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Abstract

We present methods of extractive query-oriented single-document summarization using a deep auto-encoder (AE) to
compute a feature space from the term-frequency (tf ) input. Our experiments explore both local and global vocabularies. We
investigate the effect of adding small random noise to local tf as the input representation of AE, and propose an ensemble of
such noisy AEs which we call the Ensemble Noisy Auto-Encoder (ENAE). ENAE is a stochastic version of an AE that adds
noise to the input text and selects the top sentences from an ensemble of noisy runs. In each individual experiment of the
ensemble, a different randomly generated noise is added to the input representation. This architecture changes the application
of the AE from a deterministic feed-forward network to a stochastic runtime model. Experiments show that the AE using local
vocabularies clearly provide a more discriminative feature space and improves the recall on average 11.2%. The ENAE can
make further improvements, particularly in selecting informative sentences. To cover a wide range of topics and structures, we
perform experiments on two different publicly available email corpora that are specifically designed for text summarization.
We used ROUGE as a fully automatic metric in text summarization and we presented the average ROUGE-2 recall for all
experiments.

I. INTRODUCTION

Text summarization is an automatic technique to generate a condensed version of the original documents. Manual summa-
rization requires a considerable number of qualified unbiased experts, considerable time and budget and the application of the
automatic techniques is inevitable with the increase of digital data available world-wide. The early technique to address with
manual text summarization dates back as early as 1958 (Luhn, 1958) and the proposed techniques were reviewed extensively
(Lloret and Palomar, 2012; Nenkova and McKeown, 2012).

Text summarization can be categorized into two distinct classes: abstractive and extractive. In the abstractive summariza-
tion, the summarizer has to re-generate either the extracted content or the text; however, in extractive category, the sentences
have to be ranked based on the most salient information. In many research studies extractive summarization is equally known
as sentence ranking (Edmundson, 1969; Mani and Maybury, 1999). In practice, specific text summarization algorithm is
needed for different tasks. In particular, a summarization technique can be designed to work on a single document, or on
a multi-document. Similarly, the purpose of summarization can be to produce a generic summary of the document, or to
summarize the content that is most relevant to a user query. The focus of this paper is to propose an extractive query-oriented
single-document summarization technique.

Deep learning showed strong promise in various areas, specifically in natural language processing (NLP) tasks (Collobert
et al., 2011; Srivastava and Salakhutdinov, 2012). The pivot of our model is a deep auto-encoder (AE) (Hinton and Salakhut-
dinov, 2006a) as an unsupervised model. The AE learns the latent representations for both the query and the sentences in the
document.

In this paper, the word ”automatic” implies the feature learning process, that is, completely independent from human-
crafted features. More clearly, the concept of deep learning (i.e. neural networks with more than one hidden layer) can be
considered as a wide class of machine learning approaches and architectures in which the main characteristic is hierarchically
using many layers of nonlinear information processing. The aim of the techniques is learning feature hierarchies with higher
level features of the hierarchy extracted from lower level features (Bengio, 2009). In fact, with automatically learned features
at multiple levels of abstraction a system may execute complex functions to directly transfer the input to the output.

The key factor of our model is the word representation. Typically, automatic text summarization systems use sparse input
representations. Sparse representations can cause two problems for the model. First, not observing (enough) data in training
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process. This problem is intensified when the selected vocabulary consists of only a subpart of the total presented words in
the training data. Second, too much zero in the input and output of AE.

To address these problems, we propose two techniques to reduce sparsity. First, we develop a local word representation
in which each vocabulary is designed to construct the input representations of sentences in that document. Second, we add
random noise to word representation vector, affecting both the inputs and outputs of the AE.

In our case, after ranking the sentences of a document based on the cosine similarity, they must be selected to generate
the summary. Picking the top ranked sentences up is a straightforward selection strategy that is used for AE networks trained
without added noise. However, we propose to use an ensemble approach that aggregates the rankings of different experiments,
each the result of adding randomly generated noise. Each application uses different random noise added to the input word
representation, producing a possibly different extractive summary. The final summary is obtained by selecting the sentences
that occur most frequently in the individual summaries. This ensemble approach can make the summarization process robust
against small differences between training methods and analogous with manual summarization where annotator(s) would
produce different summaries for a document in each review of the document.

The specific contributions of the paper are as follow: We introduce an unsupervised approach for extractive summarization
using AEs. Although AEs have previously applied for summarization as a word filter (Zhong et al., 2015), to the best of our
knowledge we are the first to use the AE for summarization by sentence ranking. We will evaluate how AEs handle a sparse
word representation such as tf-idf and a less sparse word representation based on a document-specific vocabulary, and also
the impact of adding random noise to the local word representation vector. The addition of noise changes the AE from
a deterministic feed-forward network to a stochastic model. To our best knowledge, this representation technique is not
previously explored in the application of auto-encoders. We introduce the Ensemble Noisy Auto-encoder (ENAE) in which
the model is trained once and used multiple times on the same input, each time with different added noise. We show adding
stochastic noise to the input and running an ensemble on the same input can make improvements. We expand the email
summarization features beyond a set of features and develop to automatically extracted features of emails.

The next section describes recent related work. Section three is dedicated to our model in terms of topology and training
algorithms, in particular, Restricted Boltzmann Machine (RBM) and AEs. The word representation is presented in section
four. Section five presents sentence ranking measurement detail. The ENAE scheme is described in the six section. After
providing experimental setup in the section seven, the results and discussion on the two different email datasets is presented in
the section eight. The conclusion and future work is explained in the section nine. Bibliography is placed at the last section.

II. RELATED WORK

Machine learning techniques have widely used for text summarization (Li et al., 2009; Ouyang et al., 2011; Conroy and
O’leary, 2001). They are trainable systems in which models learns how to generalize its parameters to extract salient points.
Most of machine learning approaches in text summarization are inspired from information retrieval and adapted into the task
such as Bayesian models, Hidden Markov Models (HMM), Support Vector Machines (SVM) and Support Vector Regression
(SVR). In general, many supervised and unsupervised approaches have been proposed and they can be categorized into the
following groups: Latent topic models as unsupervised techniques, classification and regression as the supervised techniques.

Kaikhah (2004) successfully introduced a shallow neural network for automatic text summarization. Also, Svore et al.
(2007) proposed a neural network-based system, called NetSum. This technique was inspired from (Burges et al., 2005).
Shardan and Kulkarni (2010) proposed a combination of the multilayer perceptron (MLP) with fuzzy logic and they reported
that this combination improves the result. In addition to feed-forward neural networks, recurrent neural networks (RNNs)
have been applied for text summarization (Prasad et al., 2009). In spite of different topology, the approach was generally
inspired from (Kaikhah, 2004).

Zhong et al. (2015) used a deep architecture that is similar to an AE. They used the learned representations for filtering
out not important words of a document in the early layer and discovering key words in later layer. The concept space is to
extract the candidate sentences for the summary. However, in our model both the term and concept space are developed based
on a sentence of a document. We use the learned representations directly to represent the semantic similar of sentences and
in the ranking function. In supervised models, Denil et al. (2014) proposed a model based on a convolutional neural network
(CNN) to extract candidate sentences to be included into the summary. A key contribution of the paper is that CNN is trained
to classify sentiment labels that are either positive or negative (i.e. a binary label) and sentence extraction can affect the results
of predicted a sentiment. Cao et al. (2015) used a recursive neural network for text summarization using hand-crafted word
features as inputs. With the capability of dealing with a variable-length input in a RNN, the proposed system formulates the
sentence ranking task in a hierarchical regression fashion. Not using any hand-crafted word representations and labeling data
are significant in our proposed model.

The proposed method of this paper in adding noise to the input can be analogous with the denoising auto-encoders (Vincent
et al., 2008). To stop overfitting, denoising auto-encoders use noise in the input of AE. In a denoising AE, in order to prevent
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Figure 1: Our AE topology for dimensionality reduction. The weights of decoder are obtained from unrolled weights of encoder. x and x̂
denote the input and reconstructed inputs respectively. hi are the hidden layers and wi are the weights. Concept space in which
features/codes are extracted C(x) are in this scheme the output of the hidden layer h4.

learning identity function, thereby capturing important information about the input in hidden layers, the input is corrupted
and the network tries to undo the effect of this corruption. The intuition is that this rectification can occurs if the network
can capture the dependences between the inputs. However, first, in most denoising AEs the input is corrupted using a random
zero mask while in our model a small noise is added to the input. Second, in our model, the training algorithm adds very
small noise to the input but the output is still the same as input. Third, the denoising AE adds noise to the inputs only during
training, while we also add noise to input during test time.

III. THE METHOD DESCRIPTION

An AE (Figure 1) is a feed-forward network with the function of learning to reconstruct the input x (Hinton and Zemel, 1997).
The AE is indeed trained to encode the input x using a set of recognition weights into a concept space C(x). Then, the
features (a.k.a latent representations, codes) from concept space C(x) are converted into an approximate reconstruction of x̂
using a set of generative weights. In our model, the generative weights are obtained firstly from unrolled weights of encoder
and then from fine-tune phase. Through the encoding process, (i.e. mapping to a hidden representation) the dimensionality
of x is reduced to the give number of codes. The codes are then mapped to x̂ through the decoder. Both non-linear mappings
are deterministic. A deep AE transforms the original input to a more discriminative representation in coding layer (a.k.a
discriminative layer or bottleneck) over a hierarchical feature detection in which each level corresponds a different level of
abstraction.

Our model has two training stages: pre-training and fine-tune. Pre-training provides an appropriate starting point for
the fine-tune phase. That is, obtained weights in pre-training phase will be the initial weights of the fine-tune phase. This
initialization could significantly improve the performance of an AE in a wide variety of applications compared with random
initialization (Hinton and Salakhutdinov, 2006a; Hinton et al., 2006b). AEs with pre-training have been successfully applied
primarily to documents retrieval (Salakhutdinov and Hinton, 2009; Genest et al., 2011). We apply this technique to shorter
texts.

I. Pre-training Stage

Assuming observations are produced from a stochastic generative model in which parameters control the model’s behavior
(Hinton and Zemel, 1997; Hinton, 2010), Restricted Boltzmann Machine (RBM) as a generative model can be an appropriate
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Figure 2: The schematic representation of the restricted Boltzmann machine (RBM) as a generative model.

prototype to discover the parameters. The RBM (Figure 2) is the undirected graphical model corresponding a two-layer
neural network with one layer of visible units (i.e. input data) and one layer of hidden units (i.e. feature detectors). The
symmetric connections of units are restricted between hidden units and visible units, and no visible/hidden unit of the same
layer is connected to any other visible/hidden unit. In our layer-wise pre-training, the first RBM is Gaussian-Bernoulli and
the other RBMs, except for bottleneck hidden units, are Bernoulli-Bernoulli. In the last RBM, developing to have bottleneck,
we replaced binary hidden units with a Noisy Rectified Linear Unit (NReLU) because of presented empirical successfulness
in (Nair and Hinton, 2010).

For both binary states of visible units and feature detectors (i.e. Bernoulli-Bernoulli units) and as an energy-based network,
the energy function (Hopfield, 1982) is bilinear:

E(x,h; θ) = −
∑

i∈visible

bixi −
∑

j∈hidden

ajhj −
∑
i,j

xihjwij (1)

Where wij is the weights between visible units xi and hidden units hj , bi and aj are their biases and θ = {W,a,b}
represents the network parameters. In terms of the energy function, the joint distribution p(x,h; θ) has the following form:

p(x,h; θ) =
exp (−E(x,h; θ))

Z
(2)

Where Z =
∑

x,h exp (−E(x,h; θ)) is a partition function as a normalization constant. The marginal probability as-
signed to a visible vector is the sum over all hidden units:

p(x; θ) =

∑
h exp (−E(x,h; θ))

Z
(3)

The symmetric structure of the network leads the conditional probabilities for Bernoulli-Bernoulli RBM to be:

p(hj = 1|x; θ) =
exp (

∑
i wijxi + aj)

1 + exp (
∑
i wijxi + aj)

= f(
∑
i

wijxi + aj) (4)

p(xi = 1|h; θ) =
exp (

∑
j wijhj + bi)

1 + exp (
∑
j wijhj + bi)

= f(
∑
j

wijhj + bi) (5)

For visible units with real values, the energy function is:

E(x,h; θ) =
∑

i∈visible

(xi − bi)2

2σ2
i

−
∑

j∈hidden

ajhj −
∑
i,j

xi
σi
hjwij , (6)

Where σi is the standard deviation of the ith visible unit. For Gaussian-Bernoulli conditional probabilities becomes:

p(hj = 1|x; θ) =
exp (

∑
i wijxi + aj)

1 + exp (
∑
i wijxi + aj)

= f(
∑
i

wijxi + aj) (7)

p(xi|h; θ) =
1√
2π

exp

(
−

(x− bi −
∑
j wijhj)

2

2

)
= N

∑
j

wijhj + bi, 1

 (8)

Maximum likelihood estimation can be applied to estimate the parameters of the model. To do so, taking the derivative of
the negative log-probability of the inputs with respect to the parameters is:

∂ − log p(x)

∂θij
=

∂

∂θ
(− log

∑
h

p(x,h)) (9)
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Figure 3: Multiple RBMs stacked on top of each other.

∂ − log p(x)

∂θij
= E[

∂E(x,h)

∂θ
|x]− E[

∂E(x,h)

∂θ
] (10)

∂ − log p(x)

∂θij
= 〈xi, hj〉data − 〈xi, hj〉recon (11)

Where the angle brackets are used to denote the expectation of the distribution of the subscript that follows. This leads to
a simple learning algorithm by which the parameters update rule is given:

∆wij = ε(〈xi, hj〉data − 〈xi, hj〉recon) (12)

Where ε is a learning rate, 〈xi, hj〉data is the so-called positive phase contribution and 〈xi, hj〉recon is the so-called
negative phase contribution. The positive phase decreases the energy of observation and negative phase increases the model’s
energy. However, the computation of the expectation defined by the model is not easily tractable. Hinton (2002) presented
maximizing the likelihood or log-likelihood of the data is equivalent to minimize Kullback–Leibler (KL) divergence between
data distribution and the equilibrium distribution over the visible variables. In practice, the k-step contrastive divergence
(CD-k) approximation provides surprising results (Hinton, 2002).

Carreira-Perpinan and Hinton (2005) numerically compared the update rule with exact log-likelihood gradient with CD-k
(Hinton, 2002). Based on this comparison and to have a very good approximation we used CD-1, with running one step Gibbs
sampler that is:

x = x0 p(h|x0)−−−−−→ h0 p(x|h0)−−−−−→ x1 p(h|x1)−−−−−→ h1 (13)

The above mentioned algorithm can be used to have more than one RBMs blocks. To draw a conclusion for the pre-training
process, a greedy layer-wise fashion using individual RBMs is employed in which the output of one training RBM is used as
an input to the next upper RBM block (Figure 3). In terms of topology, individual RBM blocks would be stacked on top of
each other and having the RBM blocks stacked, the topology of the AE with desire deepness meets.

II. Global Adjustment

After extracting the weights of stacked RBMs from the greedy layer-wise unsupervised algorithm (i.e. pre-training), the
weights are used as an initialization point of AE with a corresponding configuration. To globally adjust parameters and
develop the concept space of our AE, first the stacked RBMs are unrolled (i.e. tied weights). This ensures that the encoder
is not operating in the linear regime of its non-linearity (Vincent et al., 2010). Then a fine-tune phase using back-propagation
is applied. The fine-tune phase is for the whole network (i.e. all the layers together) and uses a gradient-based optimization
algorithm. This approach of using RBM modelling for pre-training followed by back-propagation algorithm for fine-tune
is performing two different search methods in the parameter space of the AE. The greedy pre-training learning algorithm
performs a search that extracts a good region in the parameter space. In information retrieval applications, it has been observed
that deep generative models with only a pre-training phase are comparable with a model that has only one hidden layer (Hinton
and Salakhutdinov, 2011). Applying back-propagation from a point in this good region by using a gradient-based local search
to fine-tune the model parameter helps take advantage of the multiple hidden layers.
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In this unsupervised fine-tuning phase for optimal reconstruction, given the encoding C(x), the whole network tries to
minimize the cross-entropy error as the loss function:

− log p(x|c(x)) = − 1

N

N∑
i=1

xi log x̂i −
N∑
i=1

(1− xi) log(1− x̂i) (14)

Where n is the total number of items of training data, x is the input of the AE, x̂ = fθ(c(x)) is the reconstructed values.
Although stochastic gradient descent (SGD) is a common methodology to fine-tune a neural network, Ngiam et al. (2011)

observed that mini-batch Conjugate Gradient (CG) with line search can simplify and speed up training of AEs compared to
SGD; thus, we used mini-batch CG with line search and the Polak-Ribiere rule to compute search directions.

IV. WORD REPRESENTATION

A word representation is a type of math object regarding each word. We used a bag-of-words (BOW) representation. This
representation does not contain task-specific features and provides a fixed size vector for documents of different sizes. In the
BOW representation, a sentence or a document is presented as the collection of its words ignoring the exact word ordering and
only retaining the number of occurrences of each word. Intuitively, sentences or documents with similar BOW representations
are likely to be similar in content. Although BOW does not embed any semantic information about the words, a neural network
with this representation as the input can learn a distributed semantic representation in which semantically related words are
relatively close to each other in the generated vector space (Turian et al., 2010).

Term frequency - inverse document frequency (tf-idf ) is the most commonly used BOW representation for information
retrieval and text summarization. It represents each word as an element of a vector comprising of its term frequency in the
document, as well as over all documents (idf ) (Wu et al., 2008). In our model, the tf-idf representation is constructed for each
sentence as a basis for sentence ranking. Therefore, the input vectors are very sparse since each sentence only contains a small
number of words. Sparse representations typically can cause two problems for the leanring algorithm. First, some words may
only appear in the test set and never be seen in training. Second, extensive zeros in the output of the AE has an effect on the
derivative; i.e. small errors on the zeroes can dominate larger errors on the non-zero outputs when back-propagation modifies
the hidden nodes. Genest et al. (2011) and Glorot et al. (2011) presented a re-sampling algorithm to solve this problem for
AE.

However, to produce a less sparse representation, we propose using a local vocabulary to construct a locally normalised
term-frequency (tf ) representation. In this representation, the vocabulary for each document is separately constructed from the
most frequent terms occurring in that document. The vocabulary size is the same for all documents. This local representation
logically has to be less sparse compared to tf-idf in which the vocabulary is built from all the documents because the input
dimensions correspond only to terms occurring in the current document.

A side effect is that the AE input dimensions now correspond to different words in different documents and the encoder
maps the queries and sentences of different documents into different semantic subspaces. However, this causes no adverse
effects on the task because our model ranks sentences in each document against that document’s individual query.

Also, we added small random values (Gaussian or Uniform distribution) to the tf representation to eliminate zeroes in the
input. The idea is that when the noise is small, the information in the noisy inputs is essentially the same as in the input vectors
without noise, however, the noisy inputs do not contain absolute zeros any more.

V. SENTENCE RANKING

Extractive text summarization is also known as sentence ranking. Our model ranks the sentences based on the most relevant
and salient characteristics of the documents that are semantically similar to either the subject of an email or previously selected
key phrases of a text; thus, this ranking process is an example of query-oriented summarization. The email subject or key
phrase is the query text.

Having the AE globally adjusted, the output of the encoder provides the concept space where the codes capture the
concepts of a sentence. Because the term space was based on the content of a document and its query, the encoding function
maps each sentence into an abstract concept. In the concept space, we use cosine similarity as a common metric. More
clearly, the AE learns a low-dimensional concept space. In this space, cQ = C(x|Q), cs = C(x|S1, . . . , sn) where C(x) is
the mapping, Q is the query and S is the sentences. The relevance score, driven from concept codes, between the query cQ
and the sentences cS is calculated by cosine similarity as following:

R(Q,D) = cos(cQ, cS) =
cQ.cS

||cQ|| ||cS || (15)

Sentences can be ranked according to the relevance score.
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Figure 4: The Ensemble Noisy Auto-Encoder for query-oriented summarization.

VI. ITERATIVE DATA FUSION AND VOTING

Ensemble methods use multiple models, mostly classifiers, that are combined to solve a particular problem. In particular, in
classifier fusion algorithms, all classifiers are trained in parallel over the entire feature space (Hansen and Salamon, 1990).
However, in particular, Bucilua et al. (2006) have presented a neural network model by which a large and complex ensemble
can be compressed into a smaller and faster model. Hinton et al. (2015) developed this model compressing method further
using a different compressing technique and showed that an ensemble of deep neural networks can be distilled into a single
deep network while the quality of trained ensembles is retained.

Although our model is a single deep network, the proposed technique is not distilling an ensemble of models into a single
model but developing a single model from scratch using an ensemble of runs on the same network. Figure 4 presents the
proposed model. It is an integrated system in which semantically similar sentences to a query can be ranked. Although after
training, an AE applies a deterministic non-linear transformation to compute a new feature space for the data, the model
changes AEs from a deterministic feed-forward network to a stochastic model.

In detail, after ranking the sentences of a document based on the cosine distance to the given query, a number of them must
be selected to be included into the summary. A straightforward selection strategy is just to select the top ranked sentences.
We use this selection strategy for the AE without additive noise to the input. However, with the noisy input representations
introduced in the word representation section, an experiment can be repeated using the same input vector but with differently
generated noise several times. This iterative ranking (i.e. each experiment) provides a variations in ranking.

Then, an ensemble approach that aggregates the rankings of different experiments on the same input document is used to
fuse the ranking. Specifically, we use a majority voting scheme to fuse the ranks. Since the raw rankings have been obtained
using additive noise, the voting algorithm ignores the rank and only considers the number of times that each sentence appears
in the top group. Thus, in the final sentence selection phase we have a set of items D (the total number of sentences produced
by t experiments) and the algorithm picks a subset Sn ⊂ D (Where n is the number of the sentences of the final summary).
In a greedy approach ŝk is picked given: Sk−1 = {ŝ1, ..., ŝk−1}. Where Sk = Sk−1 ∪ {ŝk} with the following formula:
ŝk = arg maxsk∈D|Sk−1

[score(sk)] (where score(sk) is the number of times sk is selected by each component).

VII. EXPERIMENTAL SETUP

To have a extensive exploration of the model, we conducted different experiments on the two different publicly available email
datasets that are specifically developed for summarization: Summarization and Keyword Extraction from Emails (SKE) (Loza
et al., 2014), BC3 from British Columbia University (Ulrich et al., 2008).

SKE consists of 349 emails, of which 319 are from the Enron mailboxes and 30 were provided by volunteers. The email
sets contain both private and corporate emails and are divided into two parts: single emails of at least 10 sentences and threads
containing at least 3 emails. In total, SKE consists of more than 100,000 words. Stemming using Porter (1980) and stop-word
removal 1 reduces this to 46,603 words comprising 7478 unique words. There are 6801 sentences — an average of 19.5
sentences per email. The average email is 303 words and the average sentence is 15.5 words.

Two different annotators provided an abstractive summary, an extractive summary and a set of key phrases for each email.
For extractive summaries, the annotators identified 5 different sentences in a ranking fashion; therefore, in our experiments
with this dataset, generated summaries have 5 sentences. The abstractive summaries are between 33 and 96 words long,
averaging 73 words per email. Key phrases were restricted to 4 words, averaging 2.1 words per phrase.

We conducted two different query-oriented summarization experiments on the SKE corpus. The first experiment used the
email subject as the query text — this experiment could only be performed on the 289 emails that have non-empty subjects.

1obtained from http://xpo6.com/list-of-english-stop-words
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The second experiment used keyword phrases, which are available for the whole dataset, as the queries.

Subject: Nissho NDA

01 Kobayashi-san, Sorry for the delay.
02 I am working through a few issues here and I expect to get back to you shortly.
03 Diamond-san, As I wrote in the past, Nissho Iwai’s LNG related department has been transferred into a new joint venture company

between Nissho and Sumitomo Corp. as of October 1, 2001, namely, ”LNG Japan Corp.”.
04 In this connection, we would like to conclude another NDA with LNG Japan Corp, as per attached.
05 Please review it and it would be great if you could make original again and send us for Mr.Miyazawa’s signature.
06 Also, please advise us how we should treat Nissho’s NDA in these circumstances.
07 BTW, I talked with Mr.Matsubara, Manager of Enron Global Finance in Tokyo.
08 We are internally discussing when we start our official meeting.
09 Please let us know when you are ready.
10 Please approve or make changes to their new NDA.
11 They need to change the counterparty name due to a joint venture.
12 I wanted to let you know this was coming in as soon as Mark approves the changes.
13 Dealing with Japan is somewhat time challenging.

Subject: Next face to face meeting

01 Dear all, Hoping that we will have a last call review shortly (see my next email) we are planning a face to face meeting at which we
can resolve issues raised, and generally tidy the document up (write up lots more good techniques).

02 At the moment we are talking to a potential host in the Boston area about a meeting on thursday and friday 7-8 October.
03 More details as they come to hand.
04 Folks, Please note that this meeting would be on at the same time as the ATIA meeting in Orlando, Florida.
05 If the time is impossible for anyone please let us know as soon as possible at the moment the next closest possible times are a week

earlier (which will cut into the time available for last call review) or ten days later (which will possibly push our schedule back
further).

06 Hello, I have other meetings tentatively scheduled for 6 and 7 October in Boston.
07 I would probably be able to attend starting the 7th.
08 I believe that I will be in Rome on the 6th and 7th.
09 Dear working group participants, As discussed, the meeting will indeed be held on thursday 7 and friday 8 October.
10 I am pleased to announce that Allaire Corp will be our hosts, and look forward to a productive two days, and some time to say hi.

The nitty-gritty.
11 Meeting registration is open from now until 1 October.
12 register via the meeting page at http://www.w3.org/WAI/AU/f2f-oct99 which also provides details on location, accommodation, etc.
13 There are a limited number of rooms available in the Royal Sonesta Hotel (which is the meeting venue) at a discounted rate in order

to qualify for this rate reservations and meeting registration must be completed by September 10.
14 Since October is the peak season for Boston hotels, rooms are expensive and hotels book out early, so you are advised to make your

plans and reservations as soon as possible.
15 If you have any questions or special requirements please contact me as early as possible.
16 Most important if you haven’t registered yet, don’t forget.
17 http://www.w3.org/WAI/AU/f2f-oct99 for the details.
18 Given that there are a small number of us, I thought I would ask what people want to eat for lunch.
19 The default choices are roast turkey breast with vegetables (without turkey if you are a vegan), and pasta with vegetable rataouille.
20 Possible substitutions: baked Scrod (fish) chicken caesar salad hommus roll-up sandwich with salad salad with crab cakes churrasco

flank steak with chimichurri and onions.
21 I will do this in the following way: If you cannot eat one of these things please make that very clear.
22 It will take at least two votes to change something, and will have to be compatible with what people can’t do.
23 The deadline is 3pm (boston time) Monday.
24 No response will not be considered a vote for the default it will be considered a vote for ”whatever gets chosen” Sorry to bore you

with administrivia, but I figure that having food that people like helps the meeting go well.

Figure 5: A randomly selected sample email thread from SKE, corporate section (ECT020.xml) and from BC3 (list number: 058-13714734).
The subject of SKE email is ”Nissho NDA”. The subject of BC3 email is ”Next face to face meeting”.

The BC3 data was collected from mailing lists that are mostly not as informal as ordinary emails. The dataset contains
40 email threads each of which has less than 11 emails and less than 6 participants, on average. The dataset contains 3222
sentences including repetitions due to quoting. Removing repetition, signatures and sender’s name leaves 736 sentences, an
average of 18.4 sentence per email thread. Stemming and stop-word removal further reduce the data set from 15,000 to 7101
words with 2306 unique words. The average number of words per email thread is 380 and per sentence is 21.

BC3 has been annotated by 3 different annotators for both extractive and abstractive summarization. However, the ex-
tractive summaries are not restricted to a limited number of sentences and do not involve sentence ranking so they are not
suitable as goals for our approach. The shortest extractive summaries were 4 sentences, so our experiments produce 4 sen-
tences as extractive summaries for this dataset. These summaries are compared with the annotators’ abstractive summaries
using ROUGE-2 as explained below. The abstractive summaries were limited to 250 words and are on average 122 words for
each email thread. All 40 email threads of BC3 have an informative subject which we use as the query text for summarization.
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The average subject length is 5.2 words.
Our baseline is tf-idf (with the inverse document frequency as the idf term) and over experiments we use several different

vocabulary sizes. tf-idf is a term based technique and a case study helps better undestanding of our model regarding meaning
extraction. Figure 5 shows randomly selected emails from SKE and BC3 for the case study. Because there is no general
agreement on a vocabulary size in the literature we decided to choose vocabulary sizes by which two datasets can be compa-
rable and also providing different test settings to evaluate the proposed model. The smallest vocabulary, 60 words, is selected
because Genest et al. (2011) used less than 1.5% of the unique words of a large dataset like Text Analysis Conference (TAC)
corpus for the input of an AE and we want to provide at least 2% of the unique words. The largest vocabulary of 1000 words
was selected because assuming words with frequency 1 as idiosyncratic words, in BC3, only 1000 unique words have the
frequencies of at least 2. In short, we constructed vocabularies based on the 1000, 374/120 (about 5% of the whole vocabulary
of SKE/BC3), 150 (about 2% of the whole vocabulary of SKE), and 60 most frequently occurring terms (around 2% of the
whole vocabulary of BC3).

The selection of a metric for comparison of the generated summary with the human summary is still an open question
(Louis and Nenkova, 2013). We used ROUGE (Lin, 2004) package as a fully automatic metric for evaluating the performance
of our model. The pyramid metric is an indirect manual evaluation method (Nenkova et al., 2007) that has previously been
used for BC3 (Ulrich et al., 2009). However, due to lack of resources we used the fully automatic metric. Of the different
forms of ROUGE, we use ROUGE-2 Recall because Dang and Owczarzak (2008) observed that it has the highest correlation
with manual scores. In all our experiments, the confidence interval was 95% and a jackknifing procedure was used for multi-
annotation evaluation Lin (2004). We used 10-fold cross-validation with 90% training data.

The AE has 140 units in the first hidden layer, then 40 units, 30 units and 10 units as the bottleneck (i.e. codes). The
decoder portion uses the reverse pattern. We used the same architecture for all the different vocabulary sizes. We used G
Hinton’s training algorithms 2. The size of the first hidden layer (140 units) was chosen to be at least double the smallest
vocabulary size of 60 inputs, because this may help RBM to obtain a better representation (Bengio, 2009; Erhan et al., 2009;
Le Roux and Bengio, 2008). We chose to include two additional hidden layers with 40 and 30 units because (Hinton and
Salakhutdinov, 2006a) showed in the supplementary material paper 3 that a pre-trained deep AE can have better performance
than a pre-trained shallow AE with the same number of parameters. The ten code units provide a ten-dimensional concept
space to represent the semantics of each sentence. Theoretically, learning a desired concept in a large concept space can be
as difficult as finding a needle in the haystack and experimental results show having more units may negatively impact on the
AE for summarization (Zhong et al., 2015).

We used the same hidden units structure throughout our experiments for two reasons. First, this makes the results more
comparable. Second, an AE with more parameters to be tuned would require more manually annotated data that was not
available to us. Also, we used the same hyper-parameters, obtained on the basis of presented practical guides in (Bengio,
2012; Hinton, 2010), over the all experiments.

We explored several input representations: tf-idf, tf using local vocabularies (Ltf ), tf-idf and Ltf as the input of AE, Ltf
with added Gaussian/Uniform noise (Ltf-NAE) and in the noisy ensemble Ltf (Ltf-ENAE) is used for the input of the AE.
Both additive Gaussian and Uniform noise have the same variance over the all experiments.

VIII. RESULTS AND DISCUSSION

I. Subject-oriented Summarization with SKE

The ROUGE-2 recall of the tf-idf baselines and proposed models is presented in table 1. The table presents the performance
of models in extracted summaries with different length. This is hardly surprising that recall improves with more longer
summaries and larger vocabulary size for tf-idf. This improvement is relatively constant for our baselines. Using tf-idf as
the input of the AE, the recall is improved by increasing the number of sentences in the summary. However, increasing
the vocabulary size provides less effective AE representation and reduces the recall, possibly because the larger vocabulary
increases the proportion of zero inputs.

Comparing tf-idf, Ltf, AE (tf-idf ) and AE (Ltf ) shows three important points. First, AE (Ltf ) is always much better than
Ltf. The relative difference is greater for longer summaries, demonstrating that AE enriches the representation and provides a
more discriminative space. Second, AE enhances the discriminative power of both tf-idf and Ltf, but the recall of AE (Ltf ) is
higher. As above, Ltf provides less sparse inputs than tf-idf, and the AE learns more effectively. Finally we note that AE (Ltf )
outperforms the tf-idf baselines even when tf-idf uses much larger vocabulary sizes.

The table shows that in general, the ROUGE score of AE (Ltf ), Ltf-NAE and Ltf-ENAE, both perturbed with either
Gaussian or Uniform noise, is itself noisy (i.e. having no deterministic order) for summaries with only one sentence. However,

2http://www.cs.toronto.edu/∼hinton/MatlabForSciencePaper.html
3http://www.cs.toronto.edu/∼hinton/absps/science som.pdf
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Model n = 1 n = 2 n = 3 n = 4 n = 5

tf-idf V=1000 0.1936 0.2002 0.2062 0.2217 0.2312
tf-idf V=5% (374 words) 0.1453 0.1473 0.1509 0.1688 0.1838
tf-idf V=2% (150 words) 0.0985 0.1048 0.1074 0.1291 0.1435
tf-idf V=60 0.0859 0.0860 0.0823 0.0935 0.1068

AE (tf-idf V=2%, 150 words) 0.1277 0.1951 0.2572 0.3227 0.3580
AE (tf-idf V=60) 0.1805 0.2310 0.2871 0.3422 0.3913

Ltf V=60 0.1165 0.1682 0.2452 0.3032 0.3349
AE (Ltf V=60) 0.1205 0.2272 0.3360 0.4251 0.4948

Ltf-NAE (Gaussian) 0.1067 0.2219 0.3289 0.4033 0.4664
Ltf-ENAE (Gaussian) 0.1370 0.2471 0.3510 0.4325 0.5031
Ltf-NAE (Uniform) 0.0841 0.1583 0.2618 0.3592 0.4428
Ltf-ENAE (Uniform) 0.1140 0.1843 0.2711 0.3659 0.4377

Table 1: ROUGE-2 recall of subject-oriented summarization for tf-idf, tf and models versus the number of selected sentences. n is the
number of sentences for a summary.

with the increase of the number of extracted sentences, the scores of all variants of AEs are relatively closer to each other,
in particular for summaries with 5 sentences. Among AE-based techniques, more relevant sentences can be extracted using
Ltf-ENAE (Gaussian) and AE (Ltf ) compared to Ltf-NAE (with either Gaussian or Uniform) and Ltf-ENAE with voted from
Uniform noise runs. In extracted summaries with one sentence, the highest recall belongs to tf-idf whereas for summaries with
more sentences AE-based models preform much better. This can be interpreted that in subject-based summarization mapping
term space to concept space is not quite accurate for every single vector, but the mapping is much accurate on average (i.e. the
summaries with more sentences).

To further evaluate our model, we analyse the results of Ltf-NAE and Ltf-ENAE generated from the sample email thread
(Figure 5). The first annotator selected and ranked sentences 3, 4, 10, 11 and 5 while the second annotator selected and ranked
sentences 3, 4, 11, 6 and 5. For comparison, Ltf-NAE and Ltf-ENAE ranked sentences number 4, 10, 3, 6, 12 and 3, 8, 4, 6, 11,
respectively, as the top 5 sentences. Both generated summaries contain sentences 03, 04 with high rank similar to annotators.
Sentence 11 is selected by both annotators at a middle rank and is selected by Ltf-ENAE but not by Ltf-NAE in this particular
example. Sentences 10 and 6 are each selected by only one annotator and are ranked lower by both algorithms. The only
annotator selected sentence that is not ranked by the algorithms is sentence 5, which was ranked last by both annotators.

II. Key-phrase-oriented Summarization with SKE

Key phrase extraction has been used for text summarization (Qazvinian et al., 2010; Zhao et al., 2011). Where the annotators
have provided key phrases, we can use them as the query. Table 2 shows the ROUGE-2 recall of the baselines and AE-based
models with various input representations. Since the summarization uses carefully extracted key phrases, recall increased as
expected. Although this improvement is for all techniques, the amount of improvement varies for each technique.

AE (tf-idf ) provides better performance than plain tf-idf with the same size vocabulary. Considering n=5 which has
the highest performance, tf-idf with vocabulary sizes 150 and 60 yields recalls of 0.3166 and 0.2224 respectively which are
improved by AE (tf-idf ) to 0.4795 and 0.4220. It is worth noting that the larger vocabulary size here yields better recall, in
contrast with the subject-oriented summarization results (Table 1). We hypothesize that the enriched term space of the key
phrase queries enables AE, as an unsupervised model, to learn a richer concept space, yielding richer summaries.

The AE (Ltf ) performance is better than Ltf. There is a fairly important difference between subject-oriented and key-
phrase-oriented summarization for SKE corpus when n=1. The ROUGE score of the AE with various Ltf -based input rep-
resentations is higher than tf-idf and AE (tf-idf ). Ltf uses a local vocabulary for each e-mail, meaning that there is a greater
likelihood of the words in the key phrases being present in the vocabulary. Words that are not in the vocabulary cannot
contribute to the concept space, so Ltf supports a richer concept space for small vocabulary sizes.

Table 2 shows that AE (Ltf ) and ENAE (Uniform) provide better results in comparison with other techniques for values of
n between 3 and 5. Comparing the performance of ENAEs with the corresponding NAEs, using either subject or key phrase,
shows a small improvement in most cases. We hypothesize that the ensemble regularises the concept space, producing a more
effective concept mapping irrespective of the information content.

Our case study (Figure 5) also shows that summarization using key phrases with Ltf-NAE and Ltf-ENAE provide better
results compared with their subject-oriented counterparts. Ltf-NAE provides a good ranking in which 3 sentences are ranked
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Model n = 1 n = 2 n = 3 n = 4 n = 5

tf-idf V=1000 0.2217 0.3432 0.4059 0.4607 0.4845
tf-idf V=5% (374 words) 0.2105 0.2874 0.3437 0.4118 0.4217
tf-idf V=2% (150 words) 0.1482 0.2176 0.2655 0.3060 0.3166
tf-idf V=60 0.1215 0.1661 0.1988 0.2103 0.2224

AE (tf-idf V=2%, 150 words) 0.1321 0.2251 0.3179 0.4077 0.4795
AE (tf-idf V=60) 0.1291 0.2226 0.2879 0.3678 0.4220

Ltf V=60 0.2034 0.3044 0.3708 0.4395 0.4972
AE (Ltf V=60) 0.2397 0.3410 0.4365 0.5035 0.5657

Ltf-NAE (Gaussian) 0.2200 0.3107 0.3887 0.4581 0.5179
Ltf-ENAE (Gaussian) 0.1870 0.3168 0.4017 0.4809 0.5370
Ltf-NAE (Uniform) 0.2547 0.3416 0.4277 0.4872 0.5380
Ltf-ENAE (Uniform) 0.2179 0.3450 0.4334 0.4938 0.5504

Table 2: ROUGE-2 recall of key-phrase-oriented summarization for tf-idf, tf and models versus the number of selected sentences. n is the
number of sentences for a summary.

in the top by both annotators and the other 2 by one annotator. Ltf-ENAE also has 3 sentences in common with both annotators
while one other sentence has also been selected by one of annotators. The only sentence that is unranked by the annotators is
sentence number 12 — we will see in the next subsection that this sentence is also informative.

III. Key-phrase-oriented Summarization Versus Abstractive Summary with SKE

SKE also provides annotators’ abstractive summaries. These can be used as a ’gold standard’ to compare our model’s sum-
maries with human abstracts. Table 3 present the ROUGE-2 scores of the extracted sentences versus abstractive summaries.
It is to be expected that the recall will decrease to small values because the abstractive summaries are written by humans
and only contain the abstract meaning of the emails, not the exact sentences. Despite this, the trend is very similar to the
previous subsection. This experiment reinforces that AE can provide a more discriminative concept space and that Ltf-ENAE
(Gaussian/Uniform) mostly yield better results compared other baselines.

Model Recall

tf-idf V=1000 0.2120
tf-idf V=5% (374 words) 0.1848
tf-idf V=2% (150 words) 0.1424
tf-idf V=60 0.0942

AE (tf-idf V=2%, 150) 0.2115
AE (tf-idf V=60) 0.1875

Ltf V=60 0.2137
AE (Ltf V=60) 0.2319

Ltf-NAE (Gaussian) 0.2110
Ltf-ENAE (Gaussian) 0.2255
Ltf-NAE (Uniform) 0.2210
Ltf-ENAE (Uniform) 0.2299

Table 3: ROUGE-2 recall for tf-idf, tf and models, abstractive summaries generated by human versus extractive summaries
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First Annotator

- LNG Japan Corp. is a new joint venture between Nissho and Sumitomo Corp. Given this situation a new NDA is needed and sent
for signature to Daniel Diamond. Daniel forward the NDA to Mark for revision.

Second Annotator

- An Enron employee is informed by an employee of Nissho Iwai that the Nissho Iwai’s LNG related department has been transferred
into a new joint venture company, namely, ’LNG Japan Corp.’. As a result, there is a need to change the counterparty name in the
new NDA. The new change has to be approved and then applied to the new NDA with LNG Japan Corporation.

Figure 6: the generated abstractive summaries of sample email (Figure 5) by two annotators.

Figure 6 presents the generated abstractive summaries by annotators. Taking the sentence number 12 into consideration,
although the sentence is not among extracted sentences by Ltf-ENAE, it contains important information that both annotators
have pointed out.

IV. Subject-oriented Summarization with BC3

As discussed previously, only the abstractive summaries of BC3 are appropriate for our study. Table 4 presents the ROUGE-2
recall of extracted summaries compared with the three annotators’ abstractive summaries; thus, it is expected that recall scores
are small values. While each extracted summary contains 4 sentences, for completeness we also evaluate summaries of 1, 2
and 3 sentences.

In table 4, AE (tf-idf ) performs worse than the other approaches, in contrast with the previous results in tables 1, 2 and 3.
This may come from the relative difference between SKE and BC3. More clearly, the number of emails in BC3 is about 12%
of SKE while the number of unique words in BC3 is about 30% of SKE. This results in a more sparse tf-idf representation
in BC3 than SKE. Similar to the subject-oriented summarisation of SKE, the performance of AE (tf-idf ) is better with the
smaller vocabulary (n=2%). For small vocabularies, the best results are obtained using variants of AE with Ltf. As in the
above subsections, this performance improvement is related to the local vocabulary providing a richer representation of both
the query and text.

For the case study presented in figure 5, we again consider the output of Ltf-NAE and Ltf-ENAE. Although in this
randomly selected email, there is no intersection between the top ranked sentences of Ltf-NAE and Ltf-ENAE, both models do
extract important information from this long email thread. Ltf-NAE extracted information such as possible menu substitutions
(sentence 20), flexibility of schedule changes (sentence 5) and avoiding certain foods (sentence 19); the non-informative
sentence 15 was also included in this extract. Ltf-ENAE selected very important information, that is highly correlated with
annotator’s summaries, such as the hosting organisation and duration (sentence 10), place and time of meeting (sentence 2),
some people may not attend and lunch planning (sentence 18) and a competing meeting (sentence 4).

Model n = 1 n = 2 n = 3 n = 4

tf-idf V=1000 0.0380 0.0636 0.0856 0.1002
tf-idf V=5% 0.0359 0.0517 0.0612 0.0711
tf-idf V=2% 0.0294 0.0420 0.0528 0.0583

AE (tf-idf V=5%) 0.0145 0.0300 0.0429 0.0594
AE (tf-idf V=2%) 0.0166 0.0315 0.0522 0.0697

Ltf V=60 0.0317 0.0566 0.0758 0.0967
AE (Ltf V=60) 0.0362 0.0659 0.0853 0.1084

Ltf-NAE (Gaussian) 0.0406 0.0650 0.0825 0.1001
Ltf-ENAE (Gaussian) 0.0264 0.0606 0.0839 0.1017
Ltf-NAE (Uniform) 0.0354 0.0566 0.0832 0.1010
Ltf-ENAE (Uniform) 0.0334 0.0581 0.0827 0.1028

Table 4: ROUGE-2 recall of subject-oriented summarization for tf-idf, Ltf and models versus the number of selected sentences. n is the
number of sentences for a summary.
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V. Generalization and Data Comparison

The generalization capability for deep structures with millions of parameters is quite crucial. Poor generalization arises from
over-fitting of the training data, where the error on the training set is significantly small while this error is still large for
test set (i.e. new data). To address this problem, AEs employ training algorithms such as a sparsity constraint, contractive
mapping, dropout, de-noising, early stopping, L2 regularization (i.e. weight-decay) and unsupervised pre-training (Srivastava
et al., 2014; Rifai et al., 2011; Vincent et al., 2008; Erhan et al., 2010). While a gradient-based algorithm gradually increases
weights, corresponding to a regularized learning process (Collobert and Bengio, 2004), early stopping alone is not sufficient
enough to prevent over-fitting. Our experiments use a combination of early stopping, L2 regularisation and unsupervised pre-
training. Figure 7 demonstrates that both the training and test errors are decreasing throughout training, and that the trained
AE has good generalisation.

The two reasons for adding small random noise to the input representation were to eliminate zeroes and to support ensem-
bles. The results show that eliminating zeroes alone is not beneficial — the performance of AE (Ltf ) is typically better than
Ltf-NAE. The comparison is based on the SKE data because it is larger and more diverse. Figure 8 illustrates the improvement
of summarization provided by AE(Ltf ), particularly for summaries of 5 sentences. Comparing AE(Ltf ) with tf-idf in this fig-
ure, we note that AE(Ltf ) improves linearly with increasing the number of sentences in a summary, whereas tf-idf gains less
from larger summaries.

To evaluate ensembles, we compare Ltf-NAE with Ltf-ENAE. Figure 9 shows that the Ltf-ENAE technique usually out-
performs Ltf-NAE. Ltf-ENAE scheme may even improve on AE(Ltf ).

The results particularly confirm the value of AEs. The AE-based models generally perform much better than the tf-idf
baselines in both the SKE and BC3 data sets — only tf-idf with the vocabulary of size of 1000 can compete with the AE
models. This demonstrates that the AE models are more capable of encoding the information content of a small vocabulary.

Figure 7: the average squared reconstruction error of the train and test set versus the number of epochs (iterations) for AE(Ltf) (a) and
Ltf-NAE (Uniform) (b) for the SKE corpus.

Figure 8: the ROUGE-2 recall of the best baseline td-idf, tf, the AE (tf-idf) and AE(Ltf) using keyword phrase as query.
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Figure 9: ROUGE-2 recall using the keyword phrases as queries. (a) shows the results based on Gaussian noise. (b) presents the results
based on Uniform noise.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a query-based single-document summarization scheme using an unsupervised deep neural network.
We used the deep auto-encoder (AE) to learn features rather than manually engineering them. A series of experiments were
conducted on the SKE and BC3 email datasets, using the subject and keyword phrases as queries. We compared using global
and local vocabularies to construct word representations as the input of the AE. Comparing the results of local term frequency
(Ltf ) with and without AE demonstrates that the AE provides a more discriminative feature space in which semantically similar
sentences and queries are closer to each other. More precisely, AE improves the ROUGE-2 recall of Ltf by on average 11.2%.
Also, AE (Ltf ) in most cases significantly outperforms the tf-idf state-of-the-art term matching baselines. To investigate the
semantics relevance of the extracted summary, we examined a randomly selected case study from each data set and found that
the extracted sentences are mostly highly informative.

We also presented noisy AE approaches, where random noise is added to the input and output of the AE during training
and testing. Using a single AE with noisy input generally reduces test performance, but using an ensemble of 5 noisy AEs
restores the recall performance and is generally competitive with AE Ltf. Further, the case study shows that the ensemble can
extract a summary that is more closely aligned to human summaries.

In future, we intend to extend our proposed model to generic summarization by clustering the AE features. A semi-
supervised learning technique may be useful because of the limited availability of manually annotated data, or noisy labelling
could be used with the unlabelled data. Other ensemble approaches should also be investigated to improve performance
including accuracy.
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