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Job shop scheduling systems are widely employed to opti-
mise the efficiency of machine utilisation in the manufac-
turing industry, by searching the most cost-effective per-
mutation of job operations based on the cost of each op-
eration on each compatible machine and the relations be-
tween job operations. Such systems are paralysed when
the cost of operations are not predictable led by the involve-
ment of complex manual operations. This paper proposes
a new genetic algorithm-based job shop scheduling system
by integrating a fuzzy learning and inference sub-system in
an effort to address this limitation. In particular, the fuzzy
sub-system adaptively estimates the completion time and
thus cost of each manual task under different conditions
based on a knowledge base which is initialised by domain
experts and then constantly updated based on its built-in
learning ability and adaptability. The manufacturer of Point
of Sale and Point of Purchase products is taken in this pa-
per as an example case for both theoretical discussion and
experimental study. The experimental results demonstrate
the promising of the proposed system in improving the ef-
ficiency of manual manufacturing operations.
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operation scheduling

1 | INTRODUCTION

The manufacturing sector thrives on implementing efficiency initiatives through measuring and improving Key Perfor-
mance Indicators (KPIs). Manufacturing heuristics that help senior management decision making are highly praised,
particularly if they can deal with the inherent complexity of noisy shop floor data affecting planning scenarios. Man-
ufacturing efficiency can be significantly improved by employing an intelligent job shop scheduling (JSS) system as
shown by Operation Research (OR) and Artificial Intelligence (AI) solutions using combinatorial optimisations aiming
to reduce the cost based on a given cost function, such as making span or economic cost (Çaliş and Bulkan (2015);
Chaudhry and Khan (2016)).

The success of intelligent JSS systems relies on an accurate estimation of cost, such as time of each individual
operation on each discrete functional processing step at each operation/work centre, when the making span is taken
as the cost function. Despite the machine processing time of each operation being readily estimable, based on the
nature of the job and the characteristics of the machine, it is difficult to accurately estimate the completion time of
whole series of complex manual operations, which often disables the JSS systems. For instance, the multiple complex
manual operations of the bespoke print industry produce Point of Sale (POS) and Point of Purchase (POP) products,
with particular emphasis on the complexity of 3D display products, and hard to estimate in advance especially for large
seasonal shop promotions. An individual manufacturing job may require tens of operations, utilising several different
machines coupled with manual tasks in different operation centres, and many of these jobs may need to be processed
in parallel at any single time. Parallel lines of manual operations (or “lanes") are indeed common and expedient where
possible; these “lanes" need to be planned alongside the job estimation for individual atomic operations such as the
‘time to glue’, ‘time to cut a shape’, ‘time to consolidate’. The scheduler plans the lanes to conform to the physical space
available and sensible groupings of manual tasks. The existing system fails once the manual processes take precedent.

The paralysed JSS fails the business in two ways and could lead to late jobs or additional ‘same day’ despatch
costs incurred. The Sales Team is denied an accurate and realistic long-term schedule of operations and capacity
management. Quotations are made available to customers simply based on the nature of the job rather than a reflec-
tion of demand-supply relationship. The danger being to overcommit which exceeds the actual capacity and leads to
additional problems in the scheduling having to content with unnecessary Work-In-Progress (WIP). Secondly, the ef-
fective ‘management planning horizon’ is artificially shortened to a period as short as a week, instead of maintaining a
strategic month or quarter perspective. This creates a cycle of “flood then famine” as a period of frantic hyper activity
is replaced with insufficient work and quiet factory with a frustrated Sales Team. This common issue exists currently
in most manufacturers where problems are seen in despatch but caused by planning, scheduling and estimating short
comings. No despatch orientated solution exists as the answer lays in empowering the scheduler with stronger tools.

This paper proposes a complete manual job scheduling solution to address these limitations using a genetic al-
gorithm (GA) and an adaptive fuzzy inference system by further developing the seminal work reported in Yang et
al. (2017b). The fuzzy inference sub-system accurately estimates the completion time of a manual operation under
different situations. Through lack of viable data on manual operations and thus the exclusion of data-drive rule base
generation such as Chen et al. (2018), the rule base of the fuzzy inference sub-system is initialised by expertise knowl-
edge. The rule-base is then developed dynamically and adaptively upon its deployment whilst performing inferences.
By taking the accurate completion time estimation as inputs, the GA calculates the optimal scheduling by considering
not only meeting all the job deadlines, but also minimising the overall cost of all jobs. To demonstrate a ‘proof of
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principle’, a series of experiments were performed on data that simulate real world loading scenarios common in the
manufacturing environment. The experimental results demonstrate the power of the proposed system in improving
overall manufacturing efficiency.

The rest of the paper is organised as follows. Section 2 briefs the theory underpinning of the proposed system.
Section 3 overviews the proposed global scheduling system. Section 4 details the fuzzy inference and learning system
in manual task completion time estimation. Section 5 presents the proposed manual job shop planning and scheduling
system. Section 6 shows the effectiveness of the proposed approach through illustrative and simulated examples.
Section 7 concludes the paper with future work highlighted.

2 | BACKGROUND

The two integral components of the proposed system, that is the JSS system and the experience-based fuzzy inference
system are reviewed in this section.

2.1 | Job Shop Scheduling

JSS is a classical operation research problem or combinational optimisation problem, which has been extensively stud-
ied by researchers in the fields of Operation Research and Artificial Intelligence (Pinedo (2015); Johnson and Mont-
gomery (1974)). Briefly, a JSS problem involves a finite set of jobs to be processed on a finite set of machines. Each
job comprises a set of operations that must be performed on one machine within a certain set of capable machines
with various constraints and costs, in a given job-dependent order. Therefore, JSS is essentially a machine scheduling
problem where jobs represent a series of activities and machines represent resources and each machine can process
at most one job at a time. A typical objective of this process is to minimise the total completion time required for all
jobs (i.e., the make span) or the economic cost, although other key performance indicators (KPIs) may individually or
jointly be used in the objective function.

As a classical research topic in the operation research community, common approaches developed by this commu-
nity are linear programming and dynamic programming, whilst general search and optimization techniques developed
by the community of artificial intelligence (AI) are utilised or adapted to JSS solutions, such as breadth-first search,
Genetic algorithm (GA), Beam search (BS). A job shop scheduling problem is often represented and solved as a con-
straint satisfaction problem (usually termed as SAT or CSP), which specifies both the mathematical representation
of the problem and the corresponding solving solutions (Ghédira (2013)). A large number of solutions have been re-
ported in the literature for CSPs, which revolve around a series of artificial intelligence technological advances that
have occurred over the last three decades Pinedo (2015). Most of the JSS problems are NP-hard, with a small number
of exceptions, that is the computational requirements for obtaining an optimal solution grow exponentially as the size
of the problem increases.

JSS solutions, no matter what form proposed by the operation research community or the artificial intelligence
community, can be classified into three categories (Çaliş and Bulkan (2015); Chaudhry and Khan (2016); Miguel and
Shen (2003); Gomes et al. (2005)): 1) the exact approaches based on hard search, 2) hard search with heuristics, and
3) inexact approaches based on soft search. The exact approaches or hard search algorithms can produce optimal
solutions, but they are of exponentially computational time complexity. Typical hard search algorithms include branch
and bound, integer linear programming and dynamic programming, amongst others. Various heuristics have been
developed to speed up the hard search, with or without sacrificing the optimal solutions. By contrast, the inexact ap-
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proaches or soft search algorithms do not guarantee optimal solutions, but it generates near optimal solutions. In fact,
soft search sacrifices the absolute optimal solutions for a reasonable computational effort and thus time span. Soft
search approaches are developed mainly based on the advances in soft computing. Common soft search approaches
include genetic algorithms, simulated annealing, ant colony optimisation and fuzzy logic, amongst others. These ap-
proaches provide a full spectrum of compromise and balance between time and performance, which provides the
users a great selection of options for problem solving.

Genetic algorithms (GAs) computationally simulate the evolutionary process from nature to explore the optimal
solutions from a large searching domain by repeating three basic operations, selection, crossover and mutation. As
an adaptive heuristic search algorithm for solving both constrained and unconstrained optimisation problems, GA has
been successfully and wildly applied to solve various JSS problems, such as Ak and Koc (2012); Wang et al. (2009).
In particular, GA utilises a number of individuals (or organisms) that specially implement biologically inspired com-
putational structures, most commonly chromosomes, to compose a population (Dawkins (1982)). Each individual of
the population usually contains either the different job’s sequence number or allocated machines’ number for each
job, which represents a valid scheduling solution. Based on the current generation of population, the genetic oper-
ators, crossover and mutation, are employed to randomly generate the next generation of population, thus to form
another valid scheduling solution. These operations are repeated until an optimal scheduling solution, which usually
determined by minimising the cost such as the financial cost or the temporal cost of operations, is discovered.

2.2 | Fuzzy Inference and Interpolation

Fuzzy sets and systems represent and reason on vague information that arises due to the lack of sharp bound-
aries (Zadeh (1965)). The most widely applied fuzzy systems are fuzzy inference systems, such as the Mamdani
inference (Mamdani (1977)) and the TSK inference (Takagi and Sugeno (1985)). In particular, these inference sys-
tems are able to represent non-linear and high dimensional decision making problems as fuzzy rule bases. Rule bases
are either translated from expert knowledge, or extracted from data sets (Mamdani (1977); Tan et al. (2016)). Given
an input, a fuzzy inference system produces a system output by referring to those rules in the rule base whose an-
tecedents overlap with the given input. However, a fuzzy inference system will fail if the given input is not covered
by any rule in the rule base. Fuzzy rule interpolation (FRI) was proposed to address this limitation (Kóczy and Hirota
(1993); Huang and Shen (2008); Yang and Shen (2013); Li et al. (2017)).

FRI is essentially a fuzzy extension of piece-wise linear or polynomial interpolation or extrapolation (Yang et al.
(2017b)). Accordingly, FRI enjoys the advantages of both fuzzy logic in terms of uncertainty management and piece-
wise linear or polynomial interpolation or extrapolation by means of knowledge generalisation. Indeed, except being
used as a supplementary to conventional fuzzy inference systems to work with sparse rule bases led by limited knowl-
edge, FRI can also be used for system simplification for complex fuzzy models by omitting those rules that can be
approximated by their neighbours. Given an input which does not overlap with any rule antecedent, the two closest
neighbouring rules can be identified based on a given fuzzy distancemetric, which is the aggregation (usually weighted
average) of the distances between the antecedent items and their counterparts in the observation (Huang and Shen
(2008)). Then, an indeterminate rule is generated such that its antecedents are as ’close’ (given a fuzzy distance metric)
to the given input as possible. From this, a conclusion is derived by ensuring the shape distinguishability between the
conclusion and the consequence of the intermediate rule is equal to that between the antecedents of the interpolated
rule and intermediate rule.

The technical details of the above approach can be found in Huang and Shen (2008), which are omitted here
due to space limitation. FRI approaches have been further developed from different perspectives. For instance, adap-
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tive fuzzy interpolation was proposed to guarantee the interpolated results are consistent throughout the inference
processes (Yang and Shen (2009, 2011); Cheng et al. (2016); Yang et al. (2017a)); rough-fuzzy rule interpolation was
proposed for both representing the knowledge involving higher order uncertainty and facilitating rule interpolation
with such knowledge (Chen et al. (2016)); dynamic version of fuzzy rule interpolation was proposed to add significant
rules dynamically (Naik et al. (2017)); and experience-based fuzzy rule interpolation enables rule base involvement
and revision whilst performing fuzzy inferences (Li et al. (2016)).

The experience-based fuzzy rule interpolation is particularly useful in this work for manual task completion time
estimation thanks to its ability in adaptively generating and revising the rule base when only limited training data
and/or expert knowledge is available. In particular, this system firstly initialises the rule base with a very limited
number of rules representing the limited incomplete knowledge. Then, based on the existing rule’s usage frequency
information, historic performance information and distances between observations and existing rules, the two rules
with the most important significances are selected for FRI rather than the two closest neighbouring rules as imple-
mented in Huang and Shen (2008). Finally, the rule base is adaptively generated and revised, which is guided by the
discrepancy between the interpolated result and the actual ground truth.

3 | OVERVIEW OF THE PROPOSED SYSTEM

This work takes a typical manual operation centre, i.e., the collate and pack area in the print industry, as the example
for theoretical development and experimentation. In particular, a collate and pack area deals with all the collating,
packing and other hand finishing processes. In the print industry, this area is usually treated as a single cost centre in
manufacturing Management Information System (MIS), although practically multiple production lines (usually named
lanes in the industry) are often planned and applied by the area manager manually in the collate and pack area for the
performance of multiple jobs in parallel in pursuit of running efficiency; this discrepancy basically disables the MIS.
The proposed system herein accurately estimates the manual task completion time and automates the lane planning
and scheduling.

Note that this work focuses only on the collate and pack operations for simplicity, although the inclusion of tasks
on machines is a scaled up version of this proposed systemwith more variables and constraints. The proposed system
in this work is illustrated in Figure 1, which takes a set of manual jobs as inputs. The input jobs are annotated by the
sales teamwhich describes the nature of the job. Then the completion times of these jobs on different lane setups are
estimated based on the job annotations, which are in turn fed forward to an optimisation algorithm, GA particularly
in this work, for job planning and scheduling. After the planing/scheduling is implemented, the actual time used for
each manual operation is compared with the estimated one, and the rule base is updated based on this feedback. The
proposed system is able to learn whilst it performs and thus it will generally evolve and perform better along time.
The two key components of the system, including the fuzzy inference sub-system and the GA subsystem, are detailed
in the next two sections.

4 | MANUAL TASK COMPLETION TIME ESTIMATION

The completion time of a manual task is estimated by the experience-based fuzzy interpolation system as introduced
in Section 2.2, which is demonstrated in Figure 2. The system mainly comprises of three parts: a rule base, an FRI
subsystem (particularly a transformation-based approach (T-based) used in this work) and a rule base revision mech-
anism. In particular, the rule base is initialised based on limited expert knowledge, or more specifically based on the
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F IGURE 1 The overview of the proposed job planning and scheduling system

expertise of the manager of the collate and pack area in this paper. The rule base is then constantly revised by the
rule base revision mechanism whilst the system performs inferences by the transformation-based FRI. These three
main components are detailed in the following subsections.

Rule Base 

Revision

Incoming Job

Rule

Base Updating

information

Decision
T-Based FRI

Job Review

Neighbouring 

rules

FeedbackInput

F IGURE 2 Experience-based fuzzy interpolation system

4.1 | Rule Base Initialisation

The lanes run in the collate and pack area are traditionally planned and scheduled by the area manager using their
expertise knowledge. For simplicity and rule of thumb, the manager usually only implements three types of lanes: i)
small lanes each implemented by one worker, ii) medium lanes each implemented by 4 workers, and iii) large lanes
each implemented by 8 workers. Of course, other types of lanes may also be implemented for exceptional situations
in order to achieve a deadline, but these are organised ad hoc without any serious planning and scheduling, and thus
not considered in this work. The manager usually pursues both operational and managerial efficiency when setting
up lanes. Note that in this work, it is assumed there is one shift per day, each lasting 8 hours. The expert knowledge
is used in this work to initialise a fuzzy rule base for the estimation of the completion times of collate and pack tasks
as discussed in the next subsection.

According to the expert knowledge, the time for completion regarding a given manual task on a particular lane
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setup depends on a number of factors, typically including the object size, the task complexity, the number of parts,
the total glue length, the number of applications of glue, the number of staples, and the number of folds; the feature
values of each job are always provided by the sales team in the format of annotations. The unskilled nature of the
assembly staff role implies a relatively short work life on this particular function. The worker may either move on to
more skilled operations, be seasonal and only stay with the company in a matter of months, weeks, or even days, or
threshold to an accepted level for their working life. The skill of the worker is therefore not a factor or parameter
in the scheduling. This domain knowledge, which may vary from manufacturer to manufacturer, is used in this work
to generate an initial rule base. The process of converting expert knowledge, usually expressed as linguistic rules, to
fuzzy rules is beyond the scope of this paper, and a classical example of such process can be found in Mamdani (1977).
Of course, if there are sufficient data available, data-driven approaches can also be used for rule base generation (Tan
et al. (2016)), but this is usually not the case for most of the manufacturers due to the lack of data. As each piece of
knowledge may be of different quality, a weight is also assigned to each rule indicating the quality of the rule. The
variables used in the rule base and their domains are detailed in Table 1; and each rule is of one of the three following
formats:

R
j
1 : IF x1 is A

j
1 and x2 is A

j
2 and · · · and x7 is A

j
7,

THEN z1 is B j1 (w
j
1)

R
j
4 : IF x1 is A

j
1 and x2 is A

j
2 and · · · and x7 is A

j
7,

THEN z4 is B j4 (w
j
4)

R
j
8 : IF x1 is A

j
1 and x2 is A

j
2 and · · · and x7 is A

j
7,

THEN z8 is B j8 (w
j
8),

(1)

where A and B are fuzzy sets; w represents the weight of the rule expressing the confidence of the corresponding
domain knowledge; zk represents the lane with k workers; and R j

k
represents the j t h rule regarding a lane with k

workers.

TABLE 1 Variables and their domains

Variable Meaning Domain

x1 Object size {very small, small, medium, large, very large}

x2 Task complexity {very easy, easy, medium, complex, very complex}

x3 No. of parts A fuzzy integer number in a certin range

x4 Total glue length A fuzzy real number in a certain range

x5 No. of glue applications A fuzzy integer number in certain range

x6 No. of staples A fuzzy integer number in a certain range

x7 No. of folds A fuzzy integer number in a certain range

z1 Time on a small lane A fuzzy real number in a certain range

z4 Time on a medium lane A fuzzy real number in a certain range

z8 Time on a large lane A fuzzy real number in a certain range
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Note that the rules above represent the rules of thumb in practice for manual lane planning and job allocations,
but they usually do not lead to optimal operational efficiency. In order to enable the application of a JSS system
for global optimisation of the manufacturing processes, an accurate estimation of the completion time for ad hoc
lanes is of crucial importance. In other words, the times for completion need to be accurately estimated for all the
combinations of inputs from the variable input domain with regard to various lanes of different sizes, which can be
collectively represented as rules as:

R
j
k
: IF x1 is Aj1 and x2 is A

j
2 and · · · and x7 is A

j
7

THEN zk is B jk (w
j
k
),

(2)

where k = {1, 2, · · · ,m }, m represents the largest number of workers on a single lane, and m takes 8 in this work.
The complete rule base is impossible to be implemented based on the domain knowledge of the collate and pack area
manager due to the complexity of the problem. Fortunately, this can be solved by adapting the recently proposed
experience-based rule base generation and adaptation approach (Li et al. (2016)) as detailed in the next subsection.

4.2 | Fuzzy Rule Interpolation

The initialised rule base is very sparse. Suppose now there is a new collate and pack task which can be described as
x1 = A

p
1 , x2 = A

p
2 , · · · x7 = A

p
7 as shown in the gray row in Table 2. This new input is not covered by any rule in the

rule base. Then the neighbouring rules need to be identified to support the interpolation of completion times for the
given new task based on different lane setups. Suppose that the closest neighbouring rules in the sparse rule base
regarding the given input are identified and explicitly shown in Table 2, including:

R f1 : IF x1 is Af1 and x2 is A
f
2 and · · · and x7 is A

f
7

THEN z1 = B f1 (w
f
1 ),

R
g
1 : IF x1 is Ag1 and x2 is Ag2 and · · · and x7 is Ag7

THEN z1 = B
g
1 (w

g
1 ),

Rh4 : IF x1 is Ah1 and x2 is A
h
2 and · · · and x7 is A

h
7

THEN z4 = Bh4 (w
h
4 ),

R l4 : IF x1 is A
l
1 and x2 is A

l
2 and · · · and x7 is A

l
7

THEN z4 = B l4 (w
l
4).

(3)

TABLE 2 The inference process

In order to estimate the time for completion by a small lane with one worker, the two ’closest’ rules R f1 and R g1
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in the rule base are identified based on a given fuzzy distance metric. From this, the value of variable z1 for the given
task can be estimated by means of fuzzy extrapolation using the approach briefed in Section 2.2. Similarly, the time
for completion by a medium lane with four workers can be estimated using neighbouring rules Rh4 and R l4 through
fuzzy interpolation. From this, the time lengths of completion with 2-worker and 3-worker lanes for the give task
can be interpolated from these two extrapolated and interpolated rules by artificially taking the number of workers
on the lane as a rule antecedent attribute. The time lengths of completion based on any other lane setups can be
either interpolated or extrapolated in the same way. Note that some of the interpolated/extrapolated rules that have
been proven accurate which does not present in the existing rule base will be added in the rule base. This means that
the rule base will become denser and denser after the deployment of the proposed system to enable the system to
adaptively learn from practice.

The choosing of the closest neighbouring rules for interpolation/extrapolation can be different with the situation
discussed above, andmultiple optionsmight be available. Suppose that the part of the rule base in the running example
has been updated as illustrated in Table 3 (because interpolated/extrapolated rules R p3 and R p4 have been added in the
rule base during the rule base revision which is discussed later in Section 4.3). Another new task presents which can
be described as x1 = A∗1 ' A

p
1 , x2 = A∗2 ' A

p
2 , · · · x7 = A∗7 ' A

p
7 as shown in the gray row in Table 3. In this case, it is

clear that neighbouring rules Rh4 and R l4 can be used for interpolation and denote the interpolated results as Bp4
′. In

the same time, by artificially taking the number of workers on lanes as an extra rule antecedent, the completion time
can also be estimated from rules R p3 and R p5 and the result is denoted as Bp4

′′. In this case, the final result is a weighted
aggregation of these two interpolated results in order to generate a global result, that is:

B
p
4 = λB

p
4
′
+ (1 − λ)B

p
4
′′
, (4)

where λ is problem specific and 0.5 is used as a default value in this work.

TABLE 3 The evolved inference process

4.3 | Rule Base Revision

The rule base keeps being revised based on its performance whilst it performs fuzzy inferences after the system is
deployed. This is mainly achieved using a feedback mechanism. Upon the completion of a collate and pack task, the
real completion time is compared with the estimated completion time; and the comparison result is used to determine
the quality of the interpolated rule which is expressed as the weight of the interpolated rule. In particular, the weight
w of an interpolated/extrapolated rule is defined as:

w = e−
(t−t
′
)2

a , (5)
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where a(a > 0) is an adjustable parameter indicating the time error tolerance, and t and t ′ represent the actual and
estimated completion times, respectively. It is clear that the maximum value of weight is 1, which represents the time
predicted by the system exactly matches the time spent in the real-world case. In the work, a = 30 is applied, which
is provided by the experts.

The interpolated rule may be used to replace an existing rule in the rule base, to extend the existing rule base or
simply to be ignored. The framework of the rule base updating procedure is illustrated in Figure 3. An interpolated
rule that has been proven accurate will be added into the rule base if there is not any similar rules included in the rule
base. Suppose that R ∗ is an interpolated rule, which is represented as “IF x1 is A∗1 and x2 is A

∗
2 and · · · and x7 is A

∗
7

THEN zk = B∗
k
(w ∗
k
)", and that rule R is a rule in the existing rule base which is represented as “IF x1 is A1 and x2 is A2

and · · · and x7 is A7 THEN zk = Bk (w )". The similarity degree of the these two rules S (R ∗, R ) can then be computed
as:

S (R ∗, R ) =

7∑
j=1

S (A∗
j
,Aj ) + S (B

∗,B)

7 + 1
, (6)

where S (A∗
j
,Aj ) represents the similarity degree between the j t h antecedents of the interpolated rule R ∗ and the

existing rule R , and S (B∗,B) indicates the degree of similarity between the two consequences. Different approaches
have been developed for similarity calculation between fuzzy sets (Chen and Chen (2003)). For instance, if triangular
fuzzy sets are employed, each fuzzy set A can be represented as A = {a1, a2, a3 }, where (a1, a3) is the support of
the fuzzy set and a2 is the core or normal point of the fuzzy set. In this case, the degree of similarity between two
triangular fuzzy sets A∗

j
and Aj can be calculated as:

S (A∗j ,Aj ) = 1 −

3∑
k=1
|a∗
j k
− aj k |

3
. (7)

Add R* Ignore R*Ignore R*  
Replace Ri 

by R*

No Yes

Rule        in the rule base Interpolated rule 

No Yes

No Yes

Updated

Rule Base

F IGURE 3 The flowchart of rule base revision

Given a similarity threshold δ , if the similarity degrees between the interpolated rule and all existing rules in the
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rule base are less than δ , a potential new rule for the rule base is identified. From this, if the weight of this newly
interpolated rulew ∗ is greater than a given weight thresholdϕ (i.e.,w ∗ > ϕ), this newly interpolated rule will be added
into rule base; otherwise, the interpolated rule will be ignored due to its poor quality. If the similarity degree between
the interpolated rule and one or more existing rules are greater than the given threshold δ , the set of pair-wisely
similar rules will be determined. In this case, the system will compare the weights of all these rules, and only keeps
the rule with the highest weight value in the identified set. This action ensures that only the most accurate rule within
the set is kept in the rule base, such that the rule base is concise and also of a good generalisation ability. By following
the rule base revision progress, the number of rules in the rule base and accordingly the system complexity can be
controlled by adjusting the similarity threshold δ and weight threshold ϕ.

5 | MANUAL JOB SHOP PLANNING AND SCHEDULING

Manufacturing efficiency can be significantly improved by employing the recent advances in artificial intelligence and
this is true for themanufacturing of POS and POPwhich involves complexmanual operations. A POS or POP is usually
manufactured in multiple stages, such as printing, cutting, collating and packing, but, as stated in the Introduction
section, only themanual collate and pack stage is considered in this paper. The objective of job planning and scheduling
in this work is to minimize the make span, which not only leads to economic efficiency, but also provides informative
information for the sales team such that they can take orders based on available manufacturing capacity. The task of
an intelligent JSS system is then to find the best way of collating and packing with the shortest make span ensuring
every job is completed within a given deadline, which requires the accurate estimation of completion time for manual
tasks in different lane conditions based on the approach proposed in the last section.

5.1 | Problem Representation and Population Initialization

Genetic algorithm (GA), as an adaptive heuristic search approach for solving both constrained and unconstrained
optimisation problems, has been successfully and wildly utilised to solve JSS problems. In particular, the algorithm
firstly initialises the population with random individuals, and then selects a number of individuals for reproduction
to produce the next generation of individuals by employing the genetic operators, typically crossover and mutation.
The algorithm repeats this process until a satisfactory solution is generated or a pre-defined maximum number of
iterations has been reached.

Assume that n incoming jobs are on the waiting list for manufacturing. A chromosome or individual, denoted as
I , is designed to represent a potential ‘solution’ in this proposed system, as illustrated in Figure 4. An individual is
formed by n genes, and each gene represents a job planning allocation. In particular, gene r represents that job Jr is
allocated to lane kr which is a lane with from 1 worker to 8 workers.

5.2 | Population Initialisation

The initial population Ð = {I1, I2, · · · , I |Ð| } is formed by randomly assigning a job to an arbitrary valid lane. For a
given job associated with a deadline, the required completion times for each of the 8 lanes with 1 to 8 workers can
be accurately estimated by employing the proposed completion time estimation system as introduced in Section 4. A
job can only be assigned to a valid lane on which the job can be completed within the required deadline. For instance,
suppose that a collate and pack task requires to be done by the end of day 2 from the time of scheduling (i.e. two
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F IGURE 4 Chromosome encoding

shifts that is 16 hours), and that the estimated completion times on the 8 lanes from small to big are estimated as
z1 = 18.3 hours, z2 = 16.56 hours, z3 = 14.53 hours, z4 = 12.65 hours, z5 = 10.74 hours, z6 = 8.87 hours, z7 = 6.95

hours, and z8 = 5.1 hours. It is clear based on the deadline that valid lanes are those with 3, 4, 5, 6, 7 or 8 workers.
Small lanes with 1 or 2 workers are not valid as it will take over two days to complete the job on these lanes.

5.3 | Objective Function

An objective function is used in the GA to determine the quality of individuals. The aim of the proposed system is
to optimise the lane planning and job scheduling, by minimising the time cost of the collate and pack operations and
ensuring all jobs can be done within the specified deadline. Therefore, the objective function in this work is defined
as:

min t , (t = t1 + · · · + tn ), subj ect t o : [t r , r ∈ [1, · · · , n], t r ≤ dr , (8)

where t is the required time to complete all the jobs in the waiting list, t r represents the estimated completion time
for job Jr , and dr denotes the given deadline for corresponding job r . The individual with the smallest value of t
represents the optimal solution in the population.

5.4 | Selection

A number of individuals need to be selected to generate the next generation of population. The progress of the
selection in this work is implemented by the fitness proportionate selection method, also known as the roulette wheel
selection. Given the current population Ð, if fi is the fitness value of individual Ii in Ð, its probability of being selected
to generate the next generation is:

p(Ii ) =
fi∑|Ð|
j=1

fi
, (9)

where |Ð | is the total number of individuals in the population, or population size. In the proposed system, the fitness
value fi of individual Ii is defined by adopting the linear-ranking algorithm ( Baker (1985); Li et al. (2018)), which is
defined as:

fi = 2 −max +
2(max − 1))(ri − 1)

|Ð |
, (10)
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where max is a bias or selective pressure towards the fittest individuals in the population, ri is the ranking position of
Ii in Ð.

5.5 | Reproduction

For a selected number of individuals, two genetic operators, crossover and mutation, are applied to breed the next
generation of individuals, as shown in Figure 5. In this work, a two-point crossover operation is adopted, which
exchanges the genes between a pair of parent individuates in certain order to generate a pair of offspring (Anand and
Panneerselvam (2016)). In particular, the crossover operation firstly randomly selects two crossover points, say p1
and p2 in parents Ii and I j , and then copies the genes between the two selected crossover points from Ii and I j to
the same positions of offspring I ′

i
and I ′

j
. After that, the rest fields of I ′

i
will be filled by I j from the left side of the

crossover point p2 in a cyclic order. If any job in a gene already exists in I ′
i
, this gene will be skipped. The second

offspring I ′
j
is generated by following the exact same operation. This crossover process is demonstrated in Figure 6,

which takes 10 genes as an example.
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F IGURE 5 Procedure of reproduction

The second genetic operator is mutation, which is adopted in this work to maintain genetic diversity from one
generation to the next. During the mutation operation, a gene from the parent is randomly selected and the planned
lane in the gene is randomly mutated to another valid lane of a different size, thus to generate an offspring. The newly
bred individuals and some of the best individuals in the current population Ð jointly form the next generation of the
population ( |Ð |). Note that only one crossover or mutation operation will be allowed to occur per generation and the
pre-defined rates are used to control the percentage of operations. In addition, in order to guarantee the generated
offspring represent a valid solution, a deadline constraint is always applied to make sure each job can be done within
the required deadline. If a produced individual satisfies the applied deadline constraint, which means all scheduled
jobs can be finished before the deadline, this individual will be kept for the next generation of population. Of course,
if the number of valid individuals in the old generation is less than |Ð | which is usually the case during the first stage of
iterations, the produced individual is also kept (despite not being a valid solution, because it increases genetic diversity
in the gene pool).
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F IGURE 6 The crossover operation

5.6 | Iteration and Termination

The reproduction process as discussed above is repeated until a pre-definedmaximum number of iterations is reached
or the value of objective function of an individual is less than a pre-specified threshold. When the termination condi-
tion is reached, the fittest individual in the current population is the optimal solution. Note that the proposed system
may fail to generate a viable solution, if too many jobs need to be scheduled which are beyond the maximummanufac-
turing capacity. In this case, the GA process will keep trying until the maximum number of iterations has been reached.
This may be addressed by applying soft flexible scheduling techniques (Miguel and Shen (2003)), which searches a
solution that minimises the cost of constraint violation. This extension is beyond the scope of the current project,
which remains as a piece of future work.

6 | EXPERIMENTATION

The two main components of the proposed system are validated and evaluated int this section using illustrative ex-
amples and a simulated data set.

6.1 | Illustrative Examples on Rule Base Evolvement

Three illustrative examples are taken in this section to demonstrate theworking procedure of the proposed completion
time estimation system. In these examples, the value of λ in Equation 4 is pre-defined as 0.5, the threshold for similarity
degree (δ ) is set to 0.8, and the threshold (ϕ) for weight comparison is set to 0.8. For simplicity and to facilitate
comprehensibility, only triangular membership functions are used in the example to represent fuzzy sets.

6.1.1 | Model Construction

Themodel takes 7 inputs, as listed in Table 1, which jointly describe a givenmanual collate and pack task, and it predicts
the time of completion for a particular type of lane of certain size. In particular, two inputs, including the object size
and the task complexity, take values from fuzzy partitioned variable domain based on the domain knowledge as shown
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in Figure 7; and the other inputs are fuzzy numbers. These fuzzy numbers are usually provided by the in-house job
estimating team. For instance, for a given task, the in-house job estimating team may estimate that the number of
parts is between 5 and 8, but it is most likely to be 7. Then a triangular fuzzy number (4, 7, 8) will be used as the input
for the attribute of the number of parts.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VS S M L VL

(a) Object size

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VE E M C CV

(b) Task complexity

F IGURE 7 Fuzzy partition of antecedent attributes

6.1.2 | Scenario 1

Suppose that the initialised rule base only contains 5 fuzzy rules (R 1
1 , R

2
1 , R

3
4 , R

4
4 , and R 5

8 ), which is extracted
from the domain knowledge of the area manager, as shown in Table 4. There is a collate and pack task given as
I = (x1 = (0.1, 0.2, 0.3), x2 = (0.1, 0.2, 0.3), x3 = (4, 5, 6), x4 = (2.0, 2.2, 2.8), x5 = (3, 4, 5), x6 = (2, 4, 5), x7 = (2, 3, 5)),
which obviously does not overlap with any rule antecedents in the given rule base. In order to enable global planning
and scheduling by an intelligent job shop scheduling system, the completion times of the task on various lanes are
estimated first using FRI (and the transformation-based FRI is particularly used in this example).

TABLE 4 The initialised rule base

No.
Antecedents Consequents

x1 x2 x3 x4 x5 x6 x7 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
1 (0.05,0.15,0.25) (0.05,0.15,0.25) (1,2,3) (0.8,1.5,1.8) (1,2,3) (1,2,3) (1,2,3) 7.2(1)
2 (0.05,0.15,0.25) (0.05,0.15,0.25) (4,6,7) (3.0,3.5,4.0) (5,7,8) (4,6,8) (3,4,5) 12.0(1)
3 (0.2,0.35,0.5) (0.4,0.6,0.8) (7,9,10) (8.2,10.5,11.2) (6,7,8) (7,9,10) (5,6,7) 4.9(1)
4 (0.4,0.6,0.8) (0.7,1,1) (12,14,15) (18.5,20.8,22.5) (7,9,10) (13,14,16) (7,8,9) 8.9(1)
5 (0.7,1,1) (0.7,1,1) (17,18,20) (28.5,30.5,31.2) (10,11,12) (18,20,21) (9,10,11) 6.0(1)

There are two rules available with the consequence being the completion time on a lane with 1 worker, two
rules available with consequence being the completion time on a lane with 4 workers, and one rule available with
consequence being the completion time on a lane with 8 workers in the initialised rule base. From these rules, the
completion time required for the given task on a lane with 1 worker (i.e., z1 = 9.37) can be interpolated from neigh-
bouring rules R 1

1 and R 2
1 ; and that on a lane with 4 workers (i.e., z4 = 2.24) can be extrapolated using neighbouring

rules R 3
4 and R

4
4 . From this, the time of completion on the rest of lanes for the given task can either be interpolated or

extrapolated based on the previously generated rules R ∗1 and R
∗
4 by artificially taking the number of workers on the

lane as an input attribute. The generated results are listed in Table 5.

After feeding the results into the job shop scheduling system, assume that a globally optimised solution was
generated which has planned the task on a lane with one worker, and such a lane was finally scheduled in the collate
and pack area for the given task. Upon the completion of the task, the actual time taken for this task is t = 9.85.
From this, the weight of the interpolated rule is calculated as w ∗1 = 0.95 based on Equation 5. Therefore, the newly
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TABLE 5 Times of completion for scenario 1
Antecedents Consequents

x1 x2 x3 x4 x5 x6 x7 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

(0.1,0.2,0.3) (0.1,0.2,0.3) (4,5,6) (2.0,2.2,2.8) (3,4,5) (2,4,5) (2,3,5) 9.37 4.69 3.12 2.24 1.87 1.56 1.34 1.17

interpolated rule can be represented as:

R ∗1 : IF x1 is (0.1, 0.2, 0.3) and x2 is (0.1, 0.2, 0.3) and

x3 is (4, 5, 6) and x4 is (2.0, 2.2, 2.8) and

x5 is (3, 4, 5) and x6 is (2, 4, 5) and

x7 is (2, 3, 5)

THEN z ∗1 = 9.37 (0.95).

(11)

According to the rule revision procedure discussed in Section 4.3, once a new rule has been interpolated, the
similarity degree between the newly interpolated rule and the existing rules in the rule base are computed to determine
the actions for rule base revision. Given the newly interpolated rule as shown above in Equation 11, the similarity
degrees between it and all existing rules in the rule base are calculated. Note that there are only two rules R 1

1 and R
2
1

whose consequences are the time of completion on a lane with one worker. The sub-results and the final results of the
calculation based on Equation 6 are summarised in Table 6. As the similarity degrees are less than the given threshold
δ = 0.8 and the weight of the rule (w ∗1 = 0.95) is greater than the predefined threshold ϕ = 0.8, this interpolated rule
R ∗1 is added into rule base.

TABLE 6 The details of similarity degree calculation
i S (x ∗1 , x

i
1) S (x ∗2 , x

i
2) S (x ∗3 , x

i
3) S (x ∗4 , x

i
4) S (x ∗5 , x

i
5) S (x ∗6 , x

i
6) S (x ∗7 , x

i
7) S (z ∗1 , z

i
1) S (R ∗4, R

i
4)

1 0.75 0.75 0.4 0.59 0.5 0.54 0.6 0.77 0.61

2 0.75 0.75 0.88 0.65 0.6 0.6 0.82 0.78 0.73

6.1.3 | Scenario 2

The rule base keeps being revised whilst the system performs inferences. Suppose that the rule base has now been
updated as shown in Table 7, and a new task, which is similar to the one discussed in Scenario 1, appears. Therefore,
the time lengths of completion on different lanes need to be estimated. Of course, the completion time on lanes
with 1 worker and 4 workers can be directly acquired from rules R 2

1 and R
2
4 . The time of completion on a lane with 2

workers can be interpolated either from R 1
2 and R

3
2 , or R

2
1 and R

2
4 by artificially taking the number of workers as a rule

antecedent. In particular, result z 22
′
= 6.64 is interpolated using neighbouring rules R 1

2 and R 3
2 ; and result z 22

′′
= 6.99

is interpolated using neighbouring rules R 2
1 and R 2

4 by considering the number of workers as an input attribute. In
this case, the final result is estimated as the average of the two interpolated results based on Equation 4, which is
z 22 = 6.82. The estimation of the completion time on other types of lanes can also be implemented in one of the ways
discussed above, but the calculation details are omitted.

Suppose that the lane with 2 workers has been selected by the job scheduling system, and the actual time taken
for this manual task is t = 9.6. Based on Equation 5, the weight of the interpolated rule is determined as w ∗2 = 0.79.
Once the newly interpolated rule is constructed, the similarity between this interpolated rule R ∗2 and the existing
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TABLE 7 The updated rule base

No.
Antecedents Consequents

x1 x2 x3 x4 x5 x6 x7 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

1 (0.05,0.15,0.25) (0.05,0.15,0.25) (1,2,3) (0.8,1.5,1.8) (1,2,3) (1,2,3) (1,2,3) 7.2(1) 5.36(0.8) 1.7(0.8)
2 (0.1,0.2,0.3) (0.1,0.2,0.3) (4,5,6) (2.0,2.2,2.8) (3,4,5,) (2,4,5) (2,3,5) 9.37(0.95) 2.24(0.98)
3 (0.05,0.15,0.25) (0.05,0.15,0.25) (4,6,7) (3.0,3.5,4.0) (5,7,8) (4,6,8) (3,4,5) 12.0(1) 8.97(0.8) 2.9(0.8)
4 (0.2,0.35,0.5) (0.4,0.6,0.8) (7,9,10) (8.2,10.5,11.2) (6,7,8) (7,9,10) (5,6,7) 4.9(1)
5 (0.4,0.6,0.8) (0.7,1,1) (12,14,15) (18.5,20.8,22.5) (7,9,10) (13,14,16) (7,8,9) 8.9(1)
6 (0.7,1,1) (0.7,1,1) (17,18,20) (28.5,30.5,31.2) (10,11,12) (18,20,21) (9,10,11) 6.0(1)

rules R 1
2 and R

3
2 are calculated as: S (R ∗2, R

1
2 ) = 0.59 and S (R ∗2, R

3
2 ) = 0.60, which are both less than the given threshold

δ = 0.8. According to the rule base revision procedure as shown in Figure 3, the interpolated rule R ∗2 therefore is
ignored, and the rule base keeps unchanged.

6.1.4 | Scenario 3

Suppose that now another collate and pack task appears as I = (x1 = (0.5, 0.7, 0.9), x2 = (0.4, 0.7, 0.8), x3 = (10, 11, 12),
x4 = (19.5, 21.2, 22.0), x5 = (7, 8, 9), x6 = (11, 12, 13), x7 = (7, 8, 9)). The times of completion on lanes with 1 worker,
2 workers and 4 workers for the given task can be either interpolated or extrapolated from the rule base shown in
Table 7. In particular, the completion time on laneswith 1worker and 2workers can be extrapolated fromneighbouring
rules (R 2

1 , R
3
1 ) and (R

1
2 , R

3
2 ), respectively; and the completion time on a lane with 4 worker can be interpolated from

neighbouring rules R 4
4 and R

5
4 . The time estimation based on other lane setup can then be interpolated or extrapolated

from the previously interpolated and extrapolated rules by artificially taking the number of rules as an input attribute.
The estimated results for all lane setups are listed in Table 8.

TABLE 8 Times of completion for scenario 3
Antecedents Consequents

x1 x2 x3 x4 x5 x6 x7 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

(0.5,0.7,0.9) (0.4, 0.7, 0.8) (10, 11, 12) (19.5, 21.2, 22.0) (7,8 ,9) (11,12,13) (7,8,9) 27.20 13.60 9.07 6.7 5.44 4.53 3.89 3.40

The job scheduling system finally selects the lane with 4 workers during the operation optimisation stage. After
the job is completed, the weight for this interpolated rule is calculated as w ∗4 = 0.78. The degrees of similarity be-
tween this interpolated rule and the existing rules are computed as: S (R ∗4, R

1
4 ) = 0.26, S (R ∗4, R

2
4 ) = 0.40, S (R ∗4, R

3
4 ) =

0.46, S (R ∗4, R
4
4 ) = 0.73, S (R ∗4, R

5
4 ) = 0.82. It is clear that a similar rule R 5

4 to the newly interpolated rule exists in the
rule base as S (R ∗4, R

5
4 ) = 0.82. Then, the weight of the interpolated rule R ∗4 is compared with that of the existing rule

R 5
4 , and w

5
4 = 1 > w ∗4 = 0.78. Consequently, the interpolated rule is discarded and the rule base remains as it was.

6.2 | Manual Assembly Job Planning and Scheduling

Due to the commercial sensitivity of real-world performance data, two experiments based on a simulation data set
are reported in this section to demonstrate the working of the proposed job scheduling system and to confirm the
power of the proposed system in improving manufacturing efficiency.

6.2.1 | Simulation 1 - System Demonstration

The data set contains 10 collating and packing jobs that need to be scheduled, which are with various complexities
and different dispatch deadlines. The environment of the collate and pack area in this experiment is the same as the
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environment introduced in Section 6.1, which is able to accommodate 8 different sizes of lanes. There aremaximally 13
workers available per day (8 working hours) to operate multiple jobs on multiple lanes at the same time. Consequently,
based on these requirements, a large number of lane combinations are available for lane planning and job scheduling.
For instance, lanes with 1, 4 and 8workers are able to be operated at the same time, and the combination of lanes with
1, 3, 4 and 5 workers are also allowed amongst others. The aim of this demonstration is to use the proposed GA-based
JSS system to find an optimal solution to schedule the 10 jobs and plan their lanes, thus to minimise the temporal cost
of collating and packing and also to provide the preview of the available manufacturing capacity for the marketing
and sales team. Also, for operational efficiency and as a common practice, all jobs are better to be finished within
one day, such that the work shop can be cleared, cleaned and prepared for the jobs on the following day. This has
been used as a hard constraint in the experiments. In this experiment, the parameters of GA are configured as follow:
crossover rate = 0.85, mutation rate = 0.05, maximum iteration = 10,000 and the termination condition for an optimal
solution is the time cost is not getting any better in 200 iterations. These parameters are empirically determined in
this experiment.

Assume that the completion times of each job on different lanes have been estimated by the proposed task
completion time estimation system, which are listed in columns 2-9 and 12-19 in Table 9, and columns 10 and 20
indicate the dispatch deadline of the corresponding job in days. Based on the given deadlines of each job and the
estimated completion time on each lane, the valid lanes to complete the individual jobs can be identified, as shown
in Table 10. From this, the initialised population for the GA can be generated. Figure 8 shows two examples of
randomly generated individuals. From the individual encoding method, the completion days for finishing all 10 jobs
can be easily determined, which are 6 and 5 days, respectively, as also illustrated in the figure. Note that, during the
population intialisation stage, the constraint of deadline is not considered for fast starting. Once the population has
been initialised, the genetic operators of crossover and mutation, are employed to generate the next generation of
population.

001 7 004 8 008 7 009 6 002 2 003 1 005 6 010 8 007 1 006 5

005 8 002 6 007 7 010 4 001 5 004 2 006 5 009 5 008 5 003 7

Individual 1

Individual 2

}

Job 

ID
Scheduled 

Lane 

Scheduled Sequence 

1
st

 10 
th

 

Day 1 Day 2 Day 3 Day 4 Day 5

Day 1 Day 2 Day 3 Day 4 Day 5

Day 6

F IGURE 8 Two examples of randomly generated individuals for the initialised population

In this work, a two points crossover operation is adopted. Suppose that two parent individuals have been selected
for crossover operation, as shown in Figure 8, and two crossover points, 3 and 6, have been randomly selected. The
process of the crossover operation is illustrated in Figure 9, which reproduced two new scheduling solutions, named
as offspring 1 and offspring 2. These two offspring individuals represent two new lane plans and job schedules for
all the 10 jobs, which are shown in Table 11. In this situation, it is clear that a better solution has been obtained
by offspring 1 after the crossover operation, which reduced the total completion days to 3 days from 6 days, at the
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TABLE 9 Required completion times for the 10 simulated jobs

Job

Number

Lane

1

Lane

2

Lane

3

Lane

4

Lane

5

Lane

6

Lane

7

Lane

8

Deadline

(days)

1 12.80 12.43 10.28 8.66 7.05 5.55 4.57 2.99 2

2 8.97 7.11 5.93 5.78 4.14 3.15 1.98 0.99 2

3 7.70 6.72 5.74 4.75 3.70 2.79 1.81 0.82 4

4 9.25 7.98 7.02 5.91 4.63 3.68 2.57 1.45 2

5 16.21 14.75 12.92 10.35 10.47 7.66 6.18 4.07 2

6 14.98 13.48 11.77 10.17 7.98 6.96 5.37 3.76 3

7 7.74 6.76 5.77 4.78 3.54 2.81 1.83 0.84 4

8 19.02 17.36 15.43 13.36 11.23 9.35 7.44 5.38 4

9 16.64 15.77 13.30 10.80 10.77 7.79 6.46 4.35 2

10 13.00 11.65 9.13 7.70 6.94 5.83 4.41 2.96 2

TABLE 10 The smallest valid lane for each job

Job

1

Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Job

8

Job

9

Job

10

Smallest valid lane 4 7 8 7 3 4 8 2 3 5

same time each job can be implemented in the specified deadline. However, offspring 2 leads to late completion for
jobs 5 and 7, which consequently make an invalid solution. In this case, only offspring 1 will be used to replace often
one of the worst individuals in the current population to produce the next generation of population. As an invalid
solution, offspring 2 is ignored. The mutation operation in this work randomly mutates the scheduled lane number of
a single job in a selected individual. In this demonstration, taking offspring 1 in Figure 9 as an example, the mutation
point 9 has been randomly selected, and the scheduled lane size of job 6 in gene 9 is mutated to 8. As a result, the
completion day of the new solution after the mutation operation was increased to 4 days from 3 days. Although it is
not an optimal solution compared with current best individual, it is still a valid solution, as all jobs can be completed
in time. Therefore, this offspring from mutation operation will still be used to replace one of the individuals usually
with the worst fitness in the current population to generate a new generation of population. After a certain number
of iterations, the GA is terminated; and the fittest individual in the population, as shown in Figure 10, indicates the
optimal job schedule for the 10 current jobs. Of course, when a brand new job appears in the waiting list, the JSS
system will be re-employed to update the lane plan and job scheduling. This will guarantee the planned lanes and
scheduled jobs are always optimal and also the available capacity can be seen for a given deadline when the sales
team commits to taking on a new job.

6.2.2 | Simulation 2 - System Evaluation

Currently, many small and medium-sized enterprises (SMEs) and some large manufacturers still manually implement
planning and scheduling ‘collation activities’ outside the core MIS functionality, usually utilising tools, such as spread-
sheets embedded with crude heuristics. Due to jobs’ complexities, manual scheduling in this situation is often prac-
tically implemented as a simple first in and first out queue (FIFO) or an Earliest Deadline First queue (EDF) driven by
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F IGURE 9 Crossover operation for two selected individuals
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dispatching deadlines. Briefly, FIFO is the simplest scheduling algorithm by which the jobs first taken by the manu-
facturer are assumed to be manufactured first. EDF is a dynamic scheduling algorithm to place manufacturing jobs in
a priority queue based on the deadlines. Whenever a new job occurs, the queue will be updated and the jobs with
the closest deadlines will be manufactured first. Consequently, the optimal scheduling solution of all such operations
for all the current jobs is hard to achieve, which not only restricts the efficiency of manufacturing process, but also
often leads to unnoticed late jobs until the times come close to the dispatch deadlines. In order to evaluate how the
proposed scheduling system can improve the efficiency of the POS/POP manufacturing process, a simulated data set
of 50 collating and packing jobs associated with deadlines is utilised in this section. The required completion times of
each job on each lane can be estimated by the proposed task completion time estimation system, which are shown
Table 12.

In order to estimate the proposed scheduling system in manufacturing efficiency, the proposed scheduling ap-
proach is compared with the ones usually used by the collate and pack manager. Note that the collate and pack jobs
are only planned and scheduled by the area manager manually on three types of lanes with 1, 4 or 8 workers; and
the jobs are scheduled on these three lanes using two commonly used planning methods which are the first come
first served (FIFO) method and the earliest deadline first (EDF) method. Different to these manual approaches, the
proposed scheduling system is able to efficiently consider all 8 lanes thanks to the computational and search ability
of the algorithms, which minimises the time cost for the scheduling. The scheduling results using the three different
methods are listed in Table 13. In addition, for comparison purposes, the proposed JSS system is also applied for job
scheduling based only on three types of lanes, small, medium and large, to match the situations of manual panning
methods, and the results are also reported in Table 13.
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TABLE 11 Offspring 1 and Offspring 2 after the crossover operation
Off Spring 1 Off Spring 2

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8

Day 1 3 2 10 9 4 10 1

Day 2 4 1 5 3 2 9

Day 3 7 6 8 6 8

Day 4 5

Day 5 7

TABLE 12 The estimated time for completion on different sizes of lanes for the manual task data set
Arriving

Order
Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8

Dispatch

Deadline

Arriving

Order
Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8

Dispatch

Deadline

1 16.21 14.75 12.92 10.35 10.47 7.66 6.18 4.07 13 26 16.64 15.77 13.30 10.80 10.77 7.79 6.46 4.35 17

2 7.70 6.72 5.74 4.75 3.70 2.79 1.81 0.82 16 27 11.90 11.25 8.87 7.57 6.43 4.94 3.73 2.51 14

3 13.00 11.65 9.13 7.70 6.94 5.83 4.41 2.96 17 28 9.09 9.22 6.62 6.02 4.98 3.42 2.45 1.47 14

4 10.04 9.39 7.23 6.06 5.22 3.43 2.90 1.62 12 29 10.04 9.39 7.23 6.06 5.22 3.43 2.90 1.62 25

5 13.48 13.08 10.82 8.90 7.64 6.78 5.40 3.21 10 30 8.35 7.33 6.28 5.24 4.07 3.16 2.13 1.08 7

6 14.98 13.48 11.77 10.17 7.98 6.96 5.37 3.76 13 31 8.97 7.11 5.93 5.78 4.14 3.15 1.98 0.99 21

7 16.19 14.60 12.77 11.07 9.36 7.65 5.97 4.24 13 32 7.71 6.46 5.40 4.82 3.74 2.79 1.70 0.86 23

8 7.26 6.45 5.37 4.55 3.62 2.79 1.60 0.78 14 33 12.82 11.47 9.98 8.56 7.02 5.72 4.31 2.89 19

9 9.28 7.99 6.84 5.93 4.59 3.69 2.58 1.46 15 34 9.32 8.23 7.08 5.96 4.80 3.72 2.60 1.48 9

10 7.99 6.89 5.45 4.37 3.24 2.12 1.01 0.56 8 35 10.04 9.39 7.23 6.06 5.22 3.43 2.90 1.62 13

11 7.74 6.76 5.77 4.78 3.54 2.81 1.83 0.84 13 36 7.71 6.46 5.40 4.82 3.74 2.79 1.70 0.86 14

12 7.26 6.45 5.37 4.55 3.62 2.79 1.60 0.78 21 37 8.35 7.33 6.28 5.24 4.07 3.16 2.13 1.08 17

13 7.55 6.59 5.61 4.64 3.57 2.70 1.73 0.76 7 38 11.91 10.63 9.22 7.88 6.42 5.20 3.87 2.52 11

14 9.04 8.74 6.56 5.89 4.78 3.36 2.28 1.21 24 39 7.55 6.59 5.61 4.64 3.48 2.70 1.73 0.76 20

15 9.25 7.98 7.02 5.91 4.63 3.68 2.57 1.45 19 40 11.76 10.50 9.10 7.78 6.44 5.12 3.80 2.46 9

16 10.04 9.39 7.23 6.06 5.22 3.43 2.90 1.62 15 41 11.17 9.88 8.12 7.29 5.90 4.40 3.50 2.25 17

17 7.26 6.45 5.37 4.55 3.62 2.79 1.60 0.78 15 42 15.89 14.53 12.54 10.22 10.43 7.35 6.12 3.94 14

18 9.04 8.74 6.56 5.89 4.78 3.36 2.28 1.21 13 43 10.24 9.66 7.40 6.33 5.70 3.94 3.01 1.67 20

19 8.97 7.11 5.93 5.78 4.14 3.15 1.98 0.99 15 44 13.49 13.56 11.36 8.93 7.91 6.82 5.55 3.28 18

20 12.69 12.35 10.22 8.20 6.80 5.30 4.56 2.96 25 45 13.48 12.08 10.82 7.90 6.64 4.78 2.40 1.81 22

21 9.09 7.22 6.62 6.02 4.98 3.42 2.45 1.47 16 46 17.11 15.46 13.54 11.76 9.93 8.18 6.42 4.62 22

22 12.14 10.85 9.42 8.06 6.67 5.33 3.98 2.61 16 47 13.48 13.08 10.82 8.90 7.64 6.78 5.40 3.21 14

23 7.71 6.46 5.40 4.82 3.74 2.79 1.70 0.86 12 48 8.34 7.31 6.26 5.23 3.98 3.15 2.12 1.08 18

24 16.64 15.77 13.30 10.80 10.77 7.79 6.46 4.35 14 49 12.80 12.43 10.28 8.66 7.05 5.55 4.57 2.99 11

25 15.86 14.30 12.50 10.83 9.10 7.47 5.81 4.11 17 50 19.02 17.36 15.43 13.36 11.23 9.35 7.44 5.38 8

Table 13 clearly shows that all the 50 jobs can be efficiently scheduled within 14 days without any jobs delay
or extra working hours by applying the proposed scheduling system, compared with FIFO method and EDF method
that both require 17 days for completion. In particular, the FIFO method leads to multiple job delays, which can be
very costly due to the breach of contracts or last minute premium shipping. Although the job schedule made by the
EDF method does not cause any job delay, some of jobs require extra working hours to be finished on time, such
as Jobs 50, 6 and 47, which consequently will increase the economic cost of the manufacturer. Interestingly, all 50
jobs can also be scheduled for completion using the proposed JSS system following the required dispatch deadlines
without causing any extra hours, if only three packaging lanes are considered by the proposed system. However, in
this case, the jobs progressing days will be increased to 20 days if this method is employed, which costs the business
an additional 6 days.
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TABLE 13 The job scheduling made by different methods ("′" indicates the miss of the dispatch deadline, and "∗"
represents the requirement of extra working hours)

FIFO EDF The proposed System
The proposed System

with three fixed lanes

Lane 1 Lane 4 Lane 8 Lane 1 Lane 4 Lane 8 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 Lane 1 Lane 4 Lane 8

Day 1 2 3 1 13 10 30 13 35 24 23 40 50

Day 2 5 4 6 50∗ 34 40 10 18 40 5 10 18 5

Day 3 8 9 7 49∗ 38 5 23 4 38 49 13 30 49

Day 4 10 11 12 23 4 1 34 30 1 4 38

Day 5 13 14 15 11 6∗ 7 11 6 7 11 34 1

Day 6 17 18 16 8 18 35 36 28 27 47 8 35 6

Day 7 19 21 20 28∗ 27 24 8 19 48 50 36 27 7

Day 8 23 22 24 36 47∗ 42 15 22 42 28 24

Day 9 25 27 26 17 9 16 2 17 21 46 17 48 42

Day 10 30
′ 28 29 2 19 21 29 41 26 2 16 26

Day 11 32 31 33 22∗ 3 25 39 16 14 20 21 22

Day 12 36 34
′ 35 37∗ 41 26 12 9 43 33 39 3 25

Day 13 39 37 38
′

48∗ 15 44 31 45 25 37 10

Day 14 40
′ 41 42 39 43 33 32 37 3 44 9 13

Day 15 45 43 44 12 31 45 12 41 44

Day 16 47 48 46 32 14 46 32 15 33

Day 17 49
′

50
′ 29 20 43 46

Day 18 45 31

Day 19 14 20

Day 20 29

7 | CONCLUSIONS

This paper presented amanual job shopping planning and scheduling system using a GA algorithm and a dynamic fuzzy
model. In particular, the fuzzy model, implemented by adapting the recently proposed experience-based fuzzy rule
interpolation approach, estimates the time of completion for manual collate, assembly and pack tasks on different
lanes with a variety of product configurations and sizes. This provides the necessary prerequisite in implementing
the GA-based intelligent job shop scheduling systems which not only plans the lane arrangement but also schedules
jobs based on the planned lanes. The system was validated and evaluated by illustrative examples and simulated
experiments. The experimental results demonstrated the power of the proposed system in improving manufacturing
productivity and efficiency. This is of high pragmatic and financial interest to the business as lower value work could
be outsourced if it is found to cause delays to higher priority work.

Despite of the success, the work can be further improved in different directions. Firstly, the proposed system
was developed particularly for POS and POP manufacturers in this paper, but the underpinning artificial intelligence
approaches are applicable to any industry with manual tasks involved in the manufacturing processes. Secondly, the
proposed system only considers a simple situation that every worker takes one job per day. This constraint can be
released to further improve the manufacturing efficiency; the implementation of this requires further investigation.
Thirdly, it is worthwhile to investigate how the constraints can be relaxed when too many jobs beyond the maximum
manufacturing capacity need to be scheduled.
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