key: cord-269909-1cso5cl4 authors: Amatya, Shaili; Corr, Tammy E.; Gandhi, Chintan K.; Glass, Kristen M.; Kresch, Mitchell J.; Mujsce, Dennis J.; Oji-Mmuo, Christiana N.; Mola, Sara J.; Murray, Yuanyi L.; Palmer, Timothy W.; Singh, Meenakshi; Fricchione, Ashley; Arnold, Jill; Prentice, Danielle; Bridgeman, Colin R.; Smith, Brandon M.; Gavigan, Patrick J.; Ericson, Jessica E.; Miller, Jennifer R.; Pauli, Jaimey M.; Williams, Duane C.; McSherry, George D.; Legro, Richard S.; Iriana, Sarah M.; Kaiser, Jeffrey R. title: Management of newborns exposed to mothers with confirmed or suspected COVID-19 date: 2020-05-21 journal: J Perinatol DOI: 10.1038/s41372-020-0695-0 sha: doc_id: 269909 cord_uid: 1cso5cl4 There is limited information about newborns with confirmed or suspected COVID-19. Particularly in the hospital after delivery, clinicians have refined practices in order to prevent secondary infection. While guidance from international associations is continuously being updated, all facets of care of neonates born to women with confirmed or suspected COVID-19 are center-specific, given local customs, building infrastructure constraints, and availability of protective equipment. Based on anecdotal reports from institutions in the epicenter of the COVID-19 pandemic close to our hospital, together with our limited experience, in anticipation of increasing numbers of exposed newborns, we have developed a triage algorithm at the Penn State Hospital at Milton S. Hershey Medical Center that may be useful for other centers anticipating a similar surge. We discuss several care practices that have changed in the COVID-19 era including the use of antenatal steroids, delayed cord clamping (DCC), mother–newborn separation, and breastfeeding. Moreover, this paper provides comprehensive guidance on the most suitable respiratory support for newborns during the COVID-19 pandemic. We also present detailed recommendations about the discharge process and beyond, including providing scales and home phototherapy to families, parental teaching via telehealth and in-person education at the doors of the hospital, and telehealth newborn follow-up. Introduction SARS-CoV-2, a novel β-coronavirus, was first reported in December 2019 in Wuhan, China, as "pneumonia of unknown etiology" [1] prior to its isolation and identification by Chinese authorities in January 2020 [2, 3] . Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease of varying severity [4] , which presents more commonly as asymptomatic or mild disease in newborns when compared with adults [5] [6] [7] . SARS-CoV-2 is transmitted through respiratory droplets, infected fomites [8] [9] [10] , and from airborne transmission during aerosolization procedures [11] . The American Academy of Pediatrics (AAP) published initial guidance on the management of neonates born to mothers with COVID-19 [12] . Another group recently published a practical resource for perinatalneonatal specialists, providing the most up-to-date information about COVID-19 during pregnancy [13] . Since the epidemiological data for this pandemic are rapidly evolving, neonatologists need to continuously update management Compared with adults, children are less susceptible to SARS-CoV-2 infection and experience less severe disease with significantly lower death rates [7, [31] [32] [33] [34] . The physiological mechanisms underlying these differences are as yet unknown, but several possibilities exist that should be explored in future studies. The immature developing immune system of children may respond to SARS-CoV-2 differently than adults, possibly resulting in a less damaging cytokine reaction. SARS-CoV-2 binds to angiotensin converting enzyme-II (ACE-2) receptors on type II alveolar epithelial cells in the lower respiratory tract to gain entry into the lungs [35, 36] , and ACE-2 receptors may be functionally immature in children making them less susceptible to SARS-CoV-2 infection [37] . Although the reasons are unclear, and causation cannot be implied, about half of mothers with COVID-19 delivered preterm infants [25] . Fetal growth during the third trimester does not appear to be affected in infected mothers [15, 22, 24, 25, 38] . Perinatal complications such as fetal distress and premature rupture of the membranes and postnatally, respiratory distress, tachycardia, shock, thrombocytopenia, and even death have been reported in some neonates (SARS-CoV-2 negative) born to mothers with COVID-19 [22, 24, 39] . Two stillbirths have been reported [40, 41] , one from a pregnant woman who had acute respiratory distress syndrome and multi-organ failure leading to extracorporeal membrane oxygenation (ECMO), and another from a mother who eventually died [40, 41] . Maternal morbidity due to the disease may lead to morbidity and mortality in fetuses/newborns who test negative for SARS-CoV-2. A few newborns who tested positive soon after birth had dyspnea, fever, pneumonia, respiratory distress syndrome, and feeding intolerance, with overall mild disease and no deaths [20, 30] . A large epidemiologic study from China of 2143 children with laboratory-confirmed or suspected COVID-19 reported that 17.7% of cases were in infants < 1 year of age [31] . Another report from Wuhan Children's Hospital reported similar results [33] . A similar percentage (15.5%) of pediatric cases in the United States occurred in infants < 1 year of age [34] . In China, a larger proportion of infants < 1 year of age had severe/critical disease compared with older children (10.6% vs 4.8%) [31] . Similarly, in the United States, infants < 1 year of age had the highest rates of hospitalization among pediatric patients [34] . At Penn State, universal COVID-19 testing was implemented on April 10, 2020 for all patients admitted for delivery (Fig. 1) . The unexpectedly high asymptomatic carrier rates reported from other institutions as well as prolonged face-to-face patient care required during labor and delivery drove this decision, allowing for judicious personal protective equipment (PPE) use and decreased potential exposure for both healthcare workers and newborns. When patients refuse testing, a protocol of contact and droplet isolation for both mother and newborn is used, and during the delivery, healthcare workers wear N95 respirators. Our obstetricians have cared for term COVID-19 positive patients who delivered healthy newborns (viral testing negative), and one women who convalesced and was discharged, still pregnant, at 29 weeks' gestation. Pregnant women with confirmed or suspected COVID-19 requiring hospitalization are admitted to negative-pressure rooms, preferentially with an adjoining patient room for newborn resuscitation. Mode of delivery is based on the progression of labor and routine obstetric indications. Operative vaginal deliveries are considered for women who require a shortened second stage of labor due to maternal exhaustion or respiratory distress. At Penn State, cesarean deliveries occur in negativepressure operating rooms. The negative-pressure unit dedicated to COVID-19 positive pregnant patients is the surgical anesthesia intensive care unit (SAICU). Although in close proximity to the operating rooms, we learned during the labor of one patient that transporting patients with COVID-19 present many logistical challenges (need for multiple cleanings of patient equipment and for Security to clear hallways) that would delay an emergency cesarean delivery. Although this patient ultimately delivered vaginally, this scenario raised many questions about lowering the threshold for cesarean delivery for patients with COVID-19 in the future. Moreover, transport of the newborn, considered a person under investigation (PUI) [42] , out of the SAICU was also delayed by the institution's COVID-19 transport policy. This has since been remedied with updated policies that allow newborn PUIs to be transferred to their rooms in a transport isolette. Due to frequent exposure to aerosolizing procedures during the second stage of labor, the possible use of general endotracheal anesthesia during emergency cesarean sections, and the possible need for neonatal intubation, labor, and delivery staff are at frequent risk of exposure [43] . Delivery providers and nurses wear full PPE ("full PPE" = isolation gown, N95 respirator or powered, air purifying respirator, face shield or goggles, and gloves) [44] during the entire labor and delivery process of mothers with confirmed or suspected COVID-19, and mothers wear surgical masks. The triage begins with the laboring mother undergoing testing for SARS-CoV-2 to determine delivery location and disposition of the newborn to the appropriate location and care service. viral shedding [45, 46] . The American College of Obstetricians and Gynecologists (ACOG) recommends the continued use of antenatal corticosteroids for asymptomatic women or those with mild COVID-19 who are at risk of preterm birth within the next 7 days at <33 6/7 weeks' gestation [43] . If the mother is ill [47] , however, the risks to the mother and the potential benefits to the fetus must be weighed and discussed with the mother and family. The benefits of DCC for preterm and term neonates are well known [48] . Several reports, based on expert opinion, have recommended that DCC not be performed in neonates born to mothers with confirmed or suspected COVID-19 in order to reduce the risk of secondary transmission [15, 47, 49] . In contrast, the ACOG and the Royal College of Obstetricians and Gynecologists, based on a lack of evidence that brief exposure to the mother causes neonatal infection, still recommends performing DCC [43, 50] . Another group recommends performing DCC with the newborn held by the obstetrician [51] . At Penn State, we now perform DCC with the obstetrician holding spontaneously breathing newborns rather than placing them skin-to-skin on the mother. At Penn State, a COVID-19 resuscitation team (neonatal delivery nurse, a respiratory therapist, and a neonatologist) is available for all deliveries of mothers with confirmed or suspected COVID-19. A pediatric infectious diseases consult is obtained on all neonates born to mothers with confirmed COVID-19 (or symptomatic mothers who initially test negative) so that appropriate testing and discharge follow-up is established. For newborns not predicted to need extensive resuscitation, a neonatal delivery nurse (fully donned) enters the room immediately after delivery and evaluates gestational age, tone, color, and respiratory effort. If there is good tone with spontaneous breathing, the nurse wraps the newborn with warm blankets and places her/him into a prewarmed transport isolette. Hospital staff caring for these newborns don a gown, surgical mask, face shield, and gloves. In order to minimize PPE use and potential exposures, routine newborn tests such as screening for congenital heart disease, obtaining the newborn screen, and hearing testing are performed together. For resuscitation of premature, high-risk, and newborns with anomalies born to mothers with cinfirmed or suspected COVID-19, a fully donned neonatal resuscitation team enters the room upon delivery. The newborn is quickly assessed, and if spontaneously breathing, is placed into the transport incubator. If resuscitation is required, necessary respiratory support is provided, and the newborn is transported to the neonatal intensive care unit (NICU) and admitted into a negative-pressure room with an antechamber. Mechanical ventilation, ECMO, and surgeries can be performed in this room. Care is provided by a neonatal nurse trained in donning and doffing PPE. A second nurse monitors donning and doffing to ensure that contamination of the primary nurse or medical provider does not occur. The minimum number of persons needed to provide care to these newborns are allowed to enter the room. Healthcare workers who are pregnant or ≥60 years of age do not care for these patients [52] . At Penn State, the initial SARS-CoV-2 test is performed within 24-48 h after birth. For newborns who initially test positive and remain in the NICU for extended periods, additional testing occurs on a case-by-case basis, likely every 48 h, and based on signs and severity of COVID-19. The AAP, ACOG, and Chinese consensus experts recommend separating newborns from mothers with confirmed or suspected COVID-19 into separate isolation rooms until the mother's transmission-based precautions are discontinued [12, 15, 43, 49] . The presumed benefits of temporary separation, i.e., decreased risk of neonatal infection, should be discussed with families prior to delivery [12, 42] . The Centers for Disease Control (CDC) recently (April 4, 2020) changed their guidance regarding separating newborns from mothers with confirmed or suspected COVID-19 [42] . They now recommend that the decision to separate newborns should be made on a case-by-case basis, using shared decision-making between mothers and families and the healthcare team about the risks and benefits of cohabitating [42] . If rooming in does occur according to the families' wishes, or because of facility constraints, care should be taken to practice social distancing, hand hygiene, and infection control, and the mother should wear a facemask during contact with her newborn [42] . At Penn State, due to facility infrastructure constraints, mothers with confirmed or suspected COVID-19 and newborns are admitted to different hospital units; thus they are separated. While hospitalized, mothers with COVID-19 remain in the hospital's COVID unit. Mothers who are discharged home prior to the infant's discharge may visit their newborns after they have been afebrile for 3 days, symptoms have abated or are improving, and >7 days have passed since their symptoms first began. Alternatively, they can visit if they have two negative tests (>24 h apart), are afebrile without antipyretics, and respiratory symptoms have improved [12, 42] . Other family support persons who are PUIs may not visit the baby until their own SARS-CoV-2 molecular testing is negative and any symptoms have abated [12] . Visitors are instructed on proper techniques for donning and doffing masks, gowns, and gloves. Various technology platforms are used to video conference with families who are unable to visit. In the NICU, newborns who tests negative for SARS-CoV-2 and have no signs can be moved to a regular room [42] . Breast milk has innumerable benefits for newborns, including passive transmission of antibodies against various infections [53] . Antibodies to a similar virus, SARS-CoV, were detected in breast milk [54] . To date, SARS-CoV-2 has not been detected in the breast milk of mothers with COVID-19 [22] , and it is possible that breast milk from these mothers will provide some degree of immunity. Thus, most international associations highly recommend using breast milk from mothers with confirmed or suspected COVID-19 [42, [55] [56] [57] . Careful collection techniques should be used for pumped breast milk [42] , including providing mothers with a dedicated breast pump. Mothers should wash their hands before and after pumping, and the breast pump should be properly disinfected per the manufacturer's instructions. If possible, expressed breast milk should be fed to newborns by a healthy caregiver. If a mother with confirmed or suspected COVID-19 chooses to directly breastfeed, she should wear a surgical mask and perform hand and breast hygiene prior to feeding. When the mother is not breastfeeding, the newborn should remain >2 m (~6 ft) away, be separated by a barrier, and/or be placed in an isolette. The World Health Organization and United Nations Children's Fund recommend standard breastfeeding guidelines within an hour of birth using appropriate infection prevention precautions [55, 56] . This advice may be most pertinent to areas where limited resources make breastfeeding the only viable option. Since SARS-CoV-2 has been detected on plastic for up to 72 h [58] , staff receiving bottles of expressed milk from mothers with COVID-19 should wear gloves. After securing the cap, bottles should be wiped with viricidal wipes or diluted bleach solutions and placed on a clean surface to air dry. After drying, bottles may be placed in hospital refrigerators in individual patient bins [59] . For long-term NICU stays, donor human milk is an option if maternal breast milk is not available. Human Milk Banking Association of North America milk banks uniformly use heat treatment during Holder pasteurization [60] , which totally inactivates genetically similar viruses (SARS-CoV and MERS-CoV) [61, 62] . While there is currently no evidence regarding SARS-CoV-2, it is likely inactivated during heating. At Penn State, during hospitalization, infected mothers are encouraged to provide expressed breast milk. Unfortunately, due to being in separate units, direct breastfeeding is not currently possible. At other institutions, where there is an opportunity for cohabitation, the decision to directly breastfeed can be made using shared decision-making between mothers and healthcare teams about the risks and benefits of direct breastfeeding. Aerosolization procedures increase the risk of airborne transmission, particularly to healthcare workers, since SARS-CoV-2 can remain in the air for >3 h and travel > 2 m (~6 ft) [58, 63] . Droplet transmission occurs when larger respiratory droplets are generated by infected individuals through coughing, sneezing, and talking. These larger droplets drop quickly and only travel a short distance, usually ≤1 m (~3 ft) [63] . Fortunately, there are very few reports of respiratory support needs in neonates with confirmed or suspected COVID-19 [16, 64] . Most exposed neonates who received mechanical ventilation also had comorbidities such as prematurity, asphyxia, and non-COVID-19 sepsis [16] . Guidance of respiratory care of patients with confirmed or suspected COVID-19 remain fluid [44, 65, 66] . Since up to 29% cases in Wuhan, China, occurred in healthcare workers [67] , aerosolization properties and stability of SARS-CoV-2 in the environment cannot be overemphasized [58] . Therefore, common aerosolizing procedures in the NICU, such as intubation, extubation, open suctioning, noninvasive ventilation, and placement of naso-and oro-gastric tubes need to be conducted with a high degree of caution, using appropriate PPE in negative-pressure rooms [11, 44] . Institutional variation of what is considered an aerosol generating procedure and how that will affect professionals caring for COVID-19 patients adds another layer of complexity [68, 69] . A single center study showed that the team members who directly performed these procedures were at highest risk of becoming infected [70] . Institutions should critically assess the literature in light of their specific patient population and resources in order to determine what they consider aerosol generating procedures. Noninvasive support such as nasal intermittent positive pressure ventilation, nasal continuous positive airway pressure (CPAP), high flow nasal cannula, and nasal cannula oxygen therapy can be generated by several devices in the NICU. Since they are open systems at the patient interface, there is a large risk for droplet and airborne transmission [71] . Masks covering both the nose and mouth, as well as using the lowest possible pressure, may minimize some of the risk. Further, if noninvasive ventilation is generated by mechanical ventilators with high-efficiency particulate air (HEPA) filters, the risk of aerosolization is likely lower. Interestingly, during the SARS epidemic, nurses caring for patients receiving noninvasive ventilation did not contract more disease than those who cared for patients on ventilators [72] . Rapid sequence intubation is recommended for those in respiratory failure with COVID-19 [73] . If bag-mask ventilation is needed, providers should place a HEPA filter between the mask and the end tidal CO 2 device and oxygen source [65, 74] , and wear full PPE [44] . If PPE is likely to inhibit the ability to visualize the vocal cords, video laryngoscopy should be performed [66] . Pulmonary hygiene should be minimized [75] . Suctioning of endotracheal tubes should be performed using in-line suctioning catheters [11, 65] . If a patient needs to be disconnected from the ventilator, the endotracheal tube should be clamped and the circuit disconnected with the heat moisture exchanger still attached to the patient [11, 65] . Conventional ventilators with dual limb circuits with expiratory HEPA filters connected to cuffed endotracheal tubes [76] are nearly closed systems that significantly decrease the risk of aerosolization. The high-frequency oscillator ventilator (HFOV, Sensormedics, Yorba Linda, CA), without specialized experimental circuits, is not able to filter the exhaled air, making its use especially worrisome to healthcare workers during a viral epidemic [77] . During the SARS outbreak, however, healthcare workers caring for patients on HFOV did not become infected more than those caring for patients receiving conventional ventilation [72] . The high-frequency jet ventilator (HFJV, Bunnell, Salt Lake City, UT) has an expulsion set with a filter that prevents aerosol generation [77] . At Penn State, noninvasive ventilation (using a ventilator) for newborns with confirmed or suspected COVID-19 is the preferred mode. If mechanical ventilation is needed, conventional ventilation is failing, or high-frequency ventilation is desired, neonates are placed on the HFJV. Newborns ≥ 1500 g with confirmed or suspected COVID-19 are placed on ventilators with capabilities to do both invasive and noninvasive ventilation, Thus, respiratory care can be adjusted without contaminating multiple devices. In surge situations with inadequate number of ventilators, bubble or variable flow CPAP may be used. The diagnosis of COVID-19 in newborns includes physical examination, laboratory, and radiologic testing [4, 24, 31] . A SARS-CoV-2 RT-PCR is done for asymptomatic PUIs [15] . For symptomatic PUIs and COVID-19 infected newborns, additional tests such as CBC and CRP should be performed, as well as other tests that are clinically indicated [15] . While the diagnostic role of serologic testing is currently unclear, it may be useful for future epidemiological purposes [78] . The CDC recommends obtaining a nasopharyngeal swab (or a bronchoalveolar lavage sample if receiving invasive ventilation) for initial diagnostic testing [79] . RT-PCR is currently recommended for the qualitative detection of SARS-CoV-2 nucleic acid in respiratory tract specimens [80] . The Emergency Use Authorization FDA approved test used at Penn State is the Simplexa ® COVID-19 Direct Kit (DiaSorin Molecular, Cypress, CA). It has excellent specificity. For newborns, the AAP recommends obtaining throat and nasopharynx swabs at about 24 and 48 h after birth, although the optimal time of testing is unknown [12] . The testing regimen should also take into account the risk of infection and limitations of resources. Additional testing in symptomatic neonates should be considered because early test results may be negative due to the incubation period of the virus. A respiratory viral panel, to rule out other infections, should also be considered in symptomatic neonates [15] . Chest x-ray findings are variable and nonspecific including unilateral or bilateral ground-glass opacity, lobar or subsegmental areas of lung consolidation, pneumothorax, and are sometimes normal [15, 16, 24, [81] [82] [83] . CT scans do not appear to provide additional diagnostic information [4, 16, 23, 84] . Given the limited sensitivity, specificity, and radiation exposure, imaging should only be performed if clinically indicated. Healthy newborns ≥ 35 weeks' gestation Routine newborn criteria, including stable physical exam, ability to maintain body temperature, and feeding well with adequate hydration, are used to establish timing of discharge. All families, courtesy of the Children's Miracle Network, are given a baby scale (Baby/Toddler Electronic Scale, model #914, Salter). If serum bilirubin (which may be done concurrently with the newborn screen) is in the high intermediate or high-risk zone [85] , they are also loaned home phototherapy (Bilibed ® , model 1544976, Medela, Baar, Switzerland). Advice regarding home isolation precautions follow the AAP guidelines [12] . Neonates are ideally discharged into the care of an unaffected caregiver. COVID-19 positive family members are instructed to limit exposure to the newborn, generally maintaining a 2 m (~6 ft) distance. If the mother is breastfeeding or provides newborn care, she is instructed on hand hygiene and use of a mask until afebrile for 72 h without the use of antipyretics, and >7 days have passed since symptoms began [12] . Predischarge education is completed using video conferencing during the mother's hospital stay or at home following maternal discharge. On the day of discharge, the neonate is brought to a less trafficked entrance of the hospital by the discharging nurse (with a scale and home phototherapy, if needed) and is met by the family (likely still being quarantined) who are wearing gloves and a mask, for a complete in-person teaching session. During this interaction, parents and staff maintain 2 m (~6 ft) social distancing, and take turns moving in and out of the teaching space without exposing other staff or patients to the family and newborn. Lastly, parents are instructed on the use of the scale and phototherapy, about monitoring for signs of neonatal illness, and details about medical follow-up and additional testing. Infants are followed up 1-2 days after discharge via telehealth. An informal poll of local primary care providers indicated that only 2% had a plan in place to care for these newborns as outpatients. The focus of the video visit is to evaluate for developing signs of infection, review home isolation precautions, and discuss routine concerns such as feeding, hydration, and jaundice. Neonates are weighed on the home scale during the encounter, allowing the pediatrician to visualize the neonate's tone, color, demeanor, and respiratory status. If the pediatrician is concerned about jaundice, or if the infant was discharged with home phototherapy, arrangements are made for a laboratory technician in full PPE to obtain a serum bilirubin sample in the home. Alternatively, a Chinese group developed an online bilirubin follow-up program for parents, with video education for using an online app to check transcutaneous bilirubin levels [86] . If the pediatrician is concerned that the neonate appears ill, the family is directed to the Emergency Department. The timing of subsequent telehealth visits is determined by the initial visit and the neonate's prior history. At 14 days after birth, a repeat test for SARS-CoV-2 is performed, although this is not recommended by the AAP. This is done to identify neonates who may be at risk of infecting others. If the 14 day test result is negative, routine baby care is transitioned back to the community primary care provider. If readmission for a neonate born to a mother with confirmed or suspected COVID-19 is necessary for any reason, the neonate will undergo testing for COVID-19, regardless of the timing of previous tests, to ensure proper use of isolation rooms and PPE. This paper reports Penn State's current guidelines, based on the most up-to-date literature, about managing mothers and newborns with confirmed or suspected COVID-19. While COVID-19 generally has a mild course in newborns and children, the disease continues to evolve and has caused major morbidity and mortality worldwide. Although vertical transmission is unlikely, monitoring of neonates born to mothers with confirmed or suspected COVID-19 is imperative. While many facets of care remain the same, other practices such as antenatal corticosteroids, DCC, separation and visitation, breastfeeding, airway management and respiratory support, and neonatal follow-up have been impacted by COVID-19. While we hope our policies and procedures may be helpful to other institutions, each center must develop and revise their guidelines to provide optimal care for patients while conserving vital PPE and ventilators and protecting healthcare workers. Given the low rate of disease in newborns to date, our policies may change in the near future to allow cohabitation, direct breastfeeding, and routine newborn care for newborn PUIs without signs of disease. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China World Health Organization. Novel coronavirus-China. World Health Organization Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding A novel coronavirus from patients with pneumonia in China Novel coronavirus infection in hospitalized infants under 1 year of age in China Why is COVID-19 so mild in children? Acta Paediatr Systematic review of COVID-19 in children show milder cases and a better prognosis than adults Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia Clinical characteristics of novel coronavirus disease 2019 (COVID-19) in newborns, infants and children Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts' consensus statement Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected American Academy of Pediatrics Committee on Fetus and Newborn Section of Neonatal Perinatal Medicine and Committee on Infectious Disease. Initial guidance: management of infants born to mothers with COVID-19 Perinatal aspects on the covid-19 pandemic: a practical resource for perinatal-neonatal specialists Coronavirus disease (COVID-19) and neonate: what neonatologist need to know Chinese expert consensus on the perinatal and neonatal management for the prevention and control of the 2019 novel coronavirus infection Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr Antibodies in infants born to mothers with COVID-19 pneumonia Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn Can SARS-CoV-2 infection be acquired in utero? More definitive evidence is needed An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes Potential maternal and infant outcomes from coronavirus 2019-nCoV (SARS-CoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records Coronavirus disease 2019 (COVID-19) during pregnancy: a case series Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia Coronavirus in pregnancy and delivery: rapid review A case report of neonatal COVID-19 infection in China Perinatal transmission of COVID-19 associated SARS-CoV-2: should we worry? Clin Infect Dis SARS in newborns and children Impact of Middle East Respiratory Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome Severe COVID-19 during pregnancy and possible vertical transmission Epidemiological characteristics of 2143 pediatric patients with Clinical characteristics of coronavirus disease 2019 in China SARS-CoV-2 infection in children MMWR Morb Mortal Wkly Rep SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor A pneumonia outbreak associated with a new coronavirus of probable bat origin Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19 Clinical and CT imaging features of the COVID-19 pneumonia: focus on pregnant women and children Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy Mortality of a pregnant patient diagnosed with COVID-19: a case report with clinical, radiological, and histopathological findings Interim considerations for infection prevention and control of coronavirus disease 2019 (COVID-19) in inpatient obstetric healthcare settings. Centers for Disease Control Practice advisory: novel coronavirus 2019 Corticosteroid therapy for critically ill patients with Middle East Respiratory Syndrome Effects of early corticosteroid treatment on plasma SARS-associated coronavirus RNA concentrations in adult patients ISUOG interim guidance on 2019 novel coronavirus infection during pregnancy and puerperium: information for healthcare professionals Management of the third stage of labor: how delayed umbilical cord clamping can affect neonatal outcome Expert consensus for managing pregnant women and neonates born to mothers with suspected or confirmed novel coronavirus (COVID-19) infection Coronavirus (COVID-19) infection in pregnancy: information for healthcare professionals Neonatal resuscitation and postresuscitation care of infants born to mothers with suspected or confirmed SARS-CoV-2 infection Older clinicians and the surge in novel coronavirus disease 2019 (COVID-19) Breastfeeding provides passive and likely longlasting active immunity SARS and pregnancy: a case report Breastfeeding advice during the COVID-19 outbreak. World Health Organization COVID-19): what parents should know. UNICEF Ad interim indications of the Italian Society of Neonatology endorsed by the Union of European Neonatal & Perinatal Societies. Matern Child Nutr Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 Safe handling of containers of expressed human milk in all settings during the SARS-CoV-2 (COVID-19) pandemic Human Milk Banking Association of North America. Milk banking and COVID-19. Human Milk Banking Association of North America Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products Stability of Middle East respiratory syndrome coronavirus in milk Personal protective equipment during the COVID-19 pandemic-a narrative review Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study Consensus guidelines for managing the airway in patients with COVID-19: guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists Consensus statement: Safe Airway Society principles of airway management and tracheal intubation specific to the COVID-19 adult patient group Occupational risks for COVID-19 infection Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review A review of the risks and disease transmission associated with aerosol generating medical procedures Quantifying the risk of respiratory infection in healthcare workers performing high-risk procedures Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections Transmission of severe acute respiratory syndrome during intubation and mechanical ventilation Coronavirus disease (COVID-19): a primer for emergency physicians Just the facts: airway management during the COVID-19 pandemic Expert consensus on preventing nosocomial transmission during respiratory care for critically ill patients infected by 2019 novel coronavirus pneumonia. Zhonghua jie he he hu xi za zhi Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: from the Emergency Cardiovascular Care Committee and Get With the Guidelines(®)-Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the Noninvasive ventilation in high-risk infections and mass casualty events Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children Evaluating and testing persons for cornoavirus disease 2019 (COVID-2019). Centers for Disease Control Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: Interim guidance Clinical features of patients infected with 2019 novel coronavirus in Wuhan A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units COVID-19 in children: initial characterization of the pediatric disease A 55-day-old female infant infected with COVID 19: presenting with pneumonia, liver injury, and heart damage Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns Management strategies of neonatal jaundice during the coronavirus disease 2019 outbreak