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ABSTRACT
The most striking ideas in systems are abstractions such as
virtual memory, sockets, or packet scheduling. Algorithmics
is the servant of abstraction, allowing the performance of the
system to approach that of the underlying hardware. I survey
the trajectory of network algorithmics, starting with a focus
on speed and scale in the 1990s to measurement and security
in the 2000s, using what I call the confluence lens.

Confluence sees interdisciplinary work as a merger of two
or more disciplines made compelling by an inflection point
in the real world, while also producing genuinely transformed
ideas. I attempt to show that Network Algorithmics repre-
sented a confluence in the 1990s between computer systems,
algorithms, and networking. I suggest Confluence Diagrams
as a means to identify future interdisciplinary opportunities,
and describe the emerging field of Network Verification as a
new confluence between networking and programming lan-
guages.

1. NETWORK ALGORITHMICS
I use “algorithmics” in a slightly unnatural way to

refer to speeding up any good abstraction in computer
science that is in danger of being abandoned because of
performance. An abstraction is an idealization of real-
ity that allows the user of the abstraction to be more
productive by simplifying or idealizing the underling re-
ality.

Great abstractions make life easier for users of the
abstraction. For example, relational databases were an
advance, but it took years of effort in query planning
before relational databases became commonplace.

When I began academic life at Washington Univer-
sity, St. Louis, in the 1990s, the web was exploding.
Internet traffic was doubling each year, and so were al-
located IP addresses. The only flaw in the ointment
was that the beautiful networking abstractions, TCP
and IP, were much slower than the raw fiber, which was
already reaching 1 Gbps .

TCP, of course, provides the abstraction of two con-
nected queues: this eases the task of data transfer be-
tween applications on different machines without con-
sidering the details of the underlying network. Simi-

larly, IP offers the simple abstraction of datagram ser-
vice, sending an isolated message from a source end-
point to a destination endpoint regardless of the variety
of link technologies used.

But when the performance wars began in the 1990s
with the emergence of fiber, revolutionaries began propos-
ing transports like XTP to replace TCP, and MPLS to
replace IP in order to boost performance. This moti-
vated the birth of network algorithmics [30] as a set of
techniques to restore the speed of networking abstrac-
tions to that of fiber without compromising the elegance
and ease of use of the abstractions. The rest of this
article represents a revisionist history of network algo-
rithmics from the lens of what I call confluences, which
I now define.

2. CONFLUENCE DIAGRAMS
The dictionary meaning of a confluence is the meet-

ing place of two rivers, as in the Missouri and the Mis-
sissippi who meet near St. Louis, or the Tigris and
Euphrates who meet near the Garden of Eden. For the
purposes of this article, however, a confluence broadly
speaking is a meeting place of two streams of thought.

We can add some teeth to this definition so it does
not reduce merely to interdisciplinary motherhood and
apple pie. First, as in the Confluence Diagram shown in
Figure 1, distinguish the top stream as the main stream
of thought, and the bottom as the impacting stream.
Second, we seek three distinctives, also depicted in the
diagram.

The first requirement is an inflection point, a change
in the real world, that makes the merger of the streams
compelling. Second, the new stream should have a
different set of design constraints from its constituent
streams, what we might call a milieu change, so one
must rethink ideas in the merged stream. Thirdly, to
ensure that the new stream is a true mixing of streams,
there should be evidence of one idea that transforms
from the impacting stream to the new stream. Mere
reuse of existing ideas would be using the impacting
stream as a technology – a good thing certainly, but
not as exciting as a true confluence of ideas. To make
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Figure 1: Confluence Diagram: Inflection Point, Milieu
Change, and Transformed Ideas

these concepts concrete, consider first an example from
painting.
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Figure 2: Impressionism as a Confluence

Figure 2 depicts Impressionism as a confluence when
mainstream painting in the 1800s was impacted by the
emerging field of psychology to form new streams of
painting such as impressionism, and later expression-
ism. The inflection point was the arrival of cheap pho-
tography which made painters question the value of
merely realistic rendering.

Why not, painters such as Monet may have reasoned,
paint the subjective response to a landscape, an im-
pression, something a camera cannot do. This was a
milieu change because impressions captured as concepts
in psychology now had to be incarnated in paint. There
were also transformed ideas: thin, precise brush strokes
that delineated borders gave way to blurry thick strokes
that mix in the eye at a certain distance.

Why look at existing and new work through the lens
of confluence? I will develop this thesis in detail else-
where. For now, may I suggest that the confluence lens
allows us to separate trends from fads by looking for
the inflection point; further, the milieu change, once
identified, provides a theme for research and a spring of
specific research ideas.

The inflection point makes it more likely that the re-
sulting research will have impact, and the milieu change
allows creative freedom to rethink ideas in sometimes

beautiful ways, balancing the twin desires we have as
computer scientists for both beauty and impact. Fi-
nally, a discerned confluence can sometimes suggest a
new field in the making – a green field area, especially a
boon when the original fields (think TCP papers) have
matured

3. NETWORK ALGORITHMICS HISTORY
I would like to take a whirlwind tour of various con-

cepts that helped make the Internet fast, but looked at
retrospectively though the confluence lens.

Fast Servers: My first encounter with algorithmics
was when I joined Digital Equipment Corporation and
found a beautiful confluence between computer archi-
tecture and networking (Figure 3) that led to something
that today is called RDMA [2] but was part of the VAX-
Cluster system invented by Kronenberg, Strecker and
Levy [20]. The inflection point was the realization that
one could create cheap clusters of minicomputers; the
milieu change was going from a bus in a single computer
to many computers connected by a network.

In particular, the inventors of VAXClusters [20] rea-
soned that since Direct Memory Access was a stream-
lined way of sending large amounts of data directly from
the disk to memory without bothering the CPU, the
idea could be extended to Remote DMA from the mem-
ory of computer 1 to the memory of computer 2 without
the intervention of either CPU. Data was copied only
once over the bus, and the overhead of systems calls
and interrupts was minimal. Of course, today RDMA
is a major force in storage networks, but people forget
it was invented in 1986.

 Networking 

Architecture 

 Algorithmics 

Cheap Clusters 

Machine bus to 
Network bus 

DMA RDMA  

Figure 3: RDMA as a Confluence

Soon after VAXClusters, a new inflection point arose
as the Internet began to heat up. Servers were found to
be woefully slow because they copied data across lay-
ers of software, and because of the overhead of system
calls. While RDMA did avoid these overheads, it re-
quired protocol changes, and only worked for large data
transfers. Thus began a stream of work in SIGCOMM
influenced by the Operating System community (the
impacting stream), to match the speed gains of RDMA
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using only local Operating System changes without pro-
tocol changes, while retaining structure and protection.

I pick three representative papers. Fbufs from Dr-
uschel and Peterson [9] showed it was possible to avoid
copies by leveraging page tables. Application Device
Channels from Druschel, Peterson and Davy [10] showed
how to avoid system calls. Both ideas are alive and well
in what people call Zero Copy Interfaces [5] and Virtual
Interface Architecture [4]. Finally, Active Messages [32]
was roughly concurrent with Application Level Device
Channels, and again avoided control overhead by pass-
ing information in packets. Beyond ways to stream-
line data movement, Van Jacobson and Mike Karels
showed that TCP performance could be optimized in
the expected case using “header prediction” [3] when
segments arrive in order. No new transport protocols
were needed. The stage had been set for fast servers.

Fast Routers: The first glimmer of a real confluence
between algorithms and networks that I encountered
arrived because of a new inflection point (Figure 4)
around 1996. IPv6 was rumored to be imminent and
addresses were now W = 128 bits. Simple trie-based
schemes were linear in the number of address bits which
was too slow. Of course, theoretical computer science
had some fast prefix algorithms but they were mostly
O(logN) schemes where N is the number of prefixes,
and the milieu was different (Figure 4) because memory
accesses and not computation is the dominant metric.

While most theoretical algorithms were content with
computing a prefix lookup in milliseconds, an arriving
packet had less than a microsecond to be forwarded. It
was in puzzling over IPv6 that we discovered a prefix
lookup scheme that took O(logW ) memory accesses,
which for IP v6 was 7 memory accesses. This to me
seemed to be a transformed concept. While O(log logN)
algorithms were known for lookups [28], they were for
exact lookups and more complicated.

 Networking 
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Figure 4: Binary Search on Prefix Lengths as a Conflu-
ence.

The story of Binary Search on prefix lengths [33] is a
romantic tale of an encounter with two outsiders, and
how ideas are ”in the air” at a certain time period. I

met Jon Turner on the stairs of Bryan Hall in Washing-
ton University and he asked why one couldnt do binary
search on prefix lengths. Prefixes would first be segre-
gated by their length and then at each length a search
for a prefix required only an exact match by hashing.

The usual method starts with the longest length and
works backward. Jon, however, wanted to start with
the middle prefix length and perform binary search. I
thought about his idea for a few minutes and showed
him a simple counterexample with two prefixes, one at
length 1 and one at length 3. I asked him how one could
search in the middle length (2) hash table when there
was no prefix of length 2. Some days later, he met me
on the same stairs and told me “Easy: for every longer
length prefix, add an artificial prefix (called a marker)
at all length tables that binary search can reach”. Thus
in Figure 5, marker 10 is placed in the Length 2 hash
table.

This was wonderful as far it went, but there was a
flaw. Sometimes markers take you on a wild goose chase
to the second half. For example, in Figure 5, when
searching for the string 100, marker 10 takes search to
the second half towards the entry for 101∗ when the
answer (1∗) instead lurks in the first half. Rather than
tell Turner about the bug, I decided to fix it myself by
precomputing the best matching prefix of every marker.
For example, the best matching prefixof 10 is precom-
puted to be 1∗ . If the search process remembers the
matching prefix of the last marker encountered, this be-
comes the answer when search fails without the need for
backtracking.

1* 101* 

Length 1 Length 3 Length 2 

10 

Three ideas: 1. Start in middle,  2. Add markers  
3 . Pre-compute best matching prefix of each marker  

Figure 5: Binary Search on Prefix Lengths. The two
prefixes are 1∗ and 101∗. 10 is an artificial entry called
a marker used to guide binary search.

Amazingly, on a bus a few days later, I sat next to a
really smart Swiss student, Marcel Waldvogel, who was
visiting Washington University. He had all the same
ideas as Jon and ended with the same bug. So we began
working together. Of course, Marcel did all the work,
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and added a number of elegant ideas of his own such as
Rope Search [33].

Next, every packet arriving on an input link of a
router is subject to IP lookup to determine its output
port and then must be transferred via the guts of the
router, often called a switch. Early switches in the 90s,
such as the Catalyst 5K from Cisco designed by Tom
Edsall, used a simple bus akin to the older PCI bus in
a CPU. But as speeds went up, designers realized they
had to use a crossbar, which is a set of parallel busses.
The simplest technique to schedule a crossbar uses in-
put queuing, where packets waiting for an output are
placed in a single queue at the input link.

However, that meant that a packet on an input in-
terface destined to a red output interface could wait (at
the input) behind a packet destined to a busy blue out-
put interface, even though the red output interface was
free. This is the so-called Head-of-Line blocking prob-
lem which can reduce throughput by nearly half. This
problem resulted in researchers proposing more complex
output queuing designs. But, as far as I know, output
queuing designs never entered the mainstream router
market because of their complexity.

A breakthrough occurred, or so it seems to me, around
1992 when Tom Anderson, Chuck Thacker, and others
from DEC SRC [7] introduced two new ideas. First,
they changed the FIFO interface to one interface at
each input for each output, sometimes referred to as
VOQs (virtual output queues), as shown in Figure 6.
Then information about all non-empty VOQs is sent to
a scheduler.

Their second remarkable idea was a maximal match-
ing algorithm called PIM [7] that could be done in
hardware in around 5 iterations. One can think of
their approach as an Ethernet-like approach per out-
put port. Each output port randomly selects among all
input ports that wish to send to it; input ports rejected
because of “collisions” retry in the next iteration.

VOQs 

Maximal Match 

Figure 6: Virtual Output queues and Maximal Match-
ing eliminate Head of Line Blocking

A few years later Nick McKeown introduced iSLIP [24]
which can be roughly thought of as a token ring equiv-
alent of the Ethernet-like approach of PIM. The sched-
uler grants access to each output link based on a rotat-
ing priority that cycles through the input ports. While
iSLIP can start badly, it generally converges to very
good matches after a few iterations. iSLIP was used in
the Cisco GSR.

What is compelling here is not just the impact in
terms of switch performance but the transformed idea.
Maximum match is normally at least linear in the num-
ber of inputs in theory. PIM, and then iSLIP, intro-
duced new algorithms for maximal match that com-
puted a match in nanoseconds and worked very well
in practice.

While PIM and iSLIP work well for small switches
and unicast traffic, Jon Turner showed how to build
scalable broadcast switches [27].

Between algorithmics for fast switching, IP Lookups,
and packet scheduling, there was generally a sense by
the 2000s that people knew how to build fast routers.
There was Cisco’s Catalyst 6K (the first router with
a crossbar), Juniper’s M40 (arguably the first router to
use ASICs for forwarding), and Cisco’s GSR (one of the
first commercial routers to avoid head-of-line blocking).

Better still, the solutions scaled with link speeds. Sili-
con Valley, with a little help from academia, had figured
out routers. Was there nothing left for router algorith-
mics?

4. MEASUREMENT ALGORITHMICS
In the early 2000, a new inflection point arrived for

routers. The perils that accompany success beset the
Internet in terms of large scale attacks such as worms
and Denial-of-Service attacks. Compounding these tac-
tical issues was the strategic difficulty of finding traf-
fic estimates to provision networks. It turns out that
both detecting security attacks and finer-grain mea-
surement require detecting patterns across packets, a
milieu change from standard algorithmics that only de-
tects patterns (such as prefixes) within packets.

Naive methods require keeping massive amount of
state across packets. However, theoretical bounds show
that randomized algorithms can do much better. To il-
lustrate measurement algorithmics as a confluence (Fig-
ure 8) between randomized algorithms and algorith-
mics, consider the following algorithm called Sample-
and-Hold, which differs from standard sampling, as em-
ployed in say Cisco’s NetFlow [1].

Consider the problem of estimating the traffic sent by
the heavy ”elephant” flow such as F1 without keeping
track of potentially millions of ”mice” flows like F3.
The basic idea in Sample-and-Hold [11] is that ordinary
sampling is used to decide whether a flow like F1 is
sampled. But once F1 is sampled, it is placed in a hash
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Figure 7: Measurement Algorithmics as a Confluence

table (Flow Table) and all subsequent traffic sent by F1
is watched.

Unlike sampling, the uncertainty in the measurement
of F1 occurs only at the start and this translates into a
reduction of standard error from 1/

√
M to 1/M , where

M is the amount of memory available for the flow table.
M is typically limited, being high speed on-chip mem-
ory. Hence, a reduction of error from 1/100 to 1/10, 000
is appreciable. Of course, the real edge of Sample-and-
Hold over sampling occurs because of a milieu change:
the router gets to see every packet. By contrast, the
Gallup Poll finds it expensive to survey individuals, and
hence must resort to standard sampling.

F1 F1 F1 F1 F2 

F1 3 

F2  1 

F1 F3 

Uncertainty 
only at start  

Sampling 

Flow table 

Figure 8: Sample-and-Hold samples flows but then
keeps track of all subsequent packets for each sampled
flow

Sample-and-Hold was first described in a very nice
paper by Gibbons and Mathias on databases [14]. We [11]
did, however, add a new analysis and made other changes
to fit the networking mileu.

Measurement and security algorithmics have been well
developed by many researchers. The following is a sam-
ple of three pieces of work I like. First, Elephant traps [16]
improve sample-and-hold by periodically removing mice
flows that have drifted into the flow table by random

chance. Next, researchers have gone beyond heavy-
hitter measurements to obtain more complex estimates
including flow distributions [21] using small space.

Finally, super-spreader algorithms [31] detect more
complex security predicates in streaming fashion such
as sources that send packets to a large number of des-
tinations, sometimes indicative of an intruder trying to
break into any compromised machine. Some aspects of
these ideas are in chips and software; for example, Cisco
fabricated a chip based on automated worm detection
technology [26]. Despite this, I do not think that mea-
surement algorithmics is mainstream as yet.

5. OTHER NETWORKING CONFLUENCES
Confluences in networking are not new. Examples

of past confluences with the impacting field shown in
parentheses include queuing networks (Queuing The-
ory), Pricing the Internet (Economics), and Network
Security (Computer Security). More current conflu-
ences include Data Center Networks (High Performance
Computing) and Wireless Network Coding (Informa-
tion Theory).

One can argue that each confluence was triggered
by an inflection point such as the need to understand
packet delays in the early Internet (queuing networks),
the shift to the commercial Internet (Internet Pricing),
the advent of large scale attacks and cyber-crime (Net-
work Security), the need for large scale data centers to
support Cloud Services (Data Center Networks), and
the advent of Software Defined Radios together with the
dearth of wireless spectrum (Wireless Network Coding).

Each introduces a milieu change from their impact-
ing fields: networks of queues, the reduced importance
of marginal costs in Internet economics, the ability to
rapidly amplify a security attack, the need to scale clus-
ters to hundreds of thousands of nodes, and the possibil-
ity of embracing wireless interference instead of shun-
ning it. Each confluence has produced new ideas in-
cluding the independence assumption [19], edge pric-
ing [25], ecosystem analysis [22], data center transports
with lower latency than TCP [6], and Zig Zag coding
to recover information in the face of collisions [15].

An area that excites me personally is what several
researchers call “Network Verification”. Nick McKe-
own’s SIGCOMM Keynote two years ago, described the
opportunity in network verification by comparing it to
hardware and software verification [23]. Network ver-
ification can also be viewed as a confluence between
Programming Languages and Networking as shown in
Figure 9.

The inflection point that makes Network Verification
compelling is the emergence of cloud services. Stud-
ies [34] have shown that network failures are a signifi-
cant and debilitating source of operational expenditures
that can impact the economic viability of such services.
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Figure 9: Network Verification as a Confluence

On the other hand, the field of programming language
has produced a variety of tools from debuggers to static
checkers. Network verification seeks to find analogous
tools for networks.

The milieu changes in going from programs to net-
works. Networks can be regarded as programs that
transform packets, and such network ”programs” typi-
cally have simple control flow. However, the large pos-
sible space of packet headers complicates the task com-
pared even to large-scale software such as operating
systems. New ideas have emerged in this confluence
including new forms of compression to compactly rep-
resent the header space [18, 17], the automatic synthe-
sis of forwarding rules at routers [16], the extension of
the notion of test coverage to covering links and router
queues [34], and the use of causality in network debug-
ging [12].

I started with life in the fast lane and I ended in the
2000s with measurement algorithmics and security al-
gorithmics both of which have been well studied. Are
there any unexplored directions for network algorith-
mics? One I find promising, a confluence between net-
work algorithmics and virtualization as depicted in Fig-
ure 10, was brought to my attention by Daniel Firestone
and Ramana Kompella.

The milieu change is the placement of network func-
tions in virtual machines running on multiple cores in-
stead of on pipelined router hardware, once again caused
by the inflection point of cheap cloud services. Exam-
ples of transformed ideas in this space include rethink-
ing TCP performance in virtualized environments [13]
and the Route Bricks approach to software router de-
sign [8].

6. CONCLUSION
Network algorithmics has played out from a focus

on speed and scale in the 90s to a focus on measure-
ment and security algorithmics in the 2000s. A conflu-
ence that suggests new problems in network algorith-

Algorithmics 

Virtualization 

 
Network functions  
moved to Virtual Switch 

Improving TCP throughput affected by virtualization 

Pipelined HW to 
multicore CPUs with VMs  

Figure 10: Networking using Virtual Machines as a
Confluence

mics may arise from the inflection point caused by net-
work processing in software on virtual machines. Be-
sides current confluences in networking such as Data
Center Networking and Wireless Network Coding, Net-
work Verification is a promising new confluence.

Confluence thinking is useful because it allows a re-
searcher to discern a new direction, find a unifying theme,
and produce research that balances beauty (via trans-
formed ideas) and impact (via the inflection point). The
milieu change allows rethinking ideas in both the exist-
ing and impacting fields to produce research ideally of
interest to both communities. Of course, this begs the
question: are there more systematic techniques to use
confluence thinking in research? The slides published
online [29] have some hints such as “embrace collisions”
and ”seek coherence”.

This article began with a review of network algorith-
mics but gradually segued to a framework for thinking
about interdisciplinary research. Perhaps, the ultimate
excitement is not making things fast but the thrill of
discerning a new field with ideas to explore and impact
that potentially awaits. I hope seeking confluences will
provide readers with that same rush.
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