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Abstract 
It is desirable to incorporate heuristic and empirical knowledge including hydrological and 
bio-geochemical considerations into the selection process of a potential landfill site. In this 
paper, a prototype expert system for the selection of a landfill site, with hybrid knowledge 
representation approach under object-oriented design environment in a blackboard 
architecture, is described. It incorporates an artificial neural network for training of partial 
hazardous scores and a fuzzy rule base for the representation of heuristic knowledge. The 
evaluation is based on the hazardous waste site ranking system recommended by the U.S. 
Environmental Protection Agency, adapted to Hong Kong conditions by incorporating the 
stipulation of some local regulations. It is shown to be a useful aid to assist novice engineers 
in the selection process of a potential landfill site during preliminary investigation. 
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Introduction 
 
A sanitary landfill is one of the most popular refuse disposal means in an urban environment. 
In order to alleviate the nuisances to public health or safety, extensive studies have to be 
carried out to select the most feasible location. This site selection process involves the study 
of a proliferation of factors including hydrological as well as bio-geochemical considerations 
such as composition of contained wastes, possible migration paths of the wastes, soil 
properties, planned use of the landfill, population and land use, etc. The evaluation process 
involves many decisions to be made by the designer based on heuristics. It is difficult for 
various teams composed of engineers and scientists to possess the broad expertise and 
knowledge in performing such site selections in a consistent manner. Specifically, a novice 
engineer may face many difficulties in the design process. It is desirable to encapsulate this 
knowledge into the decision making process. 
 
Previously, some algorithmic models were developed to deal with this problem, such as Leão 
et al. (2004), Gray et al. (2005), Shin et al. (2005), Tiruta-Barna et al. (2005), etc. In many 
instances, it is often difficult for anyone other than the model developer to use the model 
successfully. Moreover, heuristic knowledge is not necessarily expressed in an algorithmic 
manner. In fact, empirical rules, often being incomplete, cannot be easily placed in specific 
frameworks. With the advancement of artificial intelligence (AI), an expert system furnishes 
a solution to this decision making process through the incorporation of symbolic knowledge 
processing on the basis of pertinent heuristic rules. 
 
During the past decade, the potential of AI techniques for providing assistance in the solution 
of engineering problems has been recognized. Expert systems are considered suitable for 
solving problems that demand considerable expertise, judgment or rules of thumb. Areas of 
early applications of expert system technology include medical diagnosis, mineral 

This is the Pre-Published Version.



2 

exploration and chemical spectroscopy. In recent years, expert systems have been applied to 
emulate domain problems in a variety of fields (Chau & Ng 1996, Ranga Rao & 
Sundaravadivelu 1999, Chau & Chen 2001, Lin & Albermani 2001, Chau & Anson 2002, 
Kao & Adeli 2002, Chau 2004, Chau & Albermani 2004, Yao et al. 2005). The blackboard 
architecture, appropriate in domains characterized by interaction between diverse knowledge 
sources, is one of the most popular systems in the implementation of expert systems in 
solving a wide range of tasks: control (Hayesroth 1985), speech recognition (Engelmore and 
Morgan 1988), dynamic rescheduling (Bharadwaj et al. 1994), industrial building design 
(Kumar 1995), interlaminar stress analysis of composite laminates (Adeli and Yu 1995), 
crankshaft design (Lander et al. 1996), damage assessment of steel bridge (Barai and Pandey 
2000), control of a cryogenic cooling plant (Linkens et al. 2000), large space structures (Kao 
and Adeli 2002), etc. However, to the author’s knowledge, an expert system addressing site 
selection of a sanitary landfill has never been reported in the literature.  
 
The programming language designed for AI (LISP or PROLOG) entails tremendous 
programming effort. Nowadays, it is common in the literature that expert system shells, 
which can provide some knowledge representation methods and inference mechanisms, are 
used as tools to facilitate the development of expert systems. This paper delineates a 
prototype expert system for the selection of a landfill site, LANDFILL, which has been 
developed using an expert system shell VISUAL RULE STUDIO (Rule Machines 
Corporation 1998) under the Microsoft Visual Basic programming environment. The 
blackboard architecture with hybrid knowledge representation techniques including 
production rule system and object-oriented approach is adopted. An artificial neural network 
(ANN) for training of partial hazardous scores and a fuzzy rule base for the representation of 
heuristic knowledge are incorporated. The expert system developed is based on the 
uncontrolled hazardous waste site ranking system recommended by the US Environmental 
Protection Agency (1984), adapted to Hong Kong conditions by incorporating the stipulation 
of some local regulations, including Air Pollution Control Ordinance, Waste Disposal 
Ordinance, Waste Disposal (Chemical Waste) (General) Regulation, Water Pollution Control 
Ordinance, etc. Solution strategies and development techniques of the system are addressed 
and discussed. The innovation and original contribution of this manuscript is mainly on 
hybrid application of the latest AI technologies: expert system; ANN; and, fuzzy inference 
system, in this specific problem domain. 
 
Domain knowledge 
 
In general, landfills offer an economic and viable solution to the waste disposal problem. 
During the landfill operation process, engineering principles are applied to confine the refuse 
to the smallest practicable size, and to cover it with layers of soil cover at the end of daily 
operation or an interim cover at a higher frequency as appropriate. This operation requires 
systematically depositing, compacting, and covering the wastes in compliance with 
specifications such as placing 150 to 300 mm of soil over every 600 mm of compacted fill. In 
addition, the soil cover should have a minimum designated depth and the final cover should 
be grassed to prevent erosion. A common projected ultimate land use of a landfill is a park 
with recreational facilities that are not affected by long-term ground subsidence. 
 
Thorough investigation has to be undertaken to select the most appropriate location for a 
landfill site. In the site selection process, though there may exist much more factors, four 
main factors are considered, namely, potential migration routes of the wastes, waste 
characteristics, planned features of the landfill, and potential targets at risks (Noble 1976). 
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For potential migration routes, the study of contaminant movement away from the disposal 
site through air, surface water and ground water is focused on. The movement of wastes 
depends not only on physical, geotechnical, geographic and environmental characteristics of 
the site, but also on the waste characteristics. This feature can be quantified by its toxicity, 
persistence, corrosiveness, reactivity, flammability, radioactivity, solubility and volatility. 
The planned features of the facility will affect the degree of contamination. Potential targets 
subsume population centers, critical habitats and sensitive ecological systems in its vicinity. 
The knowledge can be represented so as to minimize or prevent a contaminant from entering 
into a potential migration route and arriving at a potential target at risk. 
 
The site selection process involves three types of factor, namely, (i) physical, geographic, 
climatic, soil, water quality and socioeconomic conditions; (ii) political considerations, 
guidelines, standards and regulations established by the pertinent authorities; and (iii) expert 
judgment and heuristics (US Environmental Protection Agency 1984). In this process, the 
expert plays a key role since an enormous expert effort is required in the synthesis and 
analysis of these components. The following tasks are also required, namely, designing the 
general scheme and a uniform ranking procedure, identifying constraining regulations, 
analyzing data, and selecting a specific landfill site together with size. The judgments and 
expertise employed by experts in solving the domain problem are then translated into a set of 
explicit rules. 
 
LANDFILL 
 
LANDFILL is a prototype expert system designed to provide surrogate consultation during 
preliminary hazardous waste site investigations. It provides a versatile framework for the 
interpretation, classification and diagnosis of environmental conditions at waste disposal sites. 
The objective of such a consultation is to obtain a site rating using the expert rules and the 
decision logic described in the system’s knowledge base. The ranking criteria are based on: 
relative risk or danger, taking into account the population at risk; the hazardous potential of 
the substances at a facility; the potential for contamination of drinking water supplies, for 
direct human contact, and for destruction of sensitive ecosystems; and other appropriate 
factors. The system is compiled and encrypted to create a run-only system. This run-only 
system is installed on a microcomputer for office use. The user can always overrule any 
options and recommendations provided by the system. However, a mechanism is built-in to 
ensure that the user’s overruled input is reasonable and consistent. In other words, it plays the 
role of a knowledgeable assistant only. 
 
Besides the usual components in a typical expert system, namely, knowledge base, inference 
mechanism, session context, user interface, knowledge acquisition and explanation modules, 
it also incorporates an ANN tool, fuzzy rule system, and a database. The schematic diagram 
of this prototype system is shown in Figure 1. 
 
Knowledge acquisition and representation 
Knowledge plays an important role in an expert system. The knowledge used has been 
acquired from written documents such as codes of practice, textbooks and design manuals 
and complemented by interviews with ten experts, from whom fairly consistent views were 
acquired within a six month period. In order to acquire knowledge, it is better to work with 
the expert in the context of solving particular problems, instead of directly posing questions 
about rules. Hybrid knowledge representation schemes, including object-oriented 
programming, procedural methods, and production rules are employed to express engineering 
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heuristics and standard design knowledge. This approach renders it possible to take 
advantage of the characteristics of each method and to tailor for each type of domain 
knowledge in the knowledge base. 
 
Object-oriented programming 
Figure 2 shows the details of the blackboard architecture, which are classified into knowledge 
modules and the blackboard. Knowledge modules corresponding to procedural expertise 
knowledge are divided into Decision Process and Process Control whilst objects in the 
blackboard are classified into Decision Stage and Decision Entities. 
 
The blackboard is partitioned into a number of hierarchical levels, corresponding to different 
stages of the decision process. Decision Stage only comprises a single object whereas there 
are several objects in the Decision Entities level. Data inside the Decision Stage are 
employed by the Process Control knowledge modules to determine the next possible action, 
or to check the validity of the function triggered by the user. Forward chaining inference 
mechanism is employed here to derive the next process. After a specific decision stage has 
been satisfied, the pertinent Decision Stage indicator will be assigned one of the preset values, 
which are numerical values from 0 to 9. 
 
Decision Process modules determine largely the scope of decision to be solved by the expert 
system. The attached procedural method is processed when the value of the attribute changes, 
either by assignment under another method or by the user. A mixed problem-solving strategy 
is used here. The user is required merely to supply the relevant data during each decision 
stage and the system will determine the order in which different decision knowledge modules 
are executed. 
 
Process Control modules ensure the proper and effective application of knowledge in 
Decision Process modules and undertake conflict resolution. They evaluate the current 
attribute values in Decision Stage of the blackboard, which provides the indicator to assist 
this decision making. The Main Decision Process class monitors the decision stage of all key 
tasks during the decision process and decides either to continue to next step or to prompt a 
warning message. All primary tasks in Process Control module are expressed on command 
buttons together with procedural methods attached. Process Control knowledge modules 
work closely with the user-interface module to produce user-friendly main menu displays. 
Moreover, the relevant entries and decision parameters under Decision Entities, the 
corresponding attribute values of Decision Stage are synchronized through the Process 
Control knowledge modules. 
 
Production rules 
Some heuristic knowledge is represented in the IF/THEN/ELSE production rules with 
confidence factors that can be assigned either automatically, or in response to the user’s 
request. These rules are a formal way of specifying how an expert reviews a condition, 
considers various possibilities, and recommends an action. The explicit expertise under the 
production rule format in the knowledge base are employed to rank the potential landfill 
locations to identify the more feasible sites for further detailed studies. The following is a 
typical example of the production rules. 
 
Rule to find HazardGroundwaterDepth: 1 of 8 
IF GroundwaterRoute.DepthOfGroundwater >= 6 AND 

GroundwaterRoute.DepthOfGroundwater < 25 
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THEN HazardScore.HazardGroundwaterDepth:= risky CF 70 

 
In the production rules, the confidence factor (CF) is employed as the determining factor to 
control the inference process for the evaluation of each parameter. The range is from 0 to 100, 
representing the degree of confidence with which the statement is known. A higher value 
represents higher degree of confidence and hence is better. The confidence factors are set by 
weighted opinions of various experts based on their heuristic and experience. Depending on 
the responses of the user, appropriate rules will be executed.  
 
The system accounts for the facts that describe the domain knowledge on preliminary landfill site 
selection. The production rule also incorporates the fuzzy description. For some continuously 
varying conditions, such as the total population or net seasonal precipitation, the user can specify 
them with fuzzy descriptions or with definite numerical values. The system can automatically 
transfer the numerical values into fuzzy descriptions with the fuzzy membership curve to 
calculate its relevant confidence of membership before searching the rule base. Figure 3 shows 
the fuzzy description of total population within 300 m of the site with different curves 
representing the definitions of “very low”, “low”, “medium”, “high” and “very high”, 
respectively. The membership functions are also set by weighted opinions of various experts. 
 
All landfill site selection parameters are categorized into four independent types of factors, 
namely, groundwater route characteristics, targets at risk, facility characteristics and waste 
characteristics. The groundwater route characteristics hazard score (Sgr) considers a number 
of parameters including the depth of the groundwater at the aquifer, net seasonal precipitation, 
soil permeability, physical state of the waste at the time of disposal, aquifer soil type, the 
depth to bedrock, geology, seismicity, faults, stratification, heterogeneity and isotropy. The 
target score (St), representing the level of risk to potential targets, is related to the potential 
use of the aquifer of concern, the vicinity of nearest production wells, and nearby population 
served by the groundwater. The executed assigned value about the planned containment 
characteristics of the proposed landfill facility is defined as the facility characteristics score 
(Sfc).The waste characteristics hazard score (Swc) considers the toxicity, persistence, 
corrosiveness, reactivity, ignitability, radioactivity, solubility and volatility of each potential 
waste substance, along with its projected disposed quantity. The substance with the highest 
sum of the assigned values among all projected waste substances is selected as the 
representative waste material.  
 
The user has to choose appropriate answers to all these questions in order to assign a hazard 
rating score to each parameter. The expert system then matches the selected answers with 
each rule, executes the appropriate ones, and computes the four partial scores from an ANN. 
The weighted sum of executed assigned hazard values represents independent variables. It 
ultimately derives the overall hazard rating score of the site (S), as follows: 
 

 wcfctgr SwSwSwSwS 4321   (1) 

 
where w1, w2, w3, and w4 are the weights of the partial score respectively, with values 
assigned by expert opinion after iterated cycles of training and validation of the ANN. The 
overall site hazard rating score is normalized between 0 and 100, which is utilized as a 
measure for the relative ranking of the specific site. A lower value represents a safer potential 
site location. The scores can be employed as a yardstick for the relative safety of different 
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sites. In a preliminary study, locations with high scores might be eliminated as potential 
landfills, whereas sites with low scores can remain for further comprehensive investigation. 
 
Artificial neural network (ANN) 
An ANN is used as the learning mechanism to transfer engineering experience into 
knowledge in determining the hazard scores. The back-propagation learning algorithm is 
employed to train the network for extracting knowledge from training examples (Rumelhart 
et al. 1994). An ANN architecture with 36 inputs (one attribute and one confidence factor for 
each feature), 4 outputs (one for each partial score), and one hidden layer of 18 nodes is 
created for the problem. The learning control parameters, including learning rate = 1.0 and 
momentum factor = 0.5, are chosen to control learning process. The initial network weights 
are assumed with uniformly distributed random values from the interval -0.5 to 0.5. The S-
shaped sigmoid curve, as shown in eq. (2), is used as a transfer function on each neuron to 
represent the input-output relation in the hidden layer and output layer whilst a linear function 
is employed for the input layer. 
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The major advantage of employing eq. (2) is that it can normalize all the input data into the 
range between 0 and 1, which is more manageable in terms of data interpretation. The 
normalized root-mean-square error (NRMSE) between target and output results is computed 
to evaluate the training performance. Let N be the number of testing example, Tij, Oij be the 
target values and the computed value of the ith test example and jth output node respectively, 
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Figure 4 shows the relationship between NRMSE and number of training cycles. It is found 
that the error rate is converged in about 30 cycles. Self-learning mechanism is accomplished 
by the use of ANN. System validation is performed through the validation process of the 
ANN and by comparison of the results with those by the experts. The knowledge base is 
dynamic and if more input-output data pairs are provided by other experts in different 
locations of the world, the generalization capability of the ANN will yield different output 
results. 
 
Inference engine 
The inference engine controls the strategies that determine how, from where, and in what 
order, a knowledge base draws its conclusions. It controls the selection of procedure methods 
and production rules from the knowledge base to derive a conclusion or decision context. All 
the decision steps can be seen explicitly on the main screen display. The validity of the user’s 
choice on the preferred sequence of decision processes is checked by Process Control 
knowledge modules, which act opportunistically upon being triggered. An event-driven 
inference processing mechanism is adopted so that the ensuing action of the system will 
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depend on the input made by the user. For example, the factors affecting the site 
characteristics are considered depending on the nature of ground in the vicinity. If rock has 
been selected, the user is prompted to enter whether or not there are any faults. If soil has 
been selected, the above question will not be asked. 
 
After the network is trained, this system is capable to diagnose new cases of site selection, 
even for the cases that some input values are unknown owing to unavailable or missing 
records. A hybrid reasoning strategy that combines forward and backward reasoning schemes 
is used in order to arrive at a reasonable conclusion with minimum information. Forward 
chaining inference is employed to infer the output values given the current input values, part 
of which may be unknown initially. The prototype arrives at a conclusion when no unknown 
input can alter the current decision significantly. However, if the system has not yet arrived at 
a certain conclusion with a defined threshold value of confidence factor, backward chaining 
reasoning is employed. The system automatically highlights the unknown input units that 
have a significant effect on the current most plausible conclusion, and prompt the user to 
enter their values. 
 
User interface 
The system offers a friendly user interface. Whilst input data entries are kept at minimum, 
they are provided by the user mostly through selection of appropriate values of parameters 
from the menus and answers to the queries made by the system. If the input data provided by 
the user is not within the specified range, it will be rejected and a warning message will be 
prompted. The system provides a contemporary multi-window graphics text display, which is 
valuable to novice engineers. 
 
Case example 
 
A case example is employed to demonstrate the application of the system. The overall landfill 
hazard rating of a potential rural site located at Tseng Kwan O is evaluated. User-friendly 
displays are used to interact with end users by prompting for values and showing the output 
data. The sample run commences with inputs on various groundwater route characteristics in 
the main menu. The depth of groundwater to aquifer is less than 6 m and the net seasonal 
precipitation is 2400 mm/year. The aquifer soil type is sandy soil with soil permeability 5 x 
10-6 m/s. The depth to bedrock is more than 50 m. The soil properties are homogeneous in all 
directions without any stratification and there are no faults nearby. The waste is in a solid 
state and is unconsolidated. It will release unpleasant smell with pH value of 8. The waste is 
not inflammable and its temperature is below 25C. Its toxicity and radioactivity are low. Its 
total quantity is about 500 tons/m3. The landfill will have a non-permeable liner and a 
leachate collection system. The land use at the vicinity of the site is mainly public area and 
there are no potential hazardous installations within 1 km of the site. The total population 
within 300 m of the site is about 50 people. The distance to the nearest drinking water well is 
about 200 m. The system transforms these production rules into user-friendly interactive 
menus. Based on the responses of the user, the system searches the knowledge base and 
generates the overall landfill site rating score, which is shown in Figure 5. In general, a range 
of scores between 0 and 50 would indicate a site to be feasible for sanitary landfill. In this 
case, the score of 41 is of medium value and it is feasible as a site for sanitary landfill. The 
recommendation is that detailed investigations can be further undertaken, which was verified 
by independent but consistent assessments of experts. 
 
Conclusions 



8 

 
The integration of the heuristic and empirical knowledge into a decision support system is 
useful in the selection process of a potential landfill site, since a simple score can represent a 
diversity of complicated factors. A prototype expert system, which assists in making 
decisions on selection of an appropriate landfill site, was developed and implemented. It 
incorporates an ANN for training of partial hazardous scores and a fuzzy rule base for 
representation of the heuristic knowledge. It is shown that the hybrid application of these 
latest AI technologies is appropriate to act as storage for empirical knowledge so that advice 
on landfill site selection can be furnished in the preliminary design stage. The evaluation of 
the prototype system is based on the hazardous waste site ranking system recommended by 
the U.S. Environmental Protection Agency, adapted to Hong Kong conditions by 
incorporating the stipulation of some local regulations. The knowledge base is transparent 
and can easily be updated, which renders the expert system an ideal tool for incremental 
programming. Increase in efficiency, improvement, consistency of results and automated 
record keeping are among the advantages of such a system. Furthermore, the educational 
spin-off of an expert system in training novice engineers or in transferring knowledge is 
significant.  
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Figure 1. Schematic diagram of the prototype expert system 
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Figure 2. Details of the blackboard architecture 
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Figure 3. Fuzzy description of total population within 300 m of the site with different curves 
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Figure 4. Relationship between NRMSE and number of training cycles
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Figure 5. Screen displaying overall landfill site hazard rating score 




