
Web enabled expert systems using hyperlink-based inference

Wooju Kima,*, Yong U. Songb,1, June S. Hongc,2

aDepartment of Computer and Industrial Systems Engineering, Yonsei University, 134 Shinchon, Seoul 120-749, South Korea
bDepartment of Management Information Systems, Yonsei University Wonju Campus, 234 Maji, Wonju, Gangwon 220-710, South Korea

cDivision of Business Administration, Kyonggi University, San 94-6 Yiui-Dong, Paldal-Gu, Suwon, Kyonggi 442-760, South Korea

Abstract

With the proliferation of the WWW, providing more intelligent Websites has become a major concern in the e-business industry. Recently,

this trend has been even more accelerated by the success of Customer Relationship Management (CRM) in terms of product

recommendation, and self after service, etc. As a result, many e-companies are eager to embed Web-enabled, rule-based systems, i.e. that is,

expert systems, into their Websites, and several well-known commercial tools to facilitate this are already available in the market. So far,

most of those tools are based on CGI, but CGI-based systems inherently suffer from problems related to overburdening, when there are too

many service demands at the same time. To overcome the limitations of the existing CGI-based expert systems, we propose a new form of

Web-enabled expert system that uses a hyperlink-based inference mechanism. In terms of burden to the Web server, our approach has proven

to outperform the CGI-based approach theoretically as well as empirically. For practical purposes, our approach is implemented in a software

system, WeBIS, and uses a graphic rule editing methodology, Expert’s Diagram, that is incorporated into the system to facilitate rule

generation and maintenance. WeBIS is now successfully operating for financial consultation on the Website of a leading financial consulting

company in Korea.

q 2004 Published by Elsevier Ltd.

Keywords: Expert Systems; HTML; Inference; JavaScript; Rule; WWW
1. Introduction

With the advent of the customer-centric paradigm in

business strategy, e-companies go beyond merely making

the sale to acquire relative competitiveness in terms of

customer satisfaction, thereby maximizing the lifetime

value of a business relationship (McCarthy, 1999). Giving

more intelligence to e-commerce sites is popularly recog-

nized as one of the effective strategies that increase

customer satisfaction because they react intelligently and

can give a personalized response to each customer. Current

Web-enabled, rule-based system tools or expert system

tools such as Blaze Advisor (Fair Isaac Corporation) and

ILOG JRules are playing a major role in more intelligent

Websites. This Web-enabled, rule-based inference technol-

ogy is applied to various areas of application such as product
0957-4174/$ - see front matter q 2004 Published by Elsevier Ltd.

doi:10.1016/j.eswa.2004.08.011

* Corresponding author. Tel.: C82 2 2123 5716; fax: C82 2 364 7807.

E-mail address: wkim@yonsei.ac.kr (W. Kim).
1 Tel.: C82 33 760 2340; fax: C82 33 763 4324.
2 Tel.: C82 31 249 9459; fax: C82 31 249 9459.
recommendations, distance learning and training, and help

desks for technical support, etc.

Most of the Web-enabled, rule-based systems have been

developed using CGI technology, but these CGI-based

systems usually cause a relatively high burden to Web

servers in terms of both required memory and response time.

In the worst case, the system may crash causing a very

critical problem to most commercial Websites. One major

reason for such crash is that each individual request to a

CGI-based system requires higher resources than requests

for HTML documents. Therefore, if we can build a rule-

based inference system based only on HTML documents,

we can be sure that the same inference task can be

performed much more efficiently than the CGI-based

approach within a given computer resource.

If the HTML-based approach is better, the first problem

that presents itself is the building of a system that can

perform the same rule-based inference tasks using only one

set of HTML documents. Song and Lee (2000) have already

shown that a rule can be represented by a set of HTML

documents hyperlinked to each other, and the rule can be

inferred by following the hyperlinks. To solve this problem,
Expert Systems with Applications 28 (2005) 79–91
www.elsevier.com/locate/eswa

http://www.elsevier.com/locate/eswa

Table 1

Categories of Web-enabled, rule-based systems

Location of

inference

engine

Type of

inference

engine

Technical features

Server-side CGI program Uses CGI (Common Gateway Interface)

standard.

Web server invokes a CGI program

while passing required parameters

according to the CGI standard.

Server-side

script

Inference engines are developed under

environments such as JSP, ASP, and

PHP.

Transaction processing and multi-

threading functions are provided by

default.

Web server

embedded

module

Inference engines are embedded into the

Web server as a sub-module using API

such as NSAPI.

Client-side External

viewer

Is developed as an independent program.

Is invoked by the Web browser accord-

ing to predefined MIME type.

Java applet Bytecodes for inference engine is

located on the server-side but is trans-

mitted to a Web browser.

JVM on the client-side interprets the

bytecodes and executes them.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–9180
we applied a generalized transformation algorithm deriving

from a set of rules a set of hyperlinked HTML documents

equivalent to the set of rules in terms of inference.

The second potential problem arising from adopting an

HTML document-based rule inference is that the mainten-

ance of rules will be somewhat different from the CGI-based

approach. While the CGI-based approach can use a classical

rule maintenance approach applied directly to rules, our

approach might eventually need to maintain directly a set of

HTML documents in order to properly manage the rule

base. Since we provide an automatic transformation

mechanism, the FES algorithm, deriving a set of HTML

documents from the rules, the classical rule maintenance

approach can still be applied to our HTML document-based

rule inference without any additional efforts. To address this

issue, we developed a framework that can systematically

maintain a set of HTML documents. This framework adopts

a graphical rule representation mechanism, Expert’s Dia-

gram (Lee, Lee, & Choi, 1990), by which a rule base

manager, that is, a knowledge engineer, can view and edit a

set of HTML documents through an easy-to-understand and

graphical rule representation model.

Finally, we have designed and implemented our

proposed rule transformation algorithm and HTML-based

rule inference system maintenance framework as an

automated system called WeBIS. For the empirical

validation of our approach, we also present a performance

evaluation of our approach through a comparative study

with CGI-based approaches.

The remainder of the paper is organized as follows.

Section 2 presents reviews of the current rule-based

inference systems and addresses their practical limitations.

In Section 3, we first present our basic idea of using the

hyperlinked HTML document for rule inference and then

we propose the application of a generalized rule base

transformation algorithm to a set of hyperlinked HTML

documents. Section 4 presents an HTML document-based

rule inference system maintenance framework. System

architecture and implementation issues of WeBIS are also

presented. We present a performance evaluation of our

proposed inference approach in comparison with the

currently popular rule-inference approach, that is, the

CGI-based approach, in Section 5. Finally, our conclusions

are addressed in Section 6.
2. Related work

We can classify existing methodologies to build Web-

enabled, rule-based systems into five categories in accord-

ance with applied technologies. Table 1 shows those five

categories and their summarized technical features as

developed in Web-enabled, rule-based systems.

As shown in Table 1, we can first categorize existing

methodologies into two broad categories, the server-side

and the client-side depending on the location of
the inference engine of a Web-enabled, rule-based system.

The server-side category can be further divided into three

more detailed categories, the CGI program, the server-side

script, and the Web server embedded module depending on

the types of inference engine implemented. On the other

hand, the client-side category is further classified into two

sub-categories, the external viewer and the Java applet. The

technical features column of Table 1 describes the

characteristic features of each category that differentiate

them from each other.

Concerning practicality and efficiency in developing and

operating a Web-enabled, rule-based system, let us examine

the pros and cons of each category mentioned above. The

most popular approach to the Web-enabled, rule-based

system is the CGI program. Several well-known rule-based

systems such as EXSYS, Blaze Advisor, and ILOG are

based on the CGI program. One of the major reasons for

CGI’s popularity is its generally easy maintenance and its

ability to extend rule-based systems compared with the

Web-server embedded module approach or the client-side

approaches. The CGI program, however, has revealed a

serious weakness in its ability to respond to requests from

clients because the number of clients is growing faster than

most computing resources. Currently, server-side script

approaches are recognized as an alternative that can

partially complement this weakness of the CGI program

since they allow multi-threading instead of forking and

provide an automated transaction processing function to

reduce the burdens on Web servers more efficiently than the

less savy CGI program. Even though the server-side script

approach is better than the simple CGI program approach,

Fig. 1. An AND/OR graph.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–91 81
the Web server burden incurred by the server-side script

approach is still much bigger than the HTML document-

based approach, and causes a problem of overburdening

with limited computer resources.

The third method belonging to the server-side approach is

the Web server embedded module approach. In this case,

since the Web server contains a rule-based system as a sub-

module, it is easily expected that this approach will cause

more difficulties and cumbersome tasks in the maintenance

and extension of the rule-based system in comparison with the

CGI program or server-side script approaches. We speculate

that this is a major cause of the low number of commercial

Web-enabled, rule-based systems that can be developed by

using the Web server embedded module approach.

As a sub-category of the client-side approach, the

external viewer approach uses an independent rule-based

inference system which is contained in the client computer.

Therefore, the computational burden to Web server may be

reduced on some limited level, but maintenance of the

system is more difficult than the server-side approaches

since each program must be installed separately from the

Web server and this requires a reinstallation of the system

every time it is updated. These problems prevent it from

being applied to the development of a Web-enabled, rule-

based system for commercial use. Another sub-category in

the client-side approaches is Java applet, which solves the

major problems of the external viewer approach, such as

version management and consistent maintenance, with its

platform independent framework. Although ILOG and

e2gLight (eXpertise2Go) also provide this Java applet

based approach because of these advantages, it is never-

theless true that Java applet is not widely accepted yet as a

practical, commercial approach to develop the Web-

enabled, rule-based system in a real world industry. The

Java applet approach needs bytecodes, that is, executable

programs, to be downloaded only once from the Web server

to the client at the time of consultation to a rule-based

system, and does not create any further burdens to the Web

server. Instead, it creates additional data traffic such as rule-

base or parts of databases (in some cases, it may be whole

databases) between server and client. But the size of the rule

base and required parts of databases for inference are

usually much bigger than the size of inference engine in

most commercial systems; this seems to be the main reason

for the lack of popularity of the Java applet approach for

commercial purposes.

Reducing latency time is most critical to the success of a

Website (Zari, Saiedian, & Naeem, 2001), and is also

significant to Web-enabled, rule-based systems. In this

review of related approaches to Web-enabled, rule-based

systems, we have identified reducing latency time, that is,

reducing burdens caused by rule-based systems to the Web

server, as a most important, but not fully resolved, issue.

This means it is still worthwhile to keep making an effort to

improve the efficiency of Web-enabled, rule-based systems

in terms of latency time.
Based on the premise that we can make a rule-based

system only with hyperlinked HTML documents, and no

functional differences between hyperlink-based inference

system and conventional Web-enabled, rule-based systems

exist, the hyperlink-based inference system is definitely

much more efficient than the conventional methodologies

that use the CGI program or server-side scripts in terms of

latency time. If, however, we want to make use of this

advantage of the HTML-based system, we must first

establish the premise of our proposal by showing how a

rule-based system can be implemented with a set of

hyperlinked HTML documents. In addition to this, we have

to secure a general-purpose mechanism to transform a set of

rules into a set of functionally equivalent hyperlinked HTML

documents that work in real world, practical application.

If we can address both of the above prerequisites, we can

take full advantage of the hyperlink-based inference

systems in Web-enabled, rule-based inference tasks. Section

3 discusses our proposed approach to satisfy both of these

prerequisites.
3. Hyperlink-based inference systems

3.1. Hyperlink-based Inference

If we want to use a hyperlink-based inference system

instead of a conventional rule-based system, first we have to

prove the hyperlink-based inference system is functionally

equivalent to the conventional rule-based system with any

given rule base. In this paper, the definition of the rule base

that we will deal with is restricted only to the backward-

chaining style rule. That is, this set of rules is devised to

deduct one or a group of goals. Now, let us assume, we have

the following two rules to prove proposition c:
Rule #1: If a And b Then c
Rule #2: If d And e Then a

Fig. 1 depicts these two rules by using a popular graphic

rule representation scheme, AND/OR graph (Giarratano &

Riley, 1994; Nilson, 1980; Rich, 1983).

If we apply these two rules to a typical rule-based system

with the purpose of proving the proposition c, it will ask a user

Fig. 2. An example of a functionally equivalent set of hyperlinked HTML

documents.

Fig. 3. An example FES for a traffic control rule set.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–9182
about d, e, and b consecutively under the assumption that the

applied backtracking method follows the left-to-right prin-

ciple. If the results from these three questions are all true, then

c is proved to be true. Otherwise, if any one of the answers is

false, the rule-based system cannot accurately conclude

anything. Related to the two above rules, we can posit the

same series of questions and conclusions as typical rule-based

systems do, by using a set of hyperlinked HTML documents.

The set of hyperlinked HTML documents for our example is

illustrated in Fig. 2, and the readers can easily identify that

these hyperlinked HTML documents can do exactly the same

inference tasks as the rule-based systems. Let us define such a

functionally equivalent set of hyperlinked HTML documents

for a given set of rules in terms of inference as Functionally

Equivalent hyperlinked HTML document Set (FES) denoted

by FES(x) for a given set of rules x.

So far, we have only addressed the rules having

propositional symbols in their rule sentences. This type of

rule is usually called a ‘Fact Type’ rule. However, there is

another type of rule which is frequently and generally used

in rule-based systems that is different from the fact type rule

in that it utilizes variables in representing sentences. If we

introduce variables into rule representation, we have to

consider a set of available values, that is, domains of the

variables. The domain for the variable can usually be

divided into two types, the symbolic type and the numeric

type. For the cases of the symbolic type domain, the number

of available values is usually finite, and so we are supposed

to ask users to select one or several of the available values in

the domain. Let us assume, we have the following three

rules related to traffic control:
Rule #3: If the color of the traffic signalZgreen Then go
Rule #4: If the color of the traffic signalZyellow Then

slow down and prepare to stop
Rule #5: If the color of the traffic signalZred Then stop
In this case, the variable is ‘the color of the traffic signal’

and its domain is {green, yellow, red}. We can also easily

construct FES({Rule #3, Rule #4, Rule #5}) for these three

rules as depicted in Fig. 3.

In the case of the variable that has a numeric type

domain, however, the construction of a corresponding

FES() is not so simple because we must first obtain the

exact numerical value via hypertext from a user, and this is

practically impossible to obtain. Of course, in the case of

only one set of a finite number of ranges in value exclusive

to each other, we may construct FES() in a way similar to

the symbolic type domain by regarding each range as a

separate hyperlink. But, in a general sense, since we may

need to compute an expression based on the value of the

variable and to compare it with a constant or other variables,

we can say that the hyperlink on its own is not complex

enough to represent the rules containing numeric type of

variables.

One simple way to cope with this limitation of the

hyperlink is to use a client-side script language such as

JavaScript and VBScript to obtain the values of the

variables and to compute and compare them if needed.

Suppose the following two rules related to a tax

consultation:
Rule #6: If total incomeR0.2 * threshold Then Have to

pay tax.
Rule #7: If total income !0.2 * threshold Then Do not

need to pay tax.

From these two rules, we can identify two numeric

type variables of total income and threshold. We also find

that numerical computations and comparisons must be

performed for inference. Using JavaScript, we can

construct FES({Rule #6, Rule #7}) with three hyperlinked

HTML documents: one JavaScript-embedded document

for the premise part and two simple HTML documents for

the conclusions. Fig. 4 illustrates the required source of

the first JavaScript embedded document. This source is

then divided into two parts, the Form and the Script as

shown. The Form obtains the values of the numerical

variables in rules from users. The Script performs

computations and comparisons of the obtained values

Fig. 4. Source of a JavaScript embedded HTML page for numeric type

variables.

Fig. 5. Example screen shots generated

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–91 83
required in the premise of the rule and then hyperlinks to

the corresponding page for a conclusion depending on the

results from the comparisons. The Script is written in

boldface to distinguish it from the Form in Fig. 4. Fig. 5

illustrates example screen shots generated by FES({Rule

#6, Rule #7}).

Of course, which of the two screens will be activated

appears on the lower side of Fig. 5 and depends on the

computation of the user’s input performed in the upper

part of the screen. So far, we have shown with several

examples that typical but various types of rules can be

transformed into functionally equivalent hyperlinked

documents, that is, FES()s. But, as of yet in spite of

such examples, we are not sure if we can find FES()

functionally equivalent to any arbitrary set of rules. To

make sure that FES() exists for any arbitrary set of rules

and can also be found, we propose an FES generation

algorithm for an arbitrary set of rules. This algorithm is

addressed in Section 3.2.
3.2. FES generation algorithm

Basically, our FES generation algorithm takes an

arbitrary set of rules and transforms it into a functionally

equivalent set of hyperlinked documents. To achieve this,

the FES generation algorithm works in two major phases.

In the first phase, we convert each rule of an arbitrary

rule set into its corresponding canonical form. Based on
from FES ({Rule #6, Rule #7}).

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–9184
the converted rules in the canonical form, the second phase

generates, in terms of inference, a functionally equivalent

set of hyperlinked documents (FES).

In the first phase, we define the required canonical form

of rules in our context and name this required canonical

form the simplified normal form (SNF). If a rule is in SNF, it

must satisfy three conditions. First, the rule should not have

any chaining relationship with any other rules in the rule set.

In this case, the existence of a chaining relationship of a rule

to other rules implies the rule has at least one element of the

premise part which also appears in the consequent part of

the other rules and vice versa. The second condition for SNF

is that a rule can only have conjunctions in the premise part.

In the third condition, each rule can have only one

consequent proposition. To convert arbitrary rules into

SNF, we provide a simple three step converting procedure in

the figure below with some examples of each step.
3.2.1. Conversion procedure into SNF
Step (1)
 Eliminate all chaining variables by merging

related rules.

Example: {QnR0C,PoC0S}/{Po
(QnR)0S}
Step (2)
 Convert the premise part of each rule into a

disjunctive normal form by the associative law.

Example: {Po(QnR)0S}/{(PoQ)n
(PoR)0S}
Step (3)
 Eliminate disjunctions of the premise part of each

rule by splitting it into multiple rules with same

consequent.

Example: {(PoQ)n(PoR)0S}/{PoQ0
S,PoR0S}
After converting the rules into SNF, we can proceed to

the second phase where FES() will be generated based on

the rules in the SNF. For this second phase, we developed an

algorithm which transforms a set of SNF rules into FES()

and we call it FES generation algorithm. Before going into

the details of FES generation algorithm, let us look into the

required definitions and notations first. Let R be a set of rules

and r be a rule, which belongs to R. And each r has a premise

part, pr and a consequent part, cs. pr consists of a set of

atomic propositions while cs has a single consequent. p and

c denote atomic propositions contained in pr and cs,

respectively.

Related to describing hyperlinked documents formally,

let us adopt conventional notations from graph theory. T

means a tree of hyperlinked documents and consists of two

sets, V and E. V is a finite set of vertices, that is, HTML

documents in our context, and E is a set of edges between

vertices, that is, hyperlinks in our context. v and e denote,

respectively, a vertex in V and an edge in E. Especially in

our case, v corresponds to an HTML document and we can

further represent the corresponding HTML document

content of vk with content(vk). An edge e can be naturally
represented as a pair of vertices, (vk, vl) where vk and vl are

kth and lth arbitrary vertices in V, and this means that the

edge connects the two vertices. Furthermore, each edge has

a direction and the left-hand vertex in the pair is a parent

vertex, while the right-hand vertex is a child vertex because

the generated graph is a kind of tree. Therefore, in the above

case, vk is a parent and vl is a child. In terms of the edge e,

Let us denote the parent and child vertices by pv(e) and

cv(e), respectively. In addition to this, since each vertex will

eventually be matched with an atomic proposition in a rule,

each edge also represents one of the Boolean constants, a

true or false value of the corresponding atomic proposition.

The represented Boolean value of an edge e is denoted by

value(e).

Up to this point, we have addressed the notations about

rules and hyperlinked documents themselves, but more

definition is needed in order to successfully transform

rules into FES(). We formally define a term as fact when

an atomic proposition has an arbitrary Boolean value and

it is denoted by f. That is, f is represented by (p, value(p)),

which means the atomic proposition p has value(p)

regardless of whether its value is true or false. To access

p and value(p) in f, we define two functions, prop(f)

and propval(f) where they designate p and value(p),

respectively.

Let us make one more definition, preceding fact set

(PFS). PFS is defined from the point of view of the

vertex, and it designates facts accumulated along the path

from the root to a specific vertex, vk. As is commonly

understood, a path consists of a set of edges; and each

edge implies whether the related parent vertex, that is the

proposition of that vertex, is true or false. Therefore, for a

given vertex, we can have a series of related facts along

the path to that vertex. The set of those facts to a given

vertex vk is denoted by PFS(vk). To define PFS in a more

formal manner, let path(vk) be a set of vertices laid along

the path from the root to the vertex vk, {v1,vi1,vi2,.,vim,vk}.

Then,

PFS ðvkÞ Z fa set of f Z ðcontent ðvlÞ; value ðeÞÞ

s:t: vl 2path ðvkÞ; pv ðeÞ Z vl;

cv ðeÞ2path ðvkÞ; and lskg:

Based on the concepts and definitions addressed so far,

we will now develop the second phase algorithm mentioned

earlier in this subsection. The algorithm ‘FES generation

algorithm’ consists of four routines (functions) including the

main routine. Fig. 6 shows the main routine, CONVERTRU-

LEBASEINTOFES and the remaining three subroutines,

CONVERTRULEINTOTREE, MATCH, and EXIST, which are

described in Figs. 7–9, respectively. It is easy to understand

this FES generation algorithm with an example which

shows how the algorithm proceeds. Let the following two

rules in SNF be a rule set needed to be transformed

into FES.

Fig. 6. CONVERTRULEBASEINTOFES algorithm.

Fig. 7. CONVERTRULEINT

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–91 85
R1 : AoBoC0X

R2 : BoD0Y

Fig. 10 illustrates how FES generation proceeds to

generate hyperlinked HTML documents for the example

rules at a step by step level. The following seven steps

describe each step shown in Fig. 10.
(1)
OTRE
In the first step, the main routine CONVERTRULEBASEIN-

TOFES is invoked with a parameter RZ{R1, R2}. Then

the main routine invokes the subroutine CONVERTRU-

LEINTOTREE for each rule in R (ZR1 and R2) while

passing the IncompleteVertice, a rule r, and a tree T.
E algorithm.

Fig. 8. MATCH algorithm.

Fig. 10. Progress of FES generation algorithm with the example rules.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–9186
At this moment, IncompleteVertice and T are empty and

r is R1 in our example. Then the subroutine CONVER-

TRULEINTOTREE transforms a given rule into a tree of

HTML documents by creating and appending vertices

and edges. This subroutine can be divided into two

parts, the initialization part and the tree growing part. In

the case of R1, it performs the initialization part which

will process every atomic proposition in the premise

part, and then it finishes by updating the content of the

leaf node with a consequent proposition. During

processing each proposition of the premise part, the

tree, T will grow. As a result of the first iteration of this

processing, Step 1 in Fig. 10 shows the generated tree

based on the first proposition, A of R1 in our example.
(2)
 By processing the second proposition, B of R1, we have

the tree as depicted in Step 2 in Fig. 10. The white box

node means it is expected to become a member of the

IncompleteVertice in the next stage in order to process

the remaining rules.
(3)
 In the third step of Fig. 10, the algorithm processes the

final proposition, C of R1 and updates the true side node

with the consequent of the rule, X. The conclusion

nodes are denoted by circle nodes here. t and f attached

on the arcs means that the proposition of the parent node

of that arc is either true or false. In this step, the

transformation of rule R1 into the tree is finished and so,

the execution of the subroutine Convertruleintotree for

the rule R1 is also ended by returning to the main

routine.
(4)
 In the fourth step, the algorithm invokes the subroutine

CONVERTRULEINTOTREE again for the rule, R2 together

with the IncompleteVertice, which consists of the
Fig. 9. EXIST algorithm.
vertices marked with a white box and the generated tree,

T that was the result in (3). In this case, CONVERTRU-

LEINTOTREE applies the tree growing part procedure

which is located at the outermost else part to the rule R2.

The first vertex of the IncompleteVertice is the false

side child node of A and the algorithm first applies

MATCH with {B, D} as pr to this vertex. Since there is no

evidence that B or D is false along the path, MATCH is

evaluated as true and this leads to the else part where the

tree is growing while considering the existence of

propositions in the path. In our example, B is first

considered and is appended to the tree and its result is

shown in Step 4 of Fig. 10.
(5)
 Proposition D of rule R2 is checked against MATCH and

EXIST and then is added into the tree as shown in Step 5

of Fig. 10. At the same time, since all propositions in the

premise part of R2 are processed, the consequent Y is

updated on the true side leaf node.
(6)
 In the sixth step, the false side vertex of B in the upper

side of the tree is examined, but it does not pass the

MATCH test, so the vertex still remains as the

IncompleteVertice. Now, the false side vertex of C in

Step 3 is examined and the rule satisfies the MATCH

condition. Therefore, B and D are examined against

EXIST and only D satisfies the false condition. As a

result, D is added to the tree and finally, its consequent

part Y is also updated on the true side of D.
(7)
 In the final step, the algorithm updates all remaining

vertices in the IncompleteVertice by ‘No Conclusion’

which is denoted by a question mark, ‘?’, because all the

rules were processed in R. The completed result of the

hyperlinked HTML documents, that is, the FES

correspondence to the example rule set is depicted in

Step 7 of Fig. 10.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–91 87
So far, we have discussed our proposed FES generation

algorithm. In Section 3.3, we will address the minor

extension of the algorithm and show a brief real world

example based on a bank loan approval.
3.3. Algorithm extension and its real word example

The algorithm proposed in Section 3.2 can only cover the

so called ‘Fact Type’ rule mentioned earlier. We already

explained that there are two additional popular rule types,

rules with symbolic variables and numerical variables. But

with minor revision on the FES generation algorithm, we

can easily take into account those types of rules. We are not

going into the details of revision here since they are so

trivial. Fig. 11 shows a part of the real world example rules

for a bank loan approval process. These example rules

include all three types of rules, so this real world example

will show how the example rules are transformed into a set

of hyperlinked HTML documents by using our extended

algorithm.

We applied the extended FES generation algorithm to the

example rules in Fig. 11 that creates a set of hyperlinked

HTML documents in Fig. 12. As you can see in this figure,

the condition which has a symbolic variable is reflected in

the root HTML document and the condition having a

numerical variable is reflected in the HTML document
Fig. 11. Example rules for a
titled, “Current Amount of Monthly Debt”. Especially in the

latter document, users are required to enter the exact

value of their current amount of monthly debt and the

corresponding JavaScript code will decide which condition

is satisfied by the user’s input and then lead to the

corresponding HTML document.
4. WeBIS approach

4.1. Architecture of WeBIS

So far, we have proposed the idea that the hyperlinked

HTML document can perform inference tasks, and we

have shown how a rule base can be automatically

converted into a FES. To facilitate our approach, we

provide a system architecture, Web Based Inference

System (WeBIS), which can support users to develop a

set of hyperlinked HTML documents to perform an

inference task systematically. Fig. 13 shows the overall

architecture of WeBIS and its three major components.

Major information flows are also depicted. As shown in

Fig. 13, the knowledge engineer can input rules to the

system via both the general text editor and the graphical

rule editor provided by WeBIS. Then, WeBIS transforms

rules into functionally equivalent set of hyperlinked
bank loan approval.

Fig. 12. Generated hyperlinked HTML documents for bank loan example rules.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–9188
HTML documents. Those documents are registered to

Web servers and finally users can access them and get

inference services via the Internet.

Now Let us briefly introduce each of the components,

their roles, and related architectural issues.
Fig. 13. Architectur
(1)
e of
Graphical Rule Editor (Expert’s Diagram Approach).

The graphical rule editor supports complete rule editing

process by specifying Expert’s Diagram in a GUI

environment. Lee et al. (1990) claimed that expressing

rules in a graphical manner is more efficient in most cases
WeBIS.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–91 89
especially when a knowledge engineer is not skilled in

knowledge engineering, and they proposed a graphical

rule representation scheme, Expert’s Diagram. We adopt

this rule representation scheme as default in our system

and develop a rule editor which supports user to express

rules in Expert’s Diagram format. But skilled knowledge

engineer can still input rules directly by using any

general text editors. Fig. 13 also depicts such direct rule

input process. Whether the rules are edited by a graphical

rule editor or general text editor, they are fed into an

extended FES generation module.
(2)
 Extended FES Generation Module. The extended FES

generation module implements the algorithm addressed

in Section 3. It is responsible for transforming rules into

a functionally equivalent set of hyperlinked HTML

documents. After finishing the transformation, it

invokes the page manager by passing the generated

HTML document set.
(3)
 Page Manager. The page manager has two major roles:

(1) to finalize completion of each generated HTML

document by applying a corresponding template to it,

and (2) to manage consistency between Expert’s

Diagram generated by a graphical rule editor and a

generated set of hyperlinked HTML documents. The

additional benefit of using Expert’s Diagram is that the

user can easily manage consistency by cooperation

between the page manager and the graphical rule editor

when there are minor changes in rule content.
4.2. Implementation

We have incorporated the framework of our Web-based

inference approach into a working prototype written in
Fig. 14. An illustrative scr
Visual CCC on the Windows environment. Fig. 14 shows

an illustrative screen where the user creates a rule base and

hyperlinked HTML documents, transforms the rule base

into equivalent hyperlinked HTML documents, FES back

and forth, edits FES using a graphical interface, and

generates styled HTML documents using templates. As

shown in Fig. 14, the user can choose a rule base file on

the left frame and then convert it into FES as displayed

graphically on the right upper frame. The user can also

create directly hyperlinked HTML documents based on

Expert’s Diagram technology. Finally the user can create

the templates to be applied to the HTML documents, then

the system automatically generates and displays completed

HTML documents after applying the templates. The right

lower frame in Fig. 14 shows a template-applied HTML

document for the selected node (marked with a red border)

on the right upper frame. At the time of finishing all these

jobs, you can publish the HTML documents to the Web

server as a hyperlink-based inference service.
5. Performance evaluation

To prove the efficiency of our approach, we compare the

throughput of a hyperlink-based inference system with that

of inference systems which were developed by using

conventional commercial rule-based systems. To evaluate

the throughput of each system, we count the number of

HTTP (Fielding et al., 1999) responses per 3 min from

the Web server when 10 client computers send HTTP

requests simultaneously via the Web. The hardware

specification of the server computer is Pentium 4 CPU

of 1.5 GHz with 256 MB of main memory. The OS of

the server is the Microsoft Windows 2000 Server.
een shot of WeBIS.

Table 4

Performance evaluation results (10 clients)

Client Hyper-

link

Aa Ratiob Ba Ratioc

PC1 7471 34 219.74 932 8.02

PC2 7568 34 222.59 931 8.13

PC3 7496 33 227.15 900 8.33

PC4 7563 33 229.17 921 8.21

PC5 7534 32 235.44 895 8.42

PC6 7435 35 212.43 893 8.33

PC7 7486 34 220.16 913 8.20

PC8 7189 33 217.83 930 7.73

PC9 7681 34 225.90 947 8.11

PC10 7755 33 235.00 919 8.44

Sum 75,176 335 224.41 9181 8.19

Average 7518 34 918

Unit: #responses per 3 min.
a Conventional rule-based systems A and B.
b Ratio between Hyperlink and A.
c Ratio between Hyperlink and B.

Table 2

Performance evaluation results (one client)

Client Hyper-

link

Aa Ratiob Ba Ratioc

PC1 30,411 307 99.06 5832 5.21

Sum 30,411 307 99.06 5832 5.21

Average 30,411 307 5832

Unit: #responses per 3 min.
a Conventional rule-based systems A and B.
b Ratio between Hyperlink and A.
c Ratio between Hyperlink and B.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–9190
The hardware specification of all of the client computers

is Celeron CPU of 633 MHz with 128 MB of main

memory. The OS of the client is Microsoft Windows 98.

Because the commercial rule-based systems deploy their

application systems using Java Server Pages (JSP), we

use Tomcat as the Web server. The results appear in

Tables 2–4, and Fig. 15.

Table 2 shows the results of performance evaluation

when a single PC is used as the client. The second column

denoted as Hyperlink shows the throughput of our

hyperlink-based inference approach. The third column

denoted as A shows the throughput of a commercial rule-

based system, and the fourth column shows the ratio

between the throughput of our approach (Hyperlink) and

the throughput of the rule-based system A. The fifth

column denoted as B shows the throughput of another

commercial rule-based system, and the sixth column

shows the ratio between the throughput of Hyperlink

and the throughput of the rule-based system B. When

the number of clients is one, the total numbers of HTTP

responses per 3 min for Hyperlink, A, and B are 30,411,

307, and 5832, respectively. The ratio between Hyperlink

and A is 99.06 and the ratio between Hyperlink and B is

5.21. The result means that even in the case of serving a

single client our approach is much faster than the two

competitive commercial tools.

Table 3 shows the results produced when five PCs are

used as the clients. In this case, the total numbers of HTTP
Table 3

Performance evaluation results (five clients)

Client Hyper-

link

Aa Ratiob Ba Ratioc

PC1 14,829 69 214.91 1997 7.43

PC2 15,092 70 215.59 1995 7.56

PC3 14,886 70 212.65 1845 8.07

PC4 14,950 72 207.64 1897 7.88

PC5 15,030 71 211.68 1849 8.13

Sum 74,785 352 212.46 9583 7.80

Average 14,957 70 1917

Unit: #responses per 3 min.
a Conventional rule-based systems A and B.
b Ratio between Hyperlink and A.
c Ratio between Hyperlink and B.
responses are 74,785, 352, and 9583, respectively, and the

average numbers of HTTP responses are 14,957, 70, and

1917, respectively. The average performance ratios of

Hyperlink to A and B are 212.46 and 7.80, respectively. In

terms of ratio, the readers can easily see that the out-

performing level is higher than in the case of serving a

single client only.

The results produced when there are ten PC clients are

shown in Table 4. In this case, the total numbers of HTTP

responses are 75,176, 335, and 9181, respectively, and the

average numbers of HTTP responses are 7,518, 34, and 918,

respectively. The average ratios are 224.41 and 8.19,

respectively, and the performance gaps between our

approach and commercial systems keep growing.

Fig. 15 summarizes the transition of the total numbers

of HTTP responses per 3 min for 1-client, 5-client, and

10-client cases. We can expect here that the total number

of HTTP responses will be stabilized as the number of

clients is increased, and at the same time, the high

performance of our approach over two competitive

commercial rule-based systems will persist as well. In

summary, we can conclude that there are some fixed
Fig. 15. Performance evaluation results.

W. Kim et al. / Expert Systems with Applications 28 (2005) 79–91 91
and significant gaps between the performance of Hyper-

link and those of A and B, and the results of our

performance evaluation predicts that the ratio will be

approximately 224.41 and 8.19.
6. Conclusions

We have proposed a hyperlink-based inference approach

to alleviate the over-burdening problem that troubles most

of the conventional Web-enabled, rule-based systems

including commercial tools. Since this problem is nearly

caused by the CGI-based approach, we have found a way to

perform equivalent inference tasks based on hyperlinks

between HTML documents as an alternative to the CGI-

based approach.

To demonstrate our idea, we first show that a hyperlink-

based inference can perform an equivalent inference task to

conventional Web-enabled, rule-based systems. Secondly,

to facilitate our approach, we proposed an FES generation

algorithm which automatically transforms the rule base in

the conventional text format into the hyperlinked HTML

documents, FES, and proved its completeness. Furthermore,

to support the user to create directly hyperlinked HTML

documents for inference, we also develop an ease-to-use

graphical knowledge acquisition function to build hyper-

linked HTML documents systematically based on the

Expert’s Diagram. Finally, we design and implement a

WeBIS which incorporates all of the functions and

mechanisms mentioned above.

Using this WeBIS, we have performed an empirical

experiment and performance comparison between our
approach and two major commercial Web-enabled, rule-

based systems. Through this experiment, our approach has

proven to outperform both of the commercial rule-based

systems in terms of throughput. In addition to this, WeBIS

was successfully applied to a real world example, the

financial consultation done via the Website of a leading

financial consulting company in Korea and it is still running

at a very satisfactory level. We expect the best performance

of our approach when the number of service requests for

rule inference is very large.
References

eXpertise2Go.com, [Online]. Available: http://www.expertise2go.com/

EXSYS Inc., [Online]. Available: http://www.exsys.com/

Fair Isaac Corporation, [Online]. Available: http://www.blazesoft.com/

Fielding, R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P.,

Berners-Lee T. Hypertext Transfer Protocol—HTTP/1.1, RFC2616,

IETF, 1999. [Online]. Available: ftp://ftp.isi.edu/in-notes/rfc2616.txt.

Giarratano, J., & Riley, G. (1994). Expert systems: principles and

programming (2nd ed.). PWS Publishing Company.

ILOG Inc., [Online]. Available: http://www.ilog.com/

Lee, J. K., Lee, I. K., & Choi, H. R. (1990). Automatic rule generation by

the transformation of Expert’s Diagram: LIFT. International Journal of

Man–Machine Studies, 32, 275–292.

McCarthy, J. C. (1999). The social impact of electronic commerce. IEEE

Communications Magazine, 37(9), 53–57.

Nilson, N. J. (1980). Principles of artificial intelligence. Berlin: Springer.

Rich, E. (1983). Artificial intelligence. New York: McGraw-Hill.

Song, Y. U., & Lee, J. K. (2000). Automatic generation of web-based expert

systems. Journal of Intelligent Information Systems, 6(1), 1–16 [in

Korean].

Zari, M., Saiedian, H., & Naeem, M. (2001). Understanding and reducing

web delay. Computer, 34(12), 30–37.

http://www.expertise2go.com/
http://www.exsys.com/
http://www.blazesoft.com/
http://ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.ilog.com/

	Web enabled expert systems using hyperlink-based inference
	Introduction
	Related work
	Hyperlink-based inference systems
	Hyperlink-based Inference
	FES generation algorithm
	Algorithm extension and its real word example

	WeBIS approach
	Architecture of WeBIS
	Implementation

	Performance evaluation
	Conclusions
	References

