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A middleware-based, component-oriented software
system consists of 

• an integrating middleware layer that abstracts the
execution environment and implements services and
communication channels, and 

• a network of cooperating components that run on the
middleware services and enforce the business logic. 

This clear separation of infrastructure and applica-
tion modules, and the ability to easily compose such
modules, naturally suggests three distinct development
roles: The product-line architect sets the system archi-
tecture, selects infrastructure platforms, and organizes
the development process; the component developer
builds the business-logic modules; and the component
integrator assembles the components into systems. The
“Product-Line Development Roles” sidebar describes
these roles in more detail. 

Advances in architecture description languages and
metamodeling environments3 have enabled software
product managers to hide the complexities of lower-
level implementation details by defining structural
abstractions of components, interfaces, connectors, and
system assemblies that can be visualized and analyzed
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L arge-scale software development efforts are
increasingly based on product lines, a develop-
ment process in which developers build the soft-
ware for similar product families from reusable
infrastructure and common application compo-

nents.1 By emphasizing systematic reuse, the product-line
approach can reduce development and production time
as well as overall costs by a factor of 10 times or more.2

Using component middleware frameworks supports
the product-line approach by 

• providing well-defined interfaces that prevent client
code from becoming unnecessarily tangled with
low-level implementations; and 

• making units easier to plug and unplug, which facil-
itates reuse and system evolution. 

Product-line development based on such frameworks
has been successful in numerous application domains
ranging from large-scale distributed real-time and embed-
ded computing systems used in mission- and safety-crit-
ical domains—including commercial air traffic control,
military systems, electrical power grids, industrial process
control, and medical imaging—to user-level operating-
system and desktop-application integration.
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and that can drive automatic generation of various
forms of infrastructure code. However, these modeling
tools are often not directly targeted to product-line
development roles. 

CALM/CADENA
The Cadena development-tool platform, together with

its core modeling concept, the Cadena Architecture
Language with Metamodeling (CALM), addresses this
deficiency by providing a highly adaptive type-centric

modeling framework with robust, flexible, and exten-
sible tool support. 

CALM
CALM (www.cadena.projects.cis.ksu.edu/calm) is an

architecture description language that enables strongly
typed modeling of platforms, components on these plat-
forms, and component assemblies of concrete scenar-
ios. It also supports inheritance-based hierarchical
organization of platforms with aspect mechanisms for

Product-Line Development Roles
Product-line architects, component developers, and

component integrators each play a distinct role in middle-
ware-based, component-oriented software product-line
development.

PRODUCT-LINE ARCHITECTS
Product-line architects initially analyze commonalities

and differences among systems in the product family as
well as any inherent dependencies between their fea-
tures and capabilities. Guided by this analysis, they con-
struct a common software infrastructure, including a
component model and supporting services, that devel-
opers can reuse for all products within the family.
Product-line architects also define coding and modeling
guidelines to constrain and organize the development
process.

Developers can use numerous industry-standard compo-
nent platforms, such as the CORBA Component Model and
Enterprise JavaBeans, to support product-line development.
Most out-of-the box implementations of CCM and espe-
cially EJB also add functionality that is not part of the plat-
form specification. In addition, specialized platforms have
been developed to build specific, large-scale projects—for
example, the Boeing Bold Stroke/Prism model, which is
used for avionics-control systems, and the Gnome-Bonobo
platform, which is the basis for the Gnome desktop-man-
ager event system.

Given the number of different component models and
implementations targeted at various classes of applications
(such as embedded versus nonembedded), it is often benefi-
cial to organize the product line in a platform-independent
manner by working at a level of abstraction that avoids com-
mitting to specific underlying component models or imple-
mentations.This allows using different middleware
implementations for different products and can facilitate
migration to middleware platforms across the product 
line’s lifetime.

The product-line architect is responsible for developing
rules, guidelines, and even automated transformations for
migrating platform-independent models and artifacts to
platform-specific models and implementations. In large-

scale systems of systems, architectures may need to support
multiple component models and platforms.

COMPONENT DEVELOPERS 
Component developers fall into two broad categories.

Common component developers design components that
are intended to be reused across multiple projects, as well
as abstract versions of more special components that are
refined—for example, via inheritance—and implemented
for use in specific projects.

Project-specific component developers implement com-
ponents for particular systems and customize or refine
common components to satisfy functional requirements
for their portion of the system. Components that offer
related functionality are grouped into modules or libraries.

The component developer carefully models the event
and data interfaces provided to client components as well
as those on which the component depends as component
ports.The component integrator resolves these dependen-
cies later during system assembly and configuration.

Components can use infrastructure services such as a
persistence, time, event, or replication. Often the configura-
tion settings for such services are exposed by the compo-
nent developer in metadata associated with the component
so that the component integrator can choose a particular
setting after determining the component’s context.

COMPONENT INTEGRATORS 
Component integrators work on specific projects.They

attempt to satisfy the functional and real-time requirements
of a particular system by hooking together general-purpose
and project-specific components drawn from a component
library and by selecting distribution strategies, execution
priorities, and infrastructure-specific communication services.

This phase benefits most obviously from tool support,
such as automatic valuation of metadata or deployment
information through implemented heuristics, or more sim-
ply through graphical display and editing of assemblies.
Partial assemblies that support certain recurring functional-
ities (subassemblies) can be saved as libraries similar to
component-type libraries.



44 Computer

Product-line architects use the top style tier to define
architectures and capture middleware infrastructure
properties by specifying languages for building types of
components, interfaces, and connectors, along with
appropriate metadata schemas. Component developers
use those languages on the middle module tier to define
component and interface types within a particular archi-
tecture. System integrators use the bottom scenario tier
to allocate instances of declared component and con-
nector types, connect allocated component instances, and
configure underlying middleware, services, and network
deployments by setting model-level attribute values.

While CALM exists as a textual language, develop-
ers use specialized spreadsheet-based or graphical
input/output and editing environments to integrate it
into Cadena, making CALM/Cadena intuitively easy to
use with little training.

Cadena 
Cadena (www.cadena.projects.cis.ksu.edu) provides

a variety of forms of support for creating, editing, query-
ing, and browsing and transforming CALM models.
CALM models are connected to underlying component
middleware frameworks as well as analysis and code-
generation facilities via Cadena plug-ins. These plug-ins
effectively serve as model interpreters that realize the
semantics of CALM models. Cadena provides a spec-
trum of plug-in points, letting users add specialized func-
tionality for the component systems modeled at each
CALM stage. Each plug-in is associated with a partic-
ular CALM architecture type, and inheritance on archi-
tecture types guarantees effective plug-in reuse on
models as they are migrated to more specific platforms. 

Cadena is engineered from the ground up to serve as an
extensible tool platform rather than as a single tool. Based
on Eclipse (www.eclipse.org), IBM’s widely used open
source integrated development environment, Cadena itself
is implemented as a series of Eclipse plugs-ins. Cadena
exploits the Eclipse Modeling Framework’s autocoding
facilities so that developers can create extremely robust,
efficient tool features such as incremental type checking
and model-change propagation. Cadena plug-in points
are available to associate EMF adapter factories with
CALM styles, enabling Cadena plug-in developers to add
specialized constraint languages, constraint checkers,
involved analysis frameworks, automated design heuris-
tics, and autocoding and deployment facilities. 

MODELING IN CALM/CADENA 
The starting point of a CALM specification is the def-

inition of component, connector, and interface kinds to
describe a metamodel of a system’s architectural ele-
ments at the style tier. In accordance with type theory,4

each kind defines a language of types at the module tier,
and every software code unit, or instance, at the sce-
nario tier is derived from a type. For example, a single

incorporating specific platform attributes into general
architectural descriptions. 

The framework offers a rigorous, type-based approach
for transitioning platform-independent models to plat-
form-specific models via a series of tool-supported refine-
ment steps. These steps incrementally incorporate more
structural details regarding particular component mod-
els, underlying middleware, and product development
contexts. They also augment the models with increasingly
precise and detailed metadata, attributes, and weave-ins.

Basic modeling primitives in CALM are based on the
three fundamental types of entities that define every
component-based system and, more generally, every sys-
tem of communicating processes: 

• business-logic containers—the locations of compu-
tation (components); 

• services—the locations of communication (connec-
tors); and 

• the interaction points between components and con-
nectors that define the assumptions and guarantees
(interfaces). 

The formation and use of these entities is realized in
CALM using a tiered metamodeling approach aligned
with the three product-line development roles. A model
in a particular tier defines the language or vocabulary
of entities that can be used in constructing models in the
tier below it. 

Figure 1. Cadena style editor.The table, or spreadsheet, view
reveals basic CORBA Component Model entities in their CALM
definition.



component instance has a certain compo-
nent type, and the component type is
defined within its component kind. To spec-
ify component kinds, CALM uses the con-
cept of metakinds—toolboxes that serve as
a factory for new types of components,
interfaces, and connectors. 

The relation between instance and type
is the same as that between type and kind.
Although the concept is simple, this addi-
tional level of abstraction gives CALM/
Cadena the flexibility to provide specialized
development environments for a huge class
of platforms. 

Style tier 
Figure 1 shows the Cadena style editor

with the Common Object Request Broker
Architecture (CORBA) Component Model
specification (www.omg.org/technology/
documents/formal/components.htm). The
table, or spreadsheet, view reveals basic
CCM entities in their CALM definition,
such as the highlighted CCMComponent
with its capabilities to send and receive
events (consumes, emits, publishes) or to
provide and use data interfaces (provides,
uses). Note that the CCMComponent is derived from a
specific template, the metakind mCCMComponent.

Component kinds. These describe a platform’s soft-
ware unit primitives and possible mechanisms that these
units may use to interact with one another. The possible
interaction points, called port options in CALM, pro-
vide a means to declare explicit context dependencies—
a central theme of component-based development. The
product-line architect uses port options to specify the
kinds of interfaces a component kind can feature,
together with the necessary keywords—for example,
consumes for CCM event input ports, and publishes or
emits for CCM event output ports, as shown in Figure 1. 

Further, developers can add attributes, typed through
CALM’s own extensible type system, to the component
kind to define its ability to carry metadata. These attrib-
utes—which can be specified for the whole kind, types
therein, or concrete instances—can hold data for deploy-
ment information, initialization values, and all sorts of
functional, structural, or organizational content. 

Connector kinds. These model the services the plat-
form provides. The chosen platform can include vari-
ous middleware services supporting intercomponent
communication, distribution, persistence, and state
replication, among others. Each connector kind repre-
sents a distinct platform service or family of services.
Each connector definition may contain multiple role dec-
larations, much like port options in component kinds,
and interface-type constraints governing each role.

Single-role connectors abstract services such as time-out
generators, while multirole connectors model inter-
component communication services. 

Note that connectors are abstractions, which are not
meant as descriptions of the services’ implementations.
Rather, they describe the service’s intended usage and
thus enforce certain coding styles. 

Interface kinds. These categorize interaction points
of platform components and check component-connec-
tor compatibility. For example, the CCM component
interacts with the asynchronous connector through
event interfaces and the synchronous connector through
CCM data interfaces. Interface kinds are defined by a
set of attributes in the same manner as component kinds.
For the CALM CCM style, for example, module-tier
attributes for interface kinds describe possible method
signatures of CCM interface types. 

After an architectural style is specified within Cadena,
the tool suite does not remain static. Rather, upon alter-
ation of a style, the lower tiers adapt and offer new and
changed primitives in that style’s language. 

Module tier
Working with the kinds—that is, type languages—

defined for a particular architectural style, component
developers use the module tier to define libraries of
design-time component types that conform to that style.
Component and interface kinds from the style are avail-
able in the Cadena module editor, shown in Figure 2, to
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Figure 2. Cadena module editor. While operating under the CALM CCM style,
the editor adapts to provide customized CCM support.
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create component and interface types. The library of
design-time types in the module is then available for allo-
cating and connecting component instances at the sce-
nario tier. 

Building types at the module tier is analogous to defin-
ing component types using the CCM Interface Definition
Language in the standard CCM development process.
Module-tier component types are typically associated
with a Cadena autocoding plug-in that generates stubs,
skeletons, and other infrastructure code required for
component implementation. After applying autocoding
plug-ins to generate skeleton implementations, compo-
nent developers can use Eclipse development environ-
ments—for Java or C++, for example—to complete
component implementations by coding the business
logic associated with components. 

Scenario tier
To allocate and connect component instances at the

scenario tier, Cadena offers two standard development
environments: a tree-based editor and a graphical editor.
Figure 3 shows the graphical editor open to a CCM sys-
tem. At the top is an instance diagram representing the
Communication component shown in Figure 2. Within

the graphical editor, the user can insert new components
and configure connections through drag-and-drop
matching of the connector role and component port. 

Large system assemblies with many components can
overwhelm developers and inhibit their ability to reason
effectively about a system. To help developers build impor-
tant structural abstractions that collect multiple cooper-
ating components together in a single unit, Cadena
supports the notion of a nested assembly—essentially a
virtual component that is actually realized as a nested net-
work of connected component instances. Cadena’s graph-
ical scenario editor allows a developer to form a nested
assembly from a set of components, view this nested
assembly as one entity in the graphical scenario editor,
and expand and edit the nested assembly as needed. 

PRODUCT-LINE SUPPORT 
Product-line development includes many involved

tasks such as designing and establishing platform spec-
ifications, refining these specifications for more specific
projects, combining distinct platform specifications into
hybrid platforms, migrating components and assemblies
from one platform to the next, augmenting a platform
specification to accommodate deployment or metadata,

Figure 3. Cadena scenario editor.The user can insert new components and configure connections through drag-and-drop matching.



and integrating standard functionality into different
platforms.

Inheritance hierarchies 
To support these tasks, CALM introduces inheritance

hierarchies, an object-oriented programming concept, into
style design. For one CALM style specification to inherit
from another means that the component, connector, and
interface kinds defined in the parent style are also present
in the substyle. CALM further allows multiple inheri-
tance—that is, a style can name multiple parent styles. 

In addition to facilitating style specifications, a well-
organized hierarchy of architectural styles serves as a con-
ceptual basis for code reuse over distinct platforms by
providing a guide for type-safe migration of artifacts from
compliance with one style to compliance with another. 

As Figure 4a shows, the specialization of generic plat-
form specifications toward more individual platforms
corresponds to a parent-to-child transition, while the
abstraction from a particular platform to a more generic,
reusable form corresponds to a child-to-parent transi-
tion, as Figure 4b shows. 

In addition, the reuse of elements from one platform
on another generally corresponds to model migration,
as Figure 4c illustrates. Finally, as Figure 4d shows, one
platform inheriting from multiple platforms yields a
hybrid or combination platform. Developers also can
use this operation to establish integrative styles that mit-
igate between platforms as well as to factor in standard
definitions that are reusable over multiple, otherwise
unrelated styles. 

Attribute attachment
A second mechanism for refining architectural styles,

and models therein, is attribute attachment, shown in
Figure 4e. CALM offers an extendable value-type sys-
tem that allows the definition of new types through

names or combinations of existing types. Attributes
typed in this system can be defined directly within a style
specification or on separate attribute sheets, which can
be added at every model tier. 

Some values that attributes capture can be specific to
particular scenarios, such as deployment or location
information. Other sorts of attributes recur in a general
context, such as structures used to describe method sig-
natures in interfaces, or in specific contexts such as com-
ponent run rates in real-time systems. Developers can
use attribute sheets to factor in general data over mul-
tiple systems as well as to factor out specific data in par-
ticular systems—for example, to allow viewing a
projected system’s structural interrelations without hav-
ing to set real-time data. 

EXAMPLE PRODUCT LINE 
One of the benchmark test cases for CALM/Cadena

is Boeing’s Avionics Open Experimental Platform (OEP),
developed as part of the Defense Advanced Research
Projects Agency’s Program Composition for Embedded
Systems project and available for exchange within the
academic research community. The Avionics OEP is
inspired by Boeing’s Bold Stroke mission-control soft-
ware product-line architecture for its military avionics
platforms such as the F-18.

The OEP implements Prism, a model that consists of
three component kinds. The business component is
equivalent to the CCM component—that is, it is the
generic container for business logic. The correlator is a
specialized component that lowers network load
through asynchronous message filtering. The event-
channel component serves as the source for periodic
time-out events. The event-channel component models
an infrastructure unit that also manages threading and
buffers asynchronous communication, but these tasks
are deliberately hidden in the abstraction of the services. 
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Figure 4. CALM style hierarchies. (a) Model specialization. (b) Model abstraction. (c) Model migration. (d) Hybrid model 
construction. (e) Attribute sheet attachment.
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Figure 5 shows a table view of the Prism style in
Cadena. Prism offers two types of services: an untyped,
asynchronous, event-propagation mechanism with a sta-
tically set publish-subscribe connection scheme (event
connection) and a synchronous, typed, data transmis-
sion service (interface connection). 

Figure 6a illustrates using Cadena to model a single-
processor modal scenario from the OEP. As Figure 6b
shows, Cadena seamlessly supports the three different
kinds of Prism components, which can be assigned cus-
tom shapes, within the three CALM tiers. 

Adding to the communication infrastructure 
Like many other Prism examples, ModalSP exploits

control-push data-pull, a dual connection in which a
component supplying data first sends an asynchronous
message announcing that new data is available, then the
receiving component uses a synchronous connection to
retrieve the data. This guarantees that the synchronous
connection never blocks or waits for updates. The con-
trol-push data-pull strategy links many components by
two connectors instead of one. When developers use this

approach, tool support must be available to ensure that
both connectors’ end points match. In CALM, it is also
possible to define a dedicated connector with both syn-
chronous and asynchronous connection points that cap-
tures the control-push data-pull protocol in a single
entity.

Adding real-time metadata 
In addition to the communication network, a Prism

system configuration consists of deployment informa-
tion and metadata such as initialization values, security
levels, run rates, and location data. CALM features an
attribute-attachment system that lets users weave in
attributes orthogonal to the style hierarchy on each tier
of the development process. Cadena provides multiple
forms of support for attribute management, including
declaration and checking of domain-specific attribute
types, and plug-in facilities for processing attribute data
values. 

For example, Prism developers must assign a priority
value to each component event-handler port following a
particular set of development heuristics that involve trac-
ing data, event, and control dependencies across net-
works of components. In the Cadena Prism development
environment, a Prism plug-in automates calculation of
these priority settings by coding the previously manually
implemented heuristics, significantly reducing the time
and effort required for this particular task. 

This is an instance of a general strategy for using a
model-centric approach to minimize development effort
and increase overall confidence levels: Important system
attributes are presented at the modeling level and vari-
ous domain-specific analyses, configuration mecha-
nisms, automated developer advice, and integrity checks
are automated through plug-ins tailored to a particular
development context.

Advanced platform organization
The CALM style hierarchy is more than a mechanism

for capturing features or abstractions of existing compo-
nent platforms; it provides a structured approach for
leveraging commonalities and capturing differences
across families of closely related platforms. For example,
the Boeing Bold Stroke line entails some abstract parent
styles from which the actual Prism platform definition
inherits, as well as child styles for particular platforms
such as the F/A-18 Hornet fighter, which in turn branches
into the F/A-18E and F/A-18F Super Hornet aircraft. 

The guiding principle for style inheritance is the reuse
of infrastructure implementation as represented by
CALM kinds. Reimplementations and new additions
within the substyle, which appear in the definition of
the substyle as new kinds, integrate naturally into the
specification. 

Systems designed for distinct platforms often must
cooperate in personal computing—for example, desk-

Figure 5. Boeing Bold Stroke/Prism style in Cadena. Prism offers
an untyped, asynchronous, event-propagation mechanism
with a statically set publish-subscribe connection scheme as
well as a synchronous, typed, data transmission service.



top systems integrate CCM and Bonobo components—
and even more frequently in companywide business inte-
gration. CALM is the first conceptual framework to
accomplish straightforward type-safe merging of plat-
forms. The strategy is to create a child style that inher-
its from each style to be merged. Within the child style,
developers can easily specify necessary components or
services that act as mitigators between the parent styles. 

T he design principles underlying CALM/Cadena
have been influenced by extensive interaction with
product-line architects at Boeing Phantom Works

and Lockheed Martin. In addition, collaboration with
real-time middleware and modeling experts at Vanderbilt
University to integrate Cadena with the school’s CoSMIC
(Component Synthesis with Model-Integrated Com-
puting) CCM environment (www.dre.vanderbilt.edu/
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cosmic), Generic Modeling Environment (www.isis.van-
derbilt.edu/Projects/gme), and CIAO (Component
Integrated ACE ORB) real-time component middleware
(www.cs.wustl.edu/~schmidt/CIAO.html) have provided
significant opportunities to enhance and refine our prod-
uct-line modeling ideas.  

Compared to many existing approaches that focus on
modeling and analyzing single-system assemblies in a fixed
component model, CALM/Cadena is a rigorous type-
based framework for modeling multiple component mid-
dleware platforms, systematically organizing and tran-
sitioning between platform definitions, and creating cus-
tomized development environments that leverage domain
knowledge and automate development process steps to
enable early design decisions for entire product lines. 

The framework continues to evolve. The initial set of
features in Cadena 2.0, soon to be released, focuses on
capturing and specifying basic entities with their struc-
tural interrelations. This will enable users to establish
platform terminologies, build and assess topologies, pro-
vide basic autocoding and deployment facilities, design
attribute-seeding mechanisms, and conduct fundamen-
tal analysis such as slicing and cycle detection. Because
a main focus of Cadena is its extensibility, custom views
of component systems can also easily be added. 

As for CALM, research is under way to flexibly attach
various forms of behavioral specification. This will
enable much finer grained dependence analysis and eval-
uation of systems’ temporal behavior, both absolute tim-
ing (real-time and schedulability analysis) and relative
timing (temporal logic properties, model checking, and
safety analysis). 

More information about CALM/Cadena and other
analysis and verification tools built by the Laboratory for
Specification, Analysis, and Transformation of Software
at Kansas State University can be found at the SAnToS
Lab home page (www.cis.ksu.edu/santos). ■
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