Learning, but this is an exceptional development.). 

 In this section, I show several emerging possibilities for Machine Learning as well as 

precedents. I do so in an introductory manner because the actual processes of Machine Learning 

and their application are too complex to be treated exhaustively in a thesis of this scope. (I will 

discuss the literature of Machine Learning primarily from the angle of a music theorist although 

it holds considerable possibilities for other domains such as composition.) Unlike previous 
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chapters, the critical analysis for this chapter is in the conclusion of the thesis, since Machine 

Learning has importance to Computer Music Analysis as a whole.  

 

4.2 Outline of Selected Tools 

 

 In this section, I aim to expose different tools in Machine Learning. First, I start with a 

tool that assists guitarists with ornamentation. The next two sections build upon one another as 

they are both created by Darrell Conklin and the second builds upon the first in terms of 

segmentation. It is also an application of the multiple-viewpoint system discussed in the 

Literature Review. The final tool is an analysis of analysis using Machine Learning. I 

concentrate on Kirlin and Yust’s smaller details because it is one of the few Machine Learning 

models that directly adds to music analysis.  

 

4.2.1 Ornamentation in Jazz Guitar  

 

 I begin with a recent development in the application of Machine Learning to music. For 

jazz guitar works, ornamentation is important becauseit is how expression is conveyed, but it is 

not written in the score. The performer must come up with the ornamentation themselves or go 

through countless recordings. Giraldo and Ramírez have attempted to address this problem with 

Machine Learning. This tool aims to take an “un-expressive score” (Giraldo and Ramírez 2016, 

107) and add expressive ornaments to it. This machine learning tool uses 27 sets of audio input 

from a professional guitarist as a test set. Using a group of ornamentation vectors, the audio input 

was aligned with the score to create an expressive score of the recording. In effect, a non-

expressive score was put together with a set of vectors derived from expressive scores. While the 
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primary goal of the study was to create a Machine Learning tool, a secondary goal of this tool 

was to give new guitarists an expressive score to read to help them learn the ornamentation 

practices.  

 Following the use of the test set, the tool was further tested on un-expressive input to get 

an expressive output. The output of the tool was a generated MIDI or other audio format 

recording that combined the un-expressive score with the Machine Learning ornamentation. The 

researchers determined that the overall stylistic and grammatical correctness of the tool is a 

statistical 78%. This tool does need further work, especially in refining itself as a Machine 

Learning tool. In terms of its secondary goal however, it does fill a void in jazz guitar 

performance.  

 

4.2.2 Melodic Analysis with segment classes  

 

 Darrell Conklin’s name appears frequently in machine learning as applied to music. His 

research centres around the problem of music as a multi-faceted entity. The article, entitled 

“Melodic Analysis with Segment classes” (Conklin 2006), is a stepping stone towards his later 

research that I will discuss in 4.2.3 (The basis for this article includes the Conklin and Whitten 

1995 article discussed in the Literature Review). Conklin’s 2006 article depends upon a concept 

called “viewpoints.” The idea behind viewpoints is to take a cross section of musical structures 

and estimate the accuracy of the output. The aim of this study is to “demonstrate how the 

viewpoints representation for segment classes can be applied to interesting music data mining 

tasks” (Conklin 2006, 350). 

Conklin’s method is based on a study of natural language and its segmentation. For data 

mining, music must first be in a format understood by the computer and it must be hierarchal. 
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Accordingly, Conklin uses specific hierarchal and searchable terminology. A musical object is a 

note, a segment is a set of musical objects, and a sequence is a series of many segments in a 

specific order. Melody is a type of sequence: it is a set of notes in a specific order where the 

order of those sets is specified. Segmentation is a fundamental aspect of Conklin’s analysis. 

There were two methods of segmentation tested. The first was phrase boundaries and the second 

was meter. Each test involved segmentation created using a viewpoint based on a set of pitches. 

The particular expression determined by Conklin is as follows: set(mod12(intref(pitch,key))).  

The method succeeded most with phrase and metric segmentation undertaken by beat (98%), 

note (92%), and bar (91%). (There was also successful interval level (94%) which was not 

segmented.) As is obvious by the percentages, the most successful was for segmentation by beat.  

While the immediate task in Machine Learning is to create a tool, Conklin’s secondary 

task was to discriminate style. The segmental viewpoint by beats can be used in future models 

for the secondary task. Conklin discusses the further work that needs to be done in this regard. 

Firstly, the length of segments must be examined for a corpus, meaning a collection of a style of 

music. Secondly, the problems of the automated segmentation, meaning the segmentation done 

by the computer, should be compared to human segmentation. 

 

4.2.3 Chord sequence generation with semiotic patterns  

 

 Conklin’s 2016 article, “Chord Sequence Generation with Semiotic Pattern,” addresses 

the semiotic value in trance music—a type of fast electronic music, like techno, centred 

predominantly in Europe—when the latter is generated by a Machine Learning model. Aspects 

of the chords in trance music have intrinsic meaning and, therefore, the meaning must be kept to 
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have an accurate stylistic representation of the music. Conklin’s model aspires to generate a 

chord sequence for trance music that keeps the qualities of trance music intact.  

 The semiotic patterns of trance music are defined as a sequence of “paradigmatic units” 

(Conklin 2016, 94). According to Conklin, the paradigmatic unit is when an idea is given a 

variable (a letter name) so that a pattern of these variables can be discussed. Viewpoints, a 

statistical model discussed above, is used to map, or create, an output according to a plan. 

Conklin’s viewpoints are based on the following criteria: chord, root, chordal quality, inter-

onset-interval (meaning the start and stop points of a particular sound), duration, chord diatonic 

root movement, chord quality movement, a combination of root and quality. Conklin describes 

the combination of root and quality as “crm. (cross product) cqm.” The cross product is a 

common vector operation. This combination was chosen to generate the chord, taking into 

account the intrinsic meaning for trance music.  I should note that Conklin only used a sampling 

of trance songs, so the results need to be further examined in terms of a larger trance corpus.  

 The goal in Machine Learning is the tool itself. Conklin states that the best algorithms, 

like the ones presented and other viewpoints, can be determined for a corpus. To further explain 

this, important aspects of a corpus can be identified, and the best algorithms can be defined and 

used like the “crm (cross product) cqm” used for generation in this article. Conklin also mentions 

that this method can be used for analysis.  

 

4.2.4 Analysis of analysis  

 

 Kirlin and Yust’s 2016 article “Analysis of Analysis: Using Machine Learning to 

Evaluate the Importance of Music Parameters for Schenkerian Analysis” aims to get a machine 

to develop the music theory branch of Machine Learning. The goal of the article was to create an 
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analysis of a score using a model resembling Schenkerian Analysis. While this goal was not 

realized, the article is still noteworthy because of what the researchers explored and the Machine 

Learning tool they created. Schenkerian Analysis involves reducing the work in question by 

finding patterns of ornamentation and elaboration. This task is difficult to teach a computer 

without stipulating the exact features to find. Kirlin and Yust defined eighteen features and then 

sorted them into categories. These became stepping stones towards creating a Machine Learning 

tool.  

 First a hierarchy of notes was created using a tool called a “maximal outerplanar graph.” 

Then the eighteen features were defined as they relate to the Left note, Middle note, and Right 

Note. 7 The middle note has the following six features: 

• SD-M The scale degree of the note (represented as an integer from 1 through 7, qualified 

as raised or lowered for altered scale degrees).  

• RN-M The harmony present in the music at the time of onset of the center note 

(represented as a Roman numeral from I through VII or “cadential six-four”). For applied 

chords (tonicizations), labels correspond to the key of the tonicization.  

• HC-M The category of harmony present in the music at the time of the center note 

represented as a selection from the set tonic (any I chord), dominant (any V or VII 

chord), predominant (II, II6, or IV), applied dominant, or VI chord. (The dataset did not 

have any III chords.)  

• CT-M Whether the note is a chord tone in the harmony present at the time (represented as 

a selection from the set “basic chord member” (root, third, or fifth), “seventh of the 

chord,” or “not in the chord”).  

                                                           
7 These lists from pages 135-136 are shortened versions of the lists presented in Kirlin and Yust 2016  
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• Met-LMR The metrical strength of the middle note’s position as compared to the metrical 

strength of note L, and to the metrical strength of note R (represented as a selection from 

the set “weaker,” “same,” or “stronger”).  

• Int-LMR The melodic intervals from L to M and from M to R, generic (scale-step values) 

and octave generalized (ranging from a unison to a seventh). 

(Kirlin and Yust 2016, 135) 

The left and right notes together have the following twelve: 

• SD-LR: scale degree (1–7) of the notes L and R.  

• Int-LR: melodic interval from L to R, with octaves removed.  

• IntI-LR: melodic interval from L to R, with octaves removed and intervals larger than a 

fourth inverted.  

• IntD-LR: direction of the melodic interval from L to R 

• RN-LR: harmony present, as a roman numeral, in the music at the time of L or R  

• HC-LR: category of harmony present in the music at the time of L or R, represented as a 

selection from the set tonic, dominant, predominant, applied dominant, or VI chord.  

• CT-LR Status of L or R as a chord tone in the harmony present at the time  

• MetN-LR A number indicating the beat strength of the metrical position of L or R. The 

downbeat of a measure is 0. For duple or quadruple meters, the halfway point of the 

measure is 1; for triple meters, beats two and three are 1. This pattern continues with 

strength levels of 2, 3, and so on.  

• MetO-LR A number indicating the beat strength of the metrical position of L or R as an 

oridinal variable and treated differently in the algorithm 

• Lev1-LR Whether L, M, and R are consecutive notes in the music  
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• Lev2-LR Whether L and R are in the same measure in the music  

• Lev3-LR Whether L and R are in consecutive measures in the music 

(Kirlin and Yust 2016, 135-6) 

These features are sorted into melodic, harmonic, metrical, and temporal categories as follows 

• Melodic: SD-M, SD-LR, Int-LMR, Int-LR, IntI-LR, IntD-LR  

• Harmonic: RN-M, RN-LR, HC-M, HC-LR, CT-M, CT-LR  

• Metrical: Met-LMR, MetN-LR, MetO-LR  

• Temporal: Lev1-LR, Lev2-LR, Lev3-LR 

(Kirlin and Yust 2016, 136) 

Then these categories are narrowed down and ranked by importance. This yields a hierarchy with 

harmony at the top, followed be melody, then meter, and finally temporality. 

 The results showed that harmony is the most important marker for the reductions in terms 

of harmonic context and identification of non-chord tones which is obvious for an analyst, but it 

is important to have the computer achieve the same outcome. Melody is the next most important 

marker, when harmonic context and non-chord tones do not give enough information about 

scale-degree progression and interval patterns. Following this, meter is applied to anything that is 

undetermined. Though this procedure seems obvious to the analyst, the hierarchy of steps is the 

most important part to the computer because it gives the computer a specific order to follow. To 

reiterate, this has not been fully tested, but it is useful for the understanding the creation of a 

Machine Learning model.  

 

4.3 Summary 
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In this chapter, I have shown a few of the recent developments in Machine Learning 

applied to Music. I have traced the work of Darrel Conklin in particular, since he is a pioneer in 

the field and continues to contribute to research. As noted above, I have not included a critical 

analysis section, because the comments I would have made there are more appropriate to the 

concluding chapter of the thesis, since they address the current state of the field. 
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Chapter 5- Conclusion  

 

As noted earlier in this thesis, there are different streams in Computer Music Analysis 

and I have concentrated on Music Information Retrieval (MIR), Optimization, and Machine 

Learning. These streams often run in parallel because of their different goals. In my concluding 

chapter I consider some of the most recent developments in Temperley’s work, offer methods to 

bridge the parallels, and present solutions, both general and specific, for the five critical issues 

mentioned in Chapter 1.  

 

5.1 Further Temperley Research and Probability 

 

Following the Cognition of Basic Musical Structures (2001) and Music and Probability 

(2007) Temperley continued his work on borrowing music-like concepts from other disciplines. 

Two articles, “Information Flow and Repetition in Music” (2014) and “Information Density and 

Syntactic Repetition” (2015) adapt concepts from other disciplines to further Optimization. 

The first article adapts uniform information density as a methodology, which is 

probability based, borrowed from psycholinguistics and used to further explain parallelism—

when parts of a musical work are repeated in an exact or similar fashion and, thus, can be 

considered as “parallel.” Temperley renamed the concept “information flow for repetition in 

music” and tested it on the Barlow and Morgenstern corpus of musical themes8. Temperley 

found that in parallel sections of a piece the repetition is often more chromatic, but where this is 

the case the overall piece has a higher probability of smaller diatonic intervals. Thus, the 

                                                           
8 A set of 10,000 themes available in print under co-authors Barlow and Morgenstern 
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juxtaposition of chromatic and diatonic intervals makes the parallelism stand out. Temperley also 

notes that harmony impacts the repetitions. 

The second article looks even closer at parallelism and information flow. It states that 

“less probable events convey more information” (Temperley and Gildea 2015, 1802). 

Temperley’s conclusion is consistent with what is referred to in the analysis of prose in the 

“Inference in an Authorship Problem” (Monstellar and Wallace 1963). This article explains that 

specific words indicate more than others about an author. I notice that by potentially using 

Poisson Process and negative binomials—two standard concepts in Probability and Statistics—

the specific author of a passage in a multi-author work can be found. This links to Temperley 

because they follow the acceptance of Bayes’ Rule and are, therefore, part of Bayesian 

Probability. Temperley’s most recent contributions to the field of Computer Music Analysis is 

this multi-disciplinary borrowing of research tools. It is the interdisciplinary approach more than 

any other development that holds greatest potential for the field 

 

5.2 Machine Learning as a means to an end 

 

Machine Learning concentrates on the tool itself. Since this is the most recent 

development in computer research, and touches on Artificial Analysis, I have left the critique 

until the conclusion. Because Machine Learning focuses on the tool, it does not have a larger 

goal other than creating a better tool. This method is best used, in the grand scheme of Computer 

Music Analysis, as a way to improve and bring other aspects of Computer Music Analysis closer 

to its goals.  
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5.3 CompMusic as an example of Intersection 

  

Some methods of using different streams of Computer Music Analysis have been 

suggested by the authors cited throughout the thesis, but I would like to add my own suggestion: 

researchers need to coordinate more closely in developing their work. I believe this will further 

the goals of MIR, Optimization, and Machine Learning. I will focus on “CompMusic,” since it 

brings together several previously unconnected avenues of research. In this regard, it can serve as 

an example for the rest of the Computer Music Analysis community to emulate. 

CompMusic, also known as Computational Models for the Discovery of the World’s 

Music aims to investigate non-western music.  More specifically, “its goal is to advance music 

analysis and description research through focusing on the music of specific non-Western musical 

cultures” (CompMusic Project and Workshops 2012, 8). The research project is supported by the 

European Research Council and the coordinator, Xavier Serra is centred in Spain (CompMusic 

Website http://compmusic.upf.edu/ ). CompMusic has used multiple streams to finish their 

database within a few years—2011 to 2017. It seeks “to challenge the current Western centered 

information paradigms” (CompMusic). It concentrates on five traditions of world music: 

Hindustani, Carnatic, Turkish-makam, Arab-Andalusian, and Beijing Opera (CompMusic). 

Music research has traditionally focused on Western Music, so the researchers for CompMusic 

had to start from very little. Because of their short time frame, probability, statistical models, and 

machine learning were used. 

Within CompMusic, Machine Learning is used to solve specific problems that hinder the 

progress of the database, such as in the structure analysis of Beijing Opera (Yang 2016). Initially, 

resources such as probabilistic and statistical models were used to find novel ways to solve 

specific problems. For example, with Maghreb, a Moroccan type of music (which is a subset of 

http://compmusic.upf.edu/node/2
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Arab-Andalusian music), annotation was difficult, so a tool was created the fix these issues 

(Sordo et al. 2014). These methods were then adapted to be used in the database.  

 Since combining different approaches in Computer Music Analysis worked well for 

CompMusic, I can foresee that the same could work for an MIR project like SIMSSA. To me, it 

appears that researchers are not sharing their tools and procedures to an optimal degree. This is 

partially due to a geographic issue, since researcher in MIR, Optimization, and Machine 

Learning seem to be in different parts of the world. If David Temperley, Darrell Conklin, and 

members of the SIMSSA project, such as Ichiro Fujinaga and Andrew Hankinson, were to share 

their tools and approaches more closely, I believe that there could be many new creative 

problem-solving methods. One example is the previously mentioned solution to the authorship 

problem (mentioned in Further Temperley research).  

 

5.4 Five general areas for improvement in the field  

 

In writing this thesis, I have observed five general areas where improvement can be 

made. What is needed is the following: first, an institutional critical analysis of the field; 

secondly, a closer coordination between Optimization and Machine Learning; thirdly, research 

into authorship; fourthly, exploration into new areas in Machine Learning; and lastly, closer 

integration of various MIR resources in developing Optimization and Machine Learning.  

 

1. Critical analysis in Computer Music Analysis as a distinct enterprise has not been performed 

up to this point except for MIREX, Music Information Retrieval Evaluation eXchange.  
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MIREX, in brief, is a “framework for the formal evaluation of Music Information 

Retrieval (MIR) systems and algorithms” (Downie 2008, 247). The goal of MIREX is to 

investigate the specific tools and algorithms that are the building blocks of larger databases. This 

method isolates approaches that are nearing the end of their life cycle and compares the 

performance of systems with similar goals. This provides data about the accuracy and projected 

utility of algorithms to researchers who want to work within MIR. MIREX, however, only looks 

at MIR tools and concentrates heavily on methods examining audio data. It does not seem to 

consider specific issues and how they can be solved using other streams in Computer Music 

Analysis. Presumably this limitation will be overcome in the future. 

 

2. Closer coordination between Optimization and Machine Learning.  

 

Optimization and Machine Learning have different goals. Optimization, as I have defined 

it, aims to use computers to mimic a human perception in music to understand the brain. 

Machine Learning wants to create the specific tool to complete a specific task. However, the end 

products created by both streams can be used to solve specific problems and tasks in MIR as 

shown by CompMusic.  

 

3. Research into authorship. 

 

 In terms of specific items for research, the areas of authorship and what makes a piece a 

composer’s own work, has room for growth. This is important for proper identification of a 

work’s author when it is unknown. This is a common problem with ancient music. Fresh 
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research could involve the methods put forth by Monstellar and Wallace in 1963 with recent 

Cathé research on harmonic vectors and their uniqueness to the composer (Cathé 2010a), and 

Temperley’s research on information flow (Temperley 2014), Bayesian Probability (Temperley 

2007), and Syntactic Repetition (Temperley and Gildea 2015). 

 

4. New areas in Machine Learning.  

 

Machine Learning has concentrated on music generation and, by using probabilistic and 

statistical analysis, the music generation can improve by keeping high probability events. 

Machine Learning can also branch out into more analytical pursuits by mean of analytical 

algorithms used in Optimization to ‘teach’ a computer to do analysis. This could improve the 

current analysis available in Optimization and help to further mimic human perception in the 

machine.   

 

5. Closer integration of various MIR resources in developing Optimization and Machine 

Learning.  

 

I have offered specific examples of Optimization and Machine Learning aiding in the 

creation of an MIR database. However, the opposite development could occur, where MIR 

databases could be used to develop new research tools. In particular, Humdrum, an analytical 

MIR tool, has a reserve of files that can be used for both Machine Learning and Optimization. 

Similarly, various corpora of music assembled in MIR databases could be used as test sets for the 

same purpose. 
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5.5 Persaud’s Five Critical Issues with Solutions  

 

This thesis has begun the task of a critical analysis by showing different tools in  

Computer Music Analysis as a whole. The tools selected are of different ages, sizes, and have  

different researchers associated with them, but all aim to use the computer as their means to an 

end. I shall conclude the thesis by returning to a set of five particularly acute problems in the  

field, which I mentioned in my introduction 

 

1. Human error: The problem of human error can be resolved by the creation of more accurate 

algorithms—either by using harmonic vectors or one of the many Temperley models  

2. Specifying input: Improvement in specifying input are imperative to the growth of the field. 

A researcher reading articles or using pre-existing model needs to know what input should 

be used. This can be fixed by specifying the input in greater detail in articles and by creating 

genre-specific standards. 

3. Consistent evaluation principles: It is necessary to extend principles used for MIREX to 

other branches of Computer Music Analysis. Overall, more critical work needs to be done in 

Computer Music Analysis. Having principles or guidelines will assist in this venture.  

4. The interdisciplinary problem of a Lingua franca: To solve this problem Computer Music 

Analysis should create universal or at least common standards and modes of discourse for 

describing computer research in music. There are standards for MIR in terms of research 

tools, algorithms, and systems but those researchers not working in the area are not aware of 

them. And because many of the tools and procedures are borrowed from other areas of 

computer research, they are applied in different ways in specialized music research.  
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5. “What’s the Point?”-Undefined goals. The broader audience needs to understand why 

Computer Music Analysis is important. This can be overcome by looking at the broader 

scope of each branch.  

 

Figure 5 Graphic of 5 critical issues with solutions 

 

In the end, there are multiple avenues to take when it comes to solving the Critical Issues in 

Computer Music Analysis. Here, I have briefly given my own solutions to these issues and other 
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aspects and direction for further research, but I have not explained the importance of Computer 

Music Analysis. 

Computer Music Analysis is vital to analysis as a whole because it often adds a 

quantitative aspect and takes advantage of technology. By incorporating probability and 

statistics and computational algorithms, the output of the analysis can rely on a mathematical 

explanation for a qualitative phenomenon. Technology is a fast-growing field and its use in 

music analysis is inevitable. These new software and hardware move from day to day use into 

research and improve the field. However, like all changes, it has its own limitations and critical 

issues. Thesis limits and problems is what fascinates me for this thesis. My overall conclusion is 

that researchers need to take a critical stance on the discipline for it to grow quickly and 

efficiently and is a necessity to further improve music analysis.  
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