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Abstract Large temporal Databases (TDBs) usually contain a wealth of data about tem-

poral events. Aimed at discovering temporal patterns with during relationship (during-temporal

patterns, DTPs), which is deemed common and potentially valuable in real-world applications,

this paper presents an approach to finding such DTPs by investigating some of their properties

and incorporating them as desirable pruning strategies into the corresponding algorithm, so as

to optimize the mining process. Results from synthetic reveal that the algorithm is efficient and

linearly scalable with regard to the number of temporal events. Finally, we apply the algorithm

into the weather forecast field and obtain effective results.
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1 Introduction

In recent years, discovery of association rules [14] and sequential patterns [13] has been a major

research issue in the area of data mining. While typical association rules usually reflect related events

occurring at the same time, sequential patterns represent commonly occurring sequences that are in a

time order. However, real-world businesses often generate a massive volume of data in daily operations

and decision-making processes, which are of a richer temporal nature. For instance, a customer could

buy a DVD machine after TV was bought; the duration of an ERP project partially overlapped the

duration of a BPR project; and a patient suffered from cough during the period of fever. Apparently,
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such temporal relationships (e.g., after, overlap, during, etc.) are kinds of real-world semantics that

are, in many cases, considered meaningful and useful in practice. Usually, temporal relationships

between events with different time stamps could be categorized into several types in forms of temporal

comparison predicates such as after, meet, overlap, during, start, finish, and equal [10]. Though recent

years have witnessed several efforts on discovering the after relationship [7,8,11,13], more in-depth

investigations of the relationship are still badly needed, let along their explorations of other types of

temporal relationships. Furthermore, results from the studies on the after relationship could hardly

be simply extended to the case of some other relationships such as during, overlap, etc. This may be

attributed to the fact that in the after relationship, events can generally be dealt with on a time point,

whereas in other relationships, events are considered to be of a time interval nature.

On the other hand, both Rainsford [3] and Hoppner [6] have recently discussed the issues of finding

temporal relationships between time-interval-based events using temporal comparison predicates [10],

but with different mining approaches. Rainsford introduced temporal semantics into association rules,

in forms of X⇒Y∧P1∧P2∧...∧Pn (n≥0), where X and Y are itemsets, and X ∩Y = ∅. P1∧P2∧...∧Pn

is a conjunction of binary temporal predicates. While mining a database DT , a rule is accepted

when its confidence factor 0≤c≤1 is equal to or larger than the given threshold. Similarly, each

predicate Pi is measured with a temporal confidence factor 0≤tcPi
≤1. The algorithm firstly generates

the traditional association rules without considering the temporal factors, and then finds all of the

possible pairings of temporal items in each rule. Subsequently, these pairings are tested so that

strong temporal relationships could be found. Obviously, the complexity of this sequentially executed

algorithm rises rapidly as the number of typical rules grows. Differently, Hoppner proposed another

technique for discovering temporal patterns in state sequences. He defined the supporting level of a

pattern as the total time in which the pattern can be observed within a sliding window, which should

be predetermined by the user. However, a major concern for this technique is how to decide a proper

size for the sliding window, since the sliding window can affect the mining results. Furthermore, The

changes of the sliding window will lead to a sub-patterns check. The check requires some backtracking

mechanism, which is computationally expensive. Like many existing data mining algorithms, the

algorithm needs to scan the database repeatedly, which would significantly lower its efficiency.

This paper will focus on a particular type of temporal relationships, namely during, which rep-

resents that one event starts and ends within the duration of another event. Notably, this during

relationship could reflect the temporal semantics of during, start, finish and equal described in [10].

An approach will be proposed to discover the so-called during-temporal patterns (DTPs) in larger

temporal databases, which are considered common and potentially valuable in real-world applications.

One idea behind the approach is to design the corresponding algorithm so as to reduce the workload in
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scanning the database. In doing so, the database is partitioned into some disjoined datasets with two

operations when calculating the support level of each pattern, so that scanning the whole database

could be avoided. Furthermore, some properties of DTPs are investigated and then incorporated into

the algorithm as pruning strategies to optimize the mining process for efficiency purposes.

The remainder of this paper is organized as follows. Section 2 formulates the problem and introduces

related notions. In Section 3, the algorithmic details are provided, along with some of the related

properties. The experiments on synthetic data and real weather data are discussed in Section 4, and

Section 5 concludes the paper.

2 The problem formulation

Let A={a1,a2,...,am} be a set of states, and DT a temporal database as shown in Table 1. Given

a database DT with N records, each of which is in the form of {a,(st,et)} with respect to event e,

i.e., e=(a,t), where a is the state involved in the event, t=(st,et) is the time interval which indicates

starting time (st) and ending time (et) of state a in the event. A specific event is denoted as el=(ai ,tl)

(1≤l≤N and 1≤i≤m) and tl = (stl , etl), i.e., S(el)=stl and E(el)=etl . For example, with a1=rain,

e1=(a1,(1,20)) in Table 1 means that it began to rain at 1:00h and ended at 20:00h.

Table 1: A Temporal Database
Event State Starting Time Ending Time

e1 a1 1 20
e2 a3 1 4
e3 a4 5 7
e4 a1 22 28
e5 a2 2 8
e6 a3 10 13
e7 a5 25 35
e8 a3 23 28
e9 a4 25 27
e10 a6 25 26
e11 a1 30 40
e12 a3 30 38
e13 a4 34 38
e14 a6 37 37

Definition 1 Let el=(ai ,tl) and ek=(aj ,tk ) be two events in DT . We call el during ek (or ek contains

el), denoted as el<dek , if

S (el) ≥ S (ek ) and E (el) ≤ E (ek )

Generally, given a set of events {e1, e2, ..., ek}, if ei+1 during ei is satisfied for all i=1,2,...,k-1, we have

ek <d ek−1 <d ... <d e2 <d e1.
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For any two states ai and aj , ai is called to be during aj , denoted as pattern ai⇒daj , if state ai

occurs during the period of another state aj , which is a during-temporal pattern (DTP) with length

1. Generally, a DTP of length (k-1) (k≥1), namely DTPk−1, is of the form:

ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1

When the length is 0 (i.e., DTP0), the pattern is a single state actually. More generally, given two

patterns α and β, the form α⇒dβ is also a DTP (Aα ∩ Aβ = ∅, where Aα and Aβ are the sets of

states included in pattern α and β respectively). As a special case, it retrogresses to ai⇒daj when the

lengths of both patterns are 0.

Given a pattern ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1 , ek <d ek−1 <d ... <d e2 <d e1 supports this

pattern if ai is the state of ei for all i=1,2,...,k. In the case, ek <d ek−1 <d ... <d e2 <d e1 can be

considered as an instance of this pattern. For example, in Table 1, e10<
de9<

de8 is an instance of the

pattern a6⇒da4⇒da3, and e14<
de13<

de12 is another instance of this pattern. Further, a DTP α

ak ⇒d ak−1 ⇒d ... ⇒d aj+1 ⇒d aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1

is characterized by the number of its instances: ek <d ek−1 <d ... <d e2 <d e1, and a DTP β ⇒d γ,

i.e.,

(ak ⇒d ak−1 ⇒d ... ⇒d aj+1) ⇒d (aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1)(1 ≤ j ≤ k − 1)

is characterized by the number of its instances:

(ek <d ek−1 <d ... <d ej+1) <d (ej <d ej−1 <d ... <d e2 <d e1)

which is ek <d ek−1 <d ... <d ej+1 <d ej <d ej−1 <d ... <d e2 <d e1 according to the associative law

of events. Hence, β ⇒d γ equivalently reads

ak ⇒d ak−1 ⇒d ... ⇒d aj+1 ⇒d aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1 (1 ≤ j ≤ k − 1)

Furthermore, for finding all instances of a DTP α, one may consider to scan the whole database.

In fact, however, only a small part of the database, with respect to the set of states included in α,

is useful. Thus, we can divide the database into m datasets (m is the number of the states in the

database), each of which is the set of time intervals of a single state. Thus, when finding all instances

of ak ⇒d ak−1 ⇒d ... ⇒d aj+1 ⇒d aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1, only those datasets which include

the sets of time intervals of ak , ak−1, ..., a2, and a1 are scanned. For this purpose, we define a time

interval set g(α) and a state set h(α) to partition the database, and join the small datasets to count

the support (which will be discussed in this and next sections).

Definition 2 Let A and T be finite sets of states and time intervals respectively with respect to a

temporal database DT . For pattern α, i.e., ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1 (k≥1), we define the set
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of time intervals g(α) as the set of finest time intervals of all the instances of α. Formally, g(α) is the

function mapping the set of patterns to the set of time intervals,

g(α) = {t |(ai , t) ∈ DT }, if the length of α is 0, i.e., α is a single state ai .

g(α) = {tk ∈ g(ak )|for all i = 1, 2, ..., k − 1, ai ∈ Aα,∃ti ∈ g(ai), such that ti+1 ∩ ti = ti+1}, (2-1)

if the length of α is larger than 0. In the definition, tl ∩ tk = (max{stl , stk},min{etl , etk}).
Equivalently, we have

g(α) = {tk |for each instance of α : ek (ak , tk ) <d ek−1(ak−1, tk−1) <d ... <d e1(a1, t1)} (2-2)

g(ai) includes all the intervals in which ai occurred, so all instances of α can be found using g(a1),

g(a2),...,g(ak ). And ti+1 ∩ ti = ti means ei+1 <d ei , for i=1,2,...,k-1. That is, ti+1 ∩ ti = ti for

i=1,2,...,k-1 means that ek (ak , tk ) <d ek−1(ak−1, tk−1) <d ... <d e2(a2, t2) <d e1(a1, t1). Hence, both

(2-1) and (2-2) get the set of finest time intervals of all the instances of α.

Support g(a1) h(a1)

1 (1,20)
2 (22,28) a2,a3,a4,a6

3 (30,40)

Support g(a2) h(a2)

1 (2,8) a4

Support g(a3) h(a3)

1 (1,4)
2 (10,13)
3 (23,28)

a4,a6

4 (30,38)

(a) (b) (c)

Support g(a4) h(a4)

1 (5,7)
2 (25,27) a6

3 (34,38)

Support g(a5) h(a5)

1 (25,35) a4,a6

Support g(a6) h(a6)

1 (25,26)
2 (37,37)

∅

(d) (e) (f)

Support g(a3 ⇒d a1) h(α)

1 (1,4)
(10,13)

2 (23,28)
a4,a6

3 (30,38)

Support g(a4 ⇒d a1) h(α)

1 (5,7)
2 (25,27) a3,a6

3 (34,38)

(g) (h)

Figure 1: The examples of the sets g and h

For example, given a temporal database DT as shown in Table 1. g(a1)={(1,20), (22,28), (30,40)}
and g(a3)={(1,4), (10,13), (23,28), (30,38)}. According to ti+1∩ti = ti+1 in (2-1), we have (1,4)∩(1,20)

=(1,4), (10,13)∩(1,20)=(10,13), (23,28)∩(22,28)=(23,28), and (30,38)∩(30,40)=(30,38), so g(a3 ⇒d

a1)={(1,4), (10,13), (23,28), (30,38)}. According to (2-2), we need to find these intervals from original

temporal database. The instances of a3 ⇒d a1 include e2 <d e1, e6 <d e1, e8 <d e4 and e12 <d e11,

which result in time intervals (1,4), (10,13), (23,28), and (30,38) respectively. That is, g(a3 ⇒d
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a1)={(1,4), (10,13), (23,28), (30,38)}. More examples can be found in Figure 1. Next, we will define

the support degree of a DTP pattern (Definition 3).

Definition 3 The support degree of a DTP α is the fraction of the support count of the pattern. That

is,

support(α) = |g(α)|
|g0 |

where |g(α)| is the number of time intervals in g(α) without double-counting those intervals of the

instances in that an event contains several events with the same state, and |g0|= max{|g(ai)|, for

i=1,2,...,m}. Actually, |g(α)| is the number of instances supporting α without double-counting. α is

said to be frequent if the support degree is not less than the given threshold (i.e., minsupport).

The support degree of pattern α in Definition 3 is the ratio of the number of time intervals included

in all instances of α (without double-counting) over the maximum number of time intervals among

|g(ai)| for all i. In other words, support(α) reflects the relative frequency of time intervals for α with

respect to the number of time intervals for a most frequent state. In the first place, by ‘without double-

counting’ we mean that the instances with an event containing several events having the same state will

only be counted once, as they all support the same single pattern. In the second place, alternatively

g0 may be defined as N=
∑m

i=1|g(ai)| , for the same purpose. However, since N=
∑m

i=1|g(ai)| is usually

much larger than |g(α)|, it will result in too small values for support degrees. Therefore, a scale-

down measure is often considered desirable. As a matter of fact, other forms of g0 could be possible,

depending on the context and convenience. Notably, since g0 is a fixed number, the choice of it is a

technical treatment and does not affect the properties of DTPs. Take Table 1 as an example again. For

a DTP pattern α: a3⇒da1, we have |g(α)| =|{(1,4), (10,13), (23,28), (30,38)}|=3, and |g0|=4. Thus,

support(α)=3/4=0.75. Here, we have an event that contains several events with the same state. That

is, e1=(a1,(1,20)), e2=(a3,(1,4)), and e6=(a3,(10,13)), we have e2<
de1 and e6<

de1, which contribute

to the same DTP a3⇒da1. This counting is also similar to that described in [2].

t

a3

a2 a2

a1

a3

a2

Figure 2: A counterexample for pattern transitivity

Note that the transitivity for during relationships between events exists. That is, if e <d e p

and e p <d eq, then we have e <d eq. For instance, we have e10<
de9 and e9<

de8 in Table 1, and

e10<
de9<

de8. However, it is worth mentioning that the during relationship are not transitive between
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patterns in terms of support degree. Let us consider an example as follows. Given a temporal database

DT ={(a3,(1,5)), (a2,(2,4), (a2,(6,15)), (a1,(8,15)), (a3,(10,20)), (a2,(20,20))} and minimal support

count=1, with time intervals for the events being illustrated in Figure 2, we have |g(a1 ⇒d a2)|=1,

|g(a2 ⇒d a3)|=2, but |g(a1 ⇒d a3)|=0. Thus, we cannot obtain longer patterns from short ones using

transitivity. This gives rise to the effort to find other ways of generating longer patters. First, in

examining whether DTPs are frequent, we may need to consider sub-patterns. Definition 4 introduces

the notion.

Definition 4 For a DTP α with length l, we say that α is a sub-DTP of another DTP β with length

k, denoted as α¹β if l≤k and there exists an order-preserving mapping ϕ: {1,2,...,l}→{1,2,...,k} such

that

α(1) ⇒d α(2) ⇒d ... ⇒d α(l) is the same to β(ϕ(1)) ⇒d β(ϕ(2)) ⇒d ... ⇒d β(ϕ(l))

where α(i) is the ith state in the pattern α.

For instance, a6⇒da4⇒da1 is one of sub-DTPs of the pattern a6⇒da4⇒da3⇒da1. Moreover, we

say g(α)⊇g(β) if for every tk∈g(β) there exists a time interval tl∈g(α) such that tl ∩ tk = tk . In terms

of events, g(α)⊇g(β) means that for every event ek with tk in g(β), there exists an event el with tl in

g(α) such that ek<del .

Note that g(α)⊇g(β) does not necessarily mean |g(α)|≥|g(β)|. For example, as shown in Figure 1,

g(a1)⊇g(a3) but |g(a1)|<|g(a3)|. Importantly, for two DTPs α and β with α¹β, one could expect that

a longer DTP in length will have a less chance of being supported than its sub-DTPs since the longer

the length, the fewer its supporting instances in the database. Accordingly, the fewer the supporting

instances for a longer DTP, the finer the set that contains the time intervals of the longer DTP. These

statements are proved in Property 1.

Property 1 if α¹β, then g(α)⊇g(β) and |g(α)|≥|g(β)| .

Proof: Suppose that g(α)⊇g(β) does not hold. Therefore, there exists at least a time interval

tk∈g(β), such that tl∩tk 6=tk for all tl∈g(α). According to the definition about the set g, every state in

Aβ is active in tk . However, not all the states in Aα are active in tk since tk cannot be totally contained

by any interval in g(α). That is, some states in Aβ are not active in tk since α¹β and Aα⊆Aβ . This

is a contradiction with tk∈g(Aβ). That is, there must be g(α)⊇g(β) if α¹β.

Furthermore, each time interval tk∈g(β) is contained by the corresponding interval tl∈g(α) since

g(α)⊇g(β). Some tl could contain several tk , and some could not contain any tk . Let |g(α)|=x,

{T1,T2,...,Tx} be the set of time interval sets, in which Ti(i=1,2,...,x) represents the set of time

intervals contributing only once for the support count. Let the variable yi be the flag which represents

whether a new instance without double-counting is found in Ti . If a new instance without double-
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counting has been found, then yi=1. Otherwise, yi=0. Thus,

|g(β)| = ∑x
i=1yi ≤ x × 1 = x = |g(α)| ¥

Property 2 All subsets of a frequent pattern are frequent.

Proof: Let β be a frequent pattern, and α is a sub-DTP of β. Thus, we have support(β)≥minsupport

according to Definition 3, and

|g(α)|≥|g(β)|
according to Property 1. That is, support(α)≥support(β)≥minsupport, which means that α is frequent.

¥

The above two properties are very important in the process of finding frequent patterns. Effort in

scanning the database and examining longer DTPs could then be largely saved by only concentrating

on those frequent (sub-)patterns. This is because any DTP containing a non-frequent sub-DTP will

not be frequent.

A frequent pattern means that it occurs in forms of events in a sufficient level of frequency. Usually,

one also needs to know how likely a pattern occurs given that the other pattern has already occurred.

In other words, we are considering the notion of confidence. Concretely, given two DTPs β and γ,

where β=ak ⇒d ak−1 ⇒d ... ⇒d aj+1 of length (k-j-1) and γ=aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1 of

length (j-1)for j={1,2,,k-1}. Then β during γ is a composition of these two DTPs as β⇒dγ which

forms a DTP α as follows:

α : (ak ⇒d ak−1 ⇒d ... ⇒d aj+1) ⇒d (aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1)

= ak ⇒d ak−1 ⇒d ... ⇒d aj+1 ⇒d aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1

Definition 5 The confidence degree of a DTP α: β⇒dγ is defined as the fraction of the support of

pattern α over the support of the consequent pattern γ.

confidence(α) = support(α)
support(γ) = |g(α)|

|g(γ)|

The DTP β⇒dγ is a valid DTP if the support and confidence degrees exceed the corresponding

thresholds (minsupport and minconfidence).

Consider Figure 1 again as an example with β and γ being of length 0, i.e., β=a3 and γ=a1.

confidence(a3 ⇒d a1) = support(a3 ⇒d a1)/support({a1})=3/3=1.

Finally, given a DTP α (i.e., ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1(k≥1)), let us consider a set of states

occurring during the period a1 excluding those states already contained by Aα. The state in the set
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shall be during a1 in a frequent manner. Concretely, such a set, h(α), is defined as:

h(α) = {aj |aj 6∈ Aα, j =1, 2, ..., k , and if α is of a lengh ≥ 1 then

aj ⇒d a1, support(aj ⇒d a1) ≥ minsuport}

The set h(α) will be used conveniently in the process of generating candidate DTPs, which will be

discussed in detail in the following sections. Merely for illustrative purposes, in Figure 1, we have, for

example, h(a1)={a2,a3,a4,a6}. In comparison, we have h(a3 ⇒d a1)={a4,a6} where a2 is not included

since a2⇒da1 is not frequent, and a3 is not included either since a3 is already in Aα.

3 The algorithm

Straightforwardly, the problem of mining DTPs can be solved by traversing the relationship trees

through the paths representing all possible during relationships. First, by scanning the temporal

database, all frequent DTPs of length 1 (DTP1
ps) can be discovered. Each tree represents all the

during relationships that have a public parent-state. Figure 3 shows an example, in which → represent

contain.

a2

a5 a6 a9 a10 a11 a12

a6

a5

a4

a2 a7 a9 a10 a11 a12

a11

a5 a6 a7 a9 a12 a13

Figure 3: trees of frequent DTP1

Next, we can traverse each tree using the following strategy:

(1) Let Tl be a tree of frequent DTP1
ps. The root of the tree is R(Tl). The set of leaf nodes of Tl

is L(Tl)={L1,L2,...,Ln}.
(2) Using the depth-first search, we completely solve one Tl (l =1,2,...,m) along one path before

moving on to the next path. Search path Pj which represents the pattern α. The leaf node of Pj is

Lj . Calculate the support degree support(α), and

If Lj ∈ {R(Ti)|i =1,2,..,m, and i6=l},
If support(α) < minsupp,

move on to the next path and repeat this step.

Else calculate the confidence degree and get the valid DTPs, and then turn to (3).
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Else move on to the next path and turn to (2).

(3)Consider the leaf nodes of Ti which are child nodes of Lj in Ti , i.e., L(Tl(Lj ))={L(Ti}, the

new tree T ′
l is generated, T ′

l =Tl⊕L(Tl(Lj )), where ⊕ is an operation that treats all leaf nodes of Ti

as the child nodes of Lj in and forms the new tree T ′
l . Thus, path Pj is extended as a sub-tree, which

represents several DTPs. Turn to (2). Stop it until no new tree is generated.

Take Figure 3 as an example. For the tree with the root being a4, and Pj : a4→a2, we process the tree

in the following order a4→a2, a4→a2→a5, a4→a2→a6,a4→a2→a6→a5..., a4→a2→a11, a4→a2→a11→a5,

a4→a2→a11→a6, a4→a2→a11→a6 →a5, and so on.

Note that this algorithm firstly finds the DTPs by traversing the trees in the way of depth-first

search such that Property 1 can be applied. However, it needs to enumerate all possible candidate

DTPs from DTP1 and will consume much time. The method is referred to as Tree algorithm for

distinguishing and comparing with the optimized approach that is to propose in the next subsections.

3.1 DTP Algorithm

To tackle the above problem, we propose a new algorithm, namely the DTP algorithm, which works

in an iterative manner by alternating between the joining and pruning phases, after finding frequent

DTP0
ps. As the first step, support levels of all single states DTP0

ps are calculated and frequent single

state patterns are found. Meanwhile, the whole database DT is divided into m p (m p≤m) parts (m p

frequent single states). Secondly, in the join phase of an iteration k, a collection CDTPk of new

candidate patterns with length k is generated from the set of frequent DTPk−1
ps(FDTPk−1). Thirdly,

the collection FDTPk of new frequent DTPk−1
ps are generated by computing the support degrees.

Lastly, the patterns satisfying the confidence threshold are output after all iterations are terminated.

More concretely, the algorithmic details are described as follows.

(1). Finding frequent DTP0

By scanning the whole database DT only once and applying the function g(ai) to each event, DT is

divided into m parts and the support of each single state can be computed easily. Let m p=|FDTP0| be

the number of frequent single states. So, the number of valid datasets is m p. In the second scanning,

h(ai) can be calculated for every frequent single state ai . The procedure is shown in Figure 4.

FDTP0.Gen()
1. FDTP0=∅;
2. for all ai∈A do
3. if |g(ai)|≥ minsupport then
4. FDTP0=FDTP0∪{ai};
5. end if
6. end for

Figure 4: The procedure used for FDTP0
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(2). Join phase

The algorithm employs an iterative approach known as a level-wise search, where FDTPk−1 is used

to explore FDTPk (k≥1). First, the set of frequent DTP0(namely FDTP0) is found. FDTP0 is used to

find FDTP1, which is used to find FDTP2, and so forth, until no more frequent pattern can be found.

The generation of each frequent pattern carries a search cost. To improve the efficiency of generating

frequent patterns, two properties are presented as follows.

Let p(α,l) be a sub-pattern with the length (l-1) of the pattern α intercepted from left to right, and

p(α,-l) be a sub-pattern with the length (l-1) of the pattern α from right to left. When l is 1, p(α,±1)

is a single state essentially; when l is 0, p(α,0) returns an empty set. For example, given the pattern

α, i.e., a3⇒da2⇒da1, we can get p(α,2)=a3⇒da2, p(α,-1)=a1, and p(α,0)=∅.

Property 3 Let β be a frequent pattern, i.e., ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1. The pattern γ:

ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d ap ⇒d a1 is not frequent if ap 6∈h(β).

Proof: According to the notion of set h, ap⇒da1 is not frequent if ap 6∈h(β). As we know, all

sub-DTPs of a frequent DTP are frequent, and ap⇒da1 is one sub-DTP of γ. So, the pattern γ must

not be frequent. ¥

Thus, to find FDTPk , a set of candidate DTPs with length k is generated by adding ap∈h(β) into

the frequent pattern β. This set of candidates is denoted CDTPk , which is a superset of FDTPk . That

is, its members may or may not be frequent, but all of the frequent DTPk are included in CDTPk . In

order to obtain a minimal candidate set, we introduce the following property to check whether more

sub-DTPs are frequent.

Property 4 Given a pattern β ∈FDTPk−1(k=1,2,...), for any ap∈h(β), if the two following conditions

are satisfied:

(i) pattern α: p(β, k)⇒dap , α∈FDTPk−1.

(ii)p(α,-k)⇒dp(β,-1)∈FDTPk−1.

we can join α and β, and add a new candidate pattern, α⇒dp(β,-1), into CDTPk .

Proof: Let γ be p(α,-k)⇒dp(β,-1). All of the three patterns α, β and γ are the sub-DTPs of the

pattern α⇒dp(β,-1). Once any of them is not frequent, the pattern α⇒dp(β,-1) must not be frequent

(Property 2). That is, we add the pattern α⇒dp(β,-1) into the candidate set only when both α and

γ are frequent. ¥

That is, in the kth iteration, for each ap∈h(β), check if both patterns α and γ, i.e., p(β,k)⇒dap

and p(α,-k)⇒dp(β,-1) respectively, are frequent. Let us consider all the DTPs as a lattice as shown in

Figure 5. And one sublattice is the set of the patterns with the same top element(e.g., a1,a3,a4, and a6).
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For example, let β be a6⇒da4⇒da1 in the sublattice a1. For a3∈h(β), we can search the sublattices a3

and a1 to find the patterns satisfying Property 4, i.e., α a6⇒da4⇒da3 and γ a4⇒da3⇒da1. Hence, the

new candidate pattern a6⇒da4⇒da3⇒da1 is obtained, which is added into sublattice a1. The lattice

of frequent patterns is shown in Figure 5.

a3=>
d
a1 a4=>

d
a1 a6=>

d
a1 a4=>

d
a3 a6=>

d
a3 a6=>

d
a4

a4=>
d
a3=>

d
a1 a6=>

d
a3=>

d
a1 a6=>

d
a4=>

d
a1 a6=>

d
a4=>

d
a3

a6=>
d
a4=>

d
a3=>

d
a1

a1 a3 a4 a6

{}

Figure 5: The lattice of frequent patterns

Next, the set g(α ⇒d p(β,−1)) for new candidate pattern α⇒dp(β,-1) is calculated and the cor-

responding h(α ⇒d p(β,−1)) are obtained. We define the operation ∩d of the sets g(α) and g(β) as

follows:

g(α) ∩d g(β) = {tl ∈ g(α)|∃tk ∈ g(β), such that tl = tl ∩ tk}

That is, if time interval tl ∈ g(α) is totally contained by a time interval tk ∈ g(β), then tl is an element

of the set g(α) ∩d g(β).

Proposition 1 Let β be ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1 , α be ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d ap

and γ be ak−1 ⇒d ... ⇒d a2 ⇒d ap ⇒d a1. The three patterns can generate a longer pattern σ:

ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d ap ⇒d a1. The set g for the longer pattern σ is g(σ) = g(α) ∩d g(γ) =

g(β) ∩d g(γ).
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Proof: According to the definition of g(α), we have

g(α) = g(ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d ap)

= {tk ∈ g(ak )|∃tp ∈ g(ap), tk ∈ g(ak ), ti ∈ g(ai), such that

ti+1 ∩ ti = ti+1, t2 ∩ tp = t2, for all i = 2, 3, ..., k − 1}

g(γ) = g(ak−1 ⇒d ... ⇒d a2 ⇒d ap ⇒d a1)

= {t pk−1 ∈ g(ak−1)|∃t pp ∈ g(ap), t pk−1 ∈ g(ak−1), t p1 ∈ g(a1), t pi ∈ g(ai), such that

t pi+1 ∩ t pi = t pi+1, t
p
2 ∩ t pp = t p2, t

p
p ∩ t p1 = t pp , for all i = 2, 3, ..., k − 2}

g(σ) = g(ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d ap ⇒d a1)

= {tqk ∈ g(ak )|∃tqp ∈ g(ap), tqk ∈ g(ak ), tq1 ∈ g(a1), tqi ∈ g(ai), such that

tqi+1 ∩ tqi = tqi+1, t
q
2 ∩ tqp = tq2, t

q
p ∩ tq1 = tqp , for all i = 2, 3, ..., k − 1}

Firstly, we prove g(σ) ⊆ g(α)∩dg(γ). ∀tqk ∈ g(σ), from g(σ) we have tqi+1∩tqi = tqi+1 and tq2∩tqp = tq2

for tqi ∈ g(ai), i=2,3,...,k-1. Let tk = tqk , tqk meets the conditions in g(α). So g(σ) ⊆ g(α). And then,

we need to prove for any tqk ∈ g(σ), there exists t pk−1 ∈ g(γ), such that tqk ∩ tqk−1 = tqk . ∀tqk ∈ g(σ),

there is a group of time intervals tqk−1, tqk−2,...,t
q
2, tq1, tqp satisfying the conditions in the form of g(σ).

This group of time intervals can also meet the conditions in the form of g(γ), so tqk−1 ∈ g(γ). Take

t pk−1 = tqk−1, we have tqk ∩ t pk−1 = tqk since tqk ∩ tqk−1 = tqk according to the conditions in g(σ). Hence,

we get g(σ) ⊆ g(α) ∩d g(γ).

Secondly, we prove g(α) ∩d g(γ) ⊆ g(σ). ∀tk ∈ g(α) ∩d g(γ) means ∃tk ∈ g(α), t pk−1 ∈ g(γ), such

that tk ∩ t pk−1 = tk . t pk−1 ∈ g(γ) means that there exist corresponding t pk−2,...,t
p
2, t pp , t p1 satisfying

t pi+1 ∩ t pi = t pi+1, t p2 ∩ t pp = t p2, and t pp ∩ t p1 = t pp for all i=2,3,...,k-2. Take tqk = tk , tqp = t pp , and tqi = t pi for

all i=1,2,...,k-1, and then we have

tqk ∩ tqk−1 = tk ∩ t pk = tk ; tqi+1 ∩ tqi = t pi+1 ∩ t pi = t pi = tqi+1 (i=2,3,...,k-2);

tq2 ∩ tqp = t p2 ∩ t pp = t p2 = tq2; tqp ∩ tq1 = t pp ∩ t p1 = t pp = tqp

which means that tk ∈ g(σ).

Thus, for any tk ∈ g(α) ∩d g(γ), tk ∈ g(σ). That is, g(α) ∩d g(γ) ⊆ g(σ).

In the same way, we can get g(σ) = g(β) ∩d g(γ). ¥

The proposition indicates that the set g for a new candidate can be computed by the frequent

patterns g(α) and g(γ), or g(β) and g(γ), while the set h for a new candidate pattern can only be

obtained from h(γ),
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h(α ⇒d p(β,−1)) = h(α ⇒d p(γ,−1)) = h(γ)− {ak}

Thus, we get the sets g and h for a new candidate pattern without scanning the original database and

the sets g for the single states. The procedure of join phase is shown in Figure 6.

CDTPk .Gen()
1. for all pattern β∈FDTPk−1 do
2. for all aj∈h(β) do
3. for α∈FDTPk−1,p(α,-1)=aj do
4. if Property 4 is satisfied then

5. CDTPk=CDTPk

S{α⇒dp(β,-1)}
6. end if
7. end for
8. end for
9. end for

Figure 6: The procedure used for CDTPk

(3). Pruning phase

In this phase, if the support degree of a candidate pattern in CDTPk is smaller than the user-

specified threshold, then prune it from CDTPk . At last, FDTPk is obtained. Intercross Step 2 and

Step 3 until Property 2 cannot be satisfied any longer. The procedure of pruning phase is shown in

Figure 7.

FDTPk .Gen()
1. FDTP0 known, FDTPk=∅ (k=1,2,...)
2. for (k=1;FDTPk−1 6=∅;k++) do
3. CDTPk=CDTPk .Gen(FDTPk−1);
4. for all candidate patterns β∈CDTPk do
5. FDTPk={β∈CDTPk ||g(β)|≥minsupport}
6. end for
7.end for
8. FDTP=

S
kFDTPk

Figure 7: The procedure used for FDTPk

(4). Generating valid DTPs

Given a pattern α: ak ⇒d ak−1 ⇒d ... ⇒d a2 ⇒d a1, it is necessary to know how frequent α is

when a1 has occurred, when a2 ⇒d a1 has occurred, when a3 ⇒d a2 ⇒d a1 has occurred, and so on.

Thus, we can get the pattern β⇒dγ as mentioned in Section 3,

(ak ⇒d ak−1 ⇒d ... ⇒d aj+1) ⇒d (aj ⇒d aj−1 ⇒d ... ⇒d a2 ⇒d a1) (1 ≤ j ≤ k − 1)

That is, a frequent pattern can generate (k-1) valid DTPs at most. Calculating the confidence degree

starting from the longest consequent pattern, i.e., from the pattern with j=k-1, the patterns meeting the

confidence threshold will be valid DTPs. The pattern α will be stopped to compute if confidence(β⇒dγ)
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is less than the threshold. Otherwise, the confidence degree of a shorter consequent pattern, i.e., j=j-1,

is computed next.

In discovering DTPs, a temporal database as shown in Tabel 1 is usually needed, which could be

obtained either directly or by converting conventional databases. Since a DTP is acturally an event

sequence in terms of time inclusion (i.e., during relationship), the records of a conventional database

needs to be sorted by ascending start time primarily and descending end time secondarily. Consider

the database in Table 1: DT ={e1,e2,e5,e3,e6, e4,e8,e7,e9,e10,e11, e12,e13,e14}, and in a sorted form as

DT ={ep1,ep2, ep3,...,e
p
12,e

p
13,e

p
14}. Subsequently, the set of the resultant events {e pi ,e pi+1,...,ei+k} (k=1,2,...)

is called a during-sequence if e pi+j<
de pi+j−1 for all j=1,2,..,k and e pi+k+1≮de pi+k . For example, in the

sorted DT , {e1,e2,e5,e3,e6} is a during-sequence since e6<
de3<

de5<
de2<

de1 and e6 is not during the

next event e4. {e4,e7,e8,e9,e10} is the next one in the example.

With data sorted in this way, the search space and the comparison of start time and end time can

be reduced when the temporal database is scanned. Let el(ai ,tl),ek (aj ,tk ), in which tl = (stl , etl) and

tk = (stk , etk ), be the lth and kth event about state ai and aj (i 6= j) in the sorted DT , respectively, and

k is larger than l, el will not occur during the valid period of ek unless S(el)=S(ek ) and E(el)=E(ek ).

Property 5 Assume that k is larger than l, and ek (aj ,tk )≮del(ai ,tl). If there is another event

ew (aj ,tw )(k<w≤N) with aj , ew must not occur during the period of el , i.e., ew≮del .

Proof : since w>k and both ek and ew are the events with the same state aj , we have E(ek )<S(ew ).

And, k>l and ek is not during the period of el , so we have E(ek )>E(el).

Thus, we have S(ew )>E(el). That is, ew must not occur during the period of el . ¥

3.2 An example

Let us take an example to explain the DTP algorithm. We will execute the algorithm on the temporal

database in Table 1 for minimal support count=2. From Figure 1 we know FDTP0={a1, a3, a4, a6}.
Next, for each aj∈h(ai), add aj⇒dai into CDTP1. Thus, we get CDTP1={a3⇒da1, a4⇒da1, a6⇒da1,

a4⇒da3, a6⇒da3, a6⇒da4}, which corresponds to the sets shown in Figure 8.

Subsequently, Step 2 and Step 3 of the DTP algorithm are carried out iteratively. For each aj∈h(β),

search the corresponding α and γ mentioned in Property 4. For example, a3∈h(a4 ⇒d a1) and the

support degree of a3 ⇒d a1 is not less than the support threshold, so we can join a3 ⇒d a1 and

a4 ⇒d a3 if both patterns are frequent, and obtain the new candidata pattern a4⇒da3⇒da1 with

the related sets g(a4⇒da3⇒da1) and h(a4⇒da3⇒da1) (as shown in Figure 9 (m)). Similarly, the sets

g(a6⇒da4⇒da3⇒da1) and h(a6⇒da4⇒da3⇒da1) are obtained in Figure 10.
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Support g(a6 ⇒d a1) h(α)

1 (25,26)
2 (37,37)

a3,a4

Support g(a4 ⇒d a3) h(α)

1 (25,27)
2 (34,38)

a6

(i) generated by (a) and (f) (j) generated by (c) and (d)

Support g(a6 ⇒d a3) h(α)

1 (25,26)
2 (37,37)

a4

Support g(a6 ⇒d a4) h(α)

1 (25,26)
2 (37,37)

∅

(k) generated by (c) and (f) (l) generated by (d) and (f)

Figure 8: The sets of CDTP1

Support g(a4⇒da3⇒da1) h(α)

1 (25,27)
2 (34,38)

a6

Support g(a6⇒da3⇒da1) h(α)

1 (25,26)
2 (37,37)

a4

(m) generated by (g) and (j) (n) generated by (g) and (k)

Support g(a6⇒da4⇒da1) h(α)

1 (25,26)
2 (37,37)

a3

Support g(a6⇒da4⇒da3) h(α)

1 (25,26)
2 (37,37)

∅

(0) generated by (h) and (l) (p) generated by (j) and (k)

Figure 9: The sets of CDTP2

Support g(a6 ⇒d a4 ⇒d a3 ⇒d a1) h(α)

1 (25,26)
2 (37,37)

∅

(q) generated by (m) and (p)

Figure 10: The sets of CDTP3

Lastly, we calculate the confidence degree of the patterns from the bottom of every sublattice. In

Figure 5, there are three sublittices.

4 Experiments

To assess the relative performance of these two algorithms and study their scale-up properties, we

performed several experiments on a computer with 512 RAM and Pentium4 2.6GHz for some synthetic

datasets and a real data set with weather information, which was stored on a local 20G disk.

4.1 Generation of synthetic data

To evaluate the performance of the algorithms over a large volume of data, we generated synthetic

temporal events which mimic the events in the real word. We will show the experimental results from

synthetic data so that the work relevant to data cleaning, which is in fact application dependent and
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also orthogonal to the incremental technique proposed, is hence omitted for simplicity. For obtaining

reliable experimental results, the method to generate synthetic data we employed in this study is

similar to the ones used in [12].

Table 2 summarizes the meaning of the parameters used in the experiments. The number of

input-events in the temporal database relies on |Q| and |T|. That is, the average number of events is

|DT |=|Q|*|T|. The starting time and ending time of each event in a during-sequence are generated

randomly based on the during relationship. We generated datasets by setting |L|=5, N=50 and P=25.

Table 3 summarizes the dataset parameter settings.

Table 2: Parameters
|Q| Number of during-sequences
|T| Average number of events per during-sequences
|L| Average length of maximal potentially large patterns
N Number of states
P Number of maximal potentially large patterns

Table 3: Parameters settings (Synthetic datasets)
Name |Q| |T| |D| size(MB)

Data1-Q10-T5 10000 5 50,000 0.83
Data2-Q10-T10 10000 10 100,000 1.79
Data3-Q20-T5 20000 5 100,000 1.82
Data4-Q20-T10 20000 10 200,000 3.72
Data5-Q30-T10 30000 10 300,000 5.65
Data6-Q40-T10 40000 10 400,000 7.58
Data7-Q50-T10 50000 10 500,000 9.51

4.2 The relative performance with synthetic datasets

Figure 11 shows the execution times for the first four synthetic datasets given in Table 3 for decreasing

values of minimum support. We did not plot the execution times of the Tree algorithm for some

lower support values since they are too large compared to the execution times of DTP algorithm. As

the support threshold decreases, the execution times of both the algorithms increase because of the

increase in the total number of candidate and large patterns. When the support threshold is higher,

there are only a limited number of frequent patterns with length 2 produced. So both algorithms

consume less time. However, as the support threshold decreases, the performance difference becomes

prominent in that DTP algorithm significantly outperforms the Tree algorithm.

4.3 The reduction of candidate patterns

As explained previously, the DTP algorithm substantially reduces the number of candidate patterns

generated. The experimental results in Table 4 and Table 5 show the number of candidate patterns of

both algorithms for different supports on the two datasets. As shown in Table 5, the DTP algorithm
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Figure 11: Execution times

leads to a 55%-75% candidate reduction rate compared to the Tree algorithm when Data3-Q20-T5

is used. In another dataset Data4-Q20-T10, the DTP algorithm can achieve higher reduction rate in

generating candidate DTPs, such as 200%, as shown in Table 4. Similar phenomena were observed

when other datasets were used. This feature of the DTP algorithm could help efficiently reduce the

execution time (as mentioned in Section 5.1).

Table 4: Reduction on candidate patterns with Data4-Q20-T10
candidate patternsminsupport

DTP Tree
frequent patterns

40% 34 112 27
30% 167 364 133
20% 552 1202 460
10% 2483 7074 1920
5% 10105 34046 8160

2.50% 35281 142009 29712
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Table 5: Reduction on candidate patterns with Data3-Q20-T5
candidate patternsminsupport

DTP Tree
frequent patterns

20% 16 53 11
10% 118 351 68
5% 454 1029 251

2.50% 1223 2827 699
1% 3166 9334 2237

0.75% 4901 12845 3022
0.50% 7202 19090 4482
0.25% 13662 39555 8691
0.10% 30964 113144 21500

4.4 Scale-up

Figure 12 shows how DTP algorithm scales up as the number of input-events is increased from 100,000

to 500,000 when the datasets Data2, Data4, Data5, Data6 and Data7 in Table 3 are used. The

minimum support level was set to 5%. As shown in Figure 12, the algorithm is approximately linear

scalable over the number of input events.
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Figure 12: Scale-up

4.5 Experimtents with weather dataset

The DTP algorithm has been applied to a weather dataset. The data set was obtained from a weather

station in The Netherlands in 2002, which contains weather records with 17 attributes for each hour

of the year. The attributes include wind direction, average wind speed, maximum wind gust, average

hourly temperature, percentage relative humidity, global hourly radiation, hourly sunshine duration,

hourly precipitation duration, hourly precipitation amount,horizontal visibility, fog, snow, etc. Most

of the values are continuous. We discretized the data and then converted the database into a temporal

one, in a form similar to Table 1.

Figure 13 compares the execution time of the two algorithms on the real dataset, with different
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minimum support degrees. From this figure, we can see that DTP algorithm is more efficient than

Tree algorithm, especially at the lower support level.
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Figure 13: Execution times on the weather dataset
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Figure 14 shows the number of valid DTPs with various support degrees. Some interesting results

were generated by applying the algorithm. Firstly, we discovered that there were significant temporal

relationships between wind and rain, humidity and radiation, and temperature, radiation and sunshine

duration. For example, in terms of wind and rain, strong wind often came prior to rain and lasted

until or beyond the end of the rain (rain during strong wind). Another example is that the horizontal

visibility was usually weak during the time that fog was heavy or it snowed (weak horizontal visibility

during heavy fog or snowing). Secondly, some more complex rules were also discovered. For instance,

when the sunshine duration was shortened, the global hourly radiation would decrease and the hori-

zontal visibility would become worse. In fact, before sunshine duration reached zero and the night fell,

the temperature would have begun to decrease. This rule can be expressed as worse horizontal sight
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during no global hourly radiation during no sunshine during very lower temperature.

5 Conclusions and future work

In this paper, we have studied the problem of discovering during-temporal patterns between events

and proposed the DTP algorithm. By analyzing the properties of the during relationship, we have

developed an optimization technique with pruning strategies that enabled us to retrieve the patterns

with minimal database scan. The experimental results have illustrated the effectiveness and efficiency

of the algorithm. An ongoing effort centers on extending this algorithm to discovering the dynamic

temporal database, since in the light of the fact that the content of a TDB always keeps growing

and the discovered patterns need to be maintained periodically over time. While there are some

studies on mining of dynamic database and maintenance of association rules [1,2,4,5,15], our focus is

on the maintenance of temporal patterns, so as to reduce the overhead of rediscovering patterns in the

presence of data updates.
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Table 1: A Temporal Database
Event State Starting Time Ending Time

e1 a1 1 20
e2 a3 1 4
e3 a4 5 7
e4 a1 22 28
e5 a2 2 8
e6 a3 10 13
e7 a5 25 35
e8 a3 23 28
e9 a4 25 27
e10 a6 25 26
e11 a1 30 40
e12 a3 30 38
e13 a4 34 38
e14 a6 37 37
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Table 2: Parameters
|Q| Number of during-sequences
|T| Average number of events per during-sequences
|L| Average length of maximal potentially large patterns
N Number of states
P Number of maximal potentially large patterns
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Table 3: Parameters settings (Synthetic datasets)
Name |Q| |T| |D| size(MB)

Data1-Q10-T5 10000 5 50,000 0.83
Data2-Q10-T10 10000 10 100,000 1.79
Data3-Q20-T5 20000 5 100,000 1.82
Data4-Q20-T10 20000 10 200,000 3.72
Data5-Q30-T10 30000 10 300,000 5.65
Data6-Q40-T10 40000 10 400,000 7.58
Data7-Q50-T10 50000 10 500,000 9.51
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Table 4: Reduction on candidate patterns with Data4-Q20-T10
candidate patternsminsupport

DTP Tree
frequent patterns

40% 34 112 27
30% 167 364 133
20% 552 1202 460
10% 2483 7074 1920
5% 10105 34046 8160

2.50% 35281 142009 29712
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Table 5: Reduction on candidate patterns with Data3-Q20-T5
candidate patternsminsupport

DTP Tree
frequent patterns

20% 16 53 11
10% 118 351 68
5% 454 1029 251

2.50% 1223 2827 699
1% 3166 9334 2237

0.75% 4901 12845 3022
0.50% 7202 19090 4482
0.25% 13662 39555 8691
0.10% 30964 113144 21500
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Figure 1: The examples of the sets g and h
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Figure 2: A counterexample for pattern transitivity

29



a2

a5 a6 a9 a10 a11 a12

a6

a5

a4

a2 a7 a9 a10 a11 a12

a11

a5 a6 a7 a9 a12 a13

Figure 3: trees of frequent DTP1
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FDTP0.Gen()
1. FDTP0=∅;
2. for all ai∈A do
3. if |g(ai)|≥ minsupport then
4. FDTP0=FDTP0∪{ai};
5. end if
6. end for

Figure 4: The procedure used for FDTP0
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Figure 5: The lattice of frequent patterns
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CDTPk .Gen()
1. for all pattern β∈FDTPk−1 do
2. for all aj∈h(β) do
3. for α∈FDTPk−1,p(α,-1)=aj do
4. if Property 4 is satisfied then

5. CDTPk=CDTPk

S{α⇒dp(β,-1)}
6. end if
7. end for
8. end for
9. end for

Figure 6: The procedure used for CDTPk
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FDTPk .Gen()
1. FDTP0 known, FDTPk=∅ (k=1,2,...)
2. for (k=1;FDTPk−1 6=∅;k++) do
3. CDTPk=CDTPk .Gen(FDTPk−1);
4. for all candidate patterns β∈CDTPk do
5. FDTPk={β∈CDTPk ||g(β)|≥minsupport}
6. end for
7.end for
8. FDTP=

S
kFDTPk

Figure 7: The procedure used for FDTPk
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Figure 8: The sets of CDTP1
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