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This paper arose from our need to rigorize, clarify, and address fully the results 
of Lindley’s paper (Scoring rules and the inevitability of probability, Znternat. 
Statist. Rev. SO, (1982), l-26). Herein, we develop a calculus of admissibility in a 
game theoretic setting. In the case of an additive aggregation function, it is shown 
that decomposable measures, such as those used in fuzzy logics, are admissible. 
Also, the problem of the admissibility of the Dempster-Shafer belief functions is 
investigated via the concept of random sets. It is shown that the class of admissible 
measures in a scoring framework depends on the assumptions concerning the 
aggregation function in use. In particular, for nonadditive aggregation functions, an 
admissible measure may not be transformable to a finitely additive probability 
measure. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

With the advent of Artificial Intelligence and the development of expert 
systems, a number of schools of thought has arisen concerning how uncer- 
tainties in complex real-world situations are to be modeled. In addition to 
probability in all of its variants [34], approaches to uncertainty modeling 
now include the Dempster-Shafer theory of belief functions [26], Zadeh 
fuzzy logic [32], and nonmonotonic logics [20]; a survey of these 
approaches is in [28]. Roughly speaking, the choice of a set-function to 
model the uncertainty involved in a problem at hand is related to the 
pragmatic aspects or, at a deeper level, to the semantic nature of the type 
of uncertainty under consideration. 

Lindley [16, 173 proposed a simple but novel approach, extending 
DeFinetti’s original considerations on coherence of uncertainties to a more 
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general setting, for judging the usefulness of different competing uncertainty 
measures. DeFinetti’s original work [6] may be viewed as a two-person 
zero-sum game, played between player I, “nature” or “the master of 
ceremonies,” and player II, “decision-maker” or “you” or “bookie” as 
denoted variously in the literature [8, 13, 221. DeFinetti’s uncertainty 
game has great appeal: it is determined by the cumulative amount of the 
bets. The concept of admissibility in DeFinetti’s game is in fact a type of 
uniform local admissibility (see also [ 141) which is commonly expressed as 
the coherence axiom. DeFinetti’s chief result is that the only coherent 
uncertainty measures are finitely additive conditional probability measures. 

Lindley’s main contribution to the situation was to investigate 
DeFinetti’s game by replacing the squared loss functions by a more general 
score function. For the most part, DeFinetti and Lindley assumed addition 
for the overall loss function (or aggregation function). 

Lindley’s chief results are as follows: 

(i) If an uncertainty measure p is admissible with respect to a score 
function f, then p can be transformed into a finitely additive conditional 
probability measure via a known transform depending on f, say Pf; 

(ii) Within the class of score functions f such that Pf is increasing, 
the necessary condition in (i) is also sufficient. 

Roughly speaking, an admissible uncertainty measure has to be a func- 
tion of a probability measure, i.e., one cannot avoid probability ! However, 
note that such an admissible uncertainty measure need not be a probability 
measure ! (See also the axiomatic work of Cox [S].) 

(iii) As implications from (i), the Dempster-Shafer belief function, 
Zadeh’s possibility measure, confidence values and significant statements 
are all inadmissible ! 

The purpose of our work is threefold: 

(a) To analyze Lindley’s results and implications, for which we 
recast Lindley’s somewhat informal arguments and concepts totally within 
a game theoretic setting. 

It is pointed out in this paper that DeFinetti in his earlier [6] more 
restricted work and later, Lindley [ 161 in his generalization of DeFinetti’s 
efforts, both tacitly assumed: 

(I) “measure-free” conditional events exist independent of any par- 
ticular choice of probability measure, but are compatible with the usual 
evaluation of conditional probability. 

(II) The usual (unconditional) event indicator function can be 
extended to be well defined upon conditional events. 
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(III) A natural conjunctive chaining relation holds between condi- 
tional events. 

As a consequence of the above assumptions, in carrying out the analysis 
here, basically two cases are considered apropos to choosing an uncertainty 
measure in the DeFinetti-Lindley uncertainty game: (1) all finite sequences 
of conditional events, where each such sequence possesses a common 
antecedent-this includes as a special case all finite sequences of (uncondi- 
tional) events, by identifying unconditional events as conditional ones 
having a universal antecedent-and (2) all finite sequences of conditional 
events with possibly differing antecedents-this case obviously includes the 
first as a special case. 

The structure of uncertainty games is rigorously spelled out in Section 2. 
In Section 3, a calculus of admissibility, from an analytic viewpoint, is 
developed for games with arbitrary aggregation functions. In Section 4, 
uncertainty games with an additive aggregation function are considered in 
detail together with a Bayesian analysis. 

(b) To show, contrary to Lindley’s conclusions outlined in (iii) 
above, that there are rather large classes of nonadditive uncertainty 
measures, such as belief functions and decomposable measures in fuzzy 
logics, which are admissible. Also, Zadeh’s max-possibility measures are 
shown to be uniform limits of admissible measures (Sections 5 and 6). 

(c) To study the effects of the assumption of additive score 
functions, we present, in Section 7, various examples of non-additive 
aggregation functions. These illustrate the fact that the class of admissible 
measures in a scoring framework depends heavily on the nature of the 
aggregation functions. In particular, there exist aggregation functions 
such that admissible measures cannot be transformed into finitely additive 
probability measures (as opposed to the case of the additive aggregation 
function in Lindley’s work). 

In summary, by formalizing Lindley’s work within a general and 
rigorous game theory framework, we develop a calculus of admissibility 
which can be used to compare competing uncertainty measures in Artificial 
Intelligence. We shed light on controversial conclusions concerning the 
inadmissibility of some well-known uncertainty measures and on the 
position of the “inevitability of probability.” 

2. STRUCTURE OF UNCERTAINTY GAMES 

In this section, we will formalize Lindley’s scoring approach in a game 
theory setting. Since the scoring approach involves concepts such as 
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“conditional events,” uncertainty measures, score functions, aggregation 
functions (implicitly), and admissibility, we need to define these terms 
rigorously. 

2.1. Conditional Events 

Let Q be a set and d a Boolean (or 0~ ) algebra of subsets of 52. 
Elements of d are called events. The set complement of A in 52 is denoted 
by A’; the intersection of A, B in 52 is AB; and their union is A u B. 

For A E&‘, the indicator function has values 

ifoEA 
if cuEA’ 

In certain forms, it is simpler to identify A with I, so that A = 1 if A 
“occurs” and A = 0 if A “does not occur.” 

For A, BE d, the “measure-free” conditional event A ) B is defined by 
DeFinetti [6] (see also [22]) as the restriction of I, to B, i.e., 

(AlB)(o)= 0 

i 

1 if weAB 

if UEA’B 

(undefined) if o E B”. 

Except when B = Sz and (A IQ) is identified with A, these conditional 
events are not elements of d. 

The above definition implies the invariant form 

(A 1 B) = (ABI B). 

Assume, also the fundamental homomorphic-like forms compatible with 
any fixed antecedent conditional probability 

(A I B)” = (A’1 Bh 

(AuC)lB)=(AlB)u(CIB), 

MCI B) = (-4 I @(Cl B). 

Although DeFinetti recognized the potential use of measure-free condi- 
tional events, in obtaining his key results a formal calculus of relations was 
not developed. (Again, see [6, especially Vol. 1, Chap. 4, Vol. 2, pp. 266 et 
passim to 3333.) However, DeFinetti and Lindley implicitly recognized the 
natural conjunctive chaining relation among conditional events mentioned 
earlier. (Specifically, see the remark at the end of Section 2.3 and Theorems 
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3.23 and 4.21’.) For a general treatment of conditional events, see [24] or 
cw 

Goodman and Nguyen have derived a full calculus of operators and 
relations extending the unconditional counterparts for boolean algebras of 
events to the conditional case. In addition, a wide variety of desirable 
mathematical properties of these entities have been proven to hold based 
upon a minimal set of elementary assumptions, including the tacitly 
assumed conjunctive chaining relation mentioned above. 

In the context of uncertainty modeling, the uncertainty of an event A is, 
in general, assigned on the basis of additional information, another event B. 
But, a priori, conditional uncertainty measure p need not be a probability 
so that an algebra of measure-free conditional events has to be investigated 
as a domain for p. 

Now let d be the class of all conditional events, i.e., 

d= ((A(B BE&~. 

By the identification of (A 10) with A, we obtain d c 2. 
For any set X, and n 2 1, X” denotes the product space Xx Xx . . . x X 

(n times). We will use the notation A’, to denote the space of all finite 
n-tuples {a,: f, = (x,, . . . . x,,), xi E A’}. Unless otherwise indicated, “xi E x” 
and the like will always mean xi, . . . . x, for a generic n. For 
Al, = (A 1) . . . . A,,)EJP, we identify A, with its indicator function A,(o) 
defined as (A,(o), . . . . A,(w))E (0, l}“. 

For example, as(o) = (1, 1, 0, 0, 0,O) indicates that A,, A2 occurred but 
A3, Ah, A,, A, did not occur. Similarly, we identify 

with the function a,: B + (0, 1, u}” having values 

-&w = ((4 I F,)(o), .*a, (J% I J-n)(o)) E (0, 1, q. 

2.2. Uncertainty Games 

We proceed now to formalize a special class of games called uncertainty 
games. Roughly speaking, these are triples (A,, A,, L) in which A I is a set 
of configurations (or realizations) of finite collections of (conditional) 
events, A, is a collection of “set’‘-functions representing “uncertainty 
measures,” and L is a real-valued loss (or penalty) function. Specifically, 
A, = Jm x Q. This set A I is regarded as the space of all possible “moves” 
or “pure strategies” of player I. 

Next, fix, once for all, four real numbers, a2 < a, < a, <a,; let 
A,= {,u: P: d+ [a,, aJ} = [a*, a3]“l. Each element of A, is a map, 
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which assigns a number, describing its uncertainty, to each (conditional) 
event. A2 is regarded as the space of “moves” of player II. 

Consider now the choice of loss function. This is carried out in two 
stages as the composition (aggregation) of other (score) functions. As in 
Lindley’s paper, we call any function f: [a,, a3] x { 0, 1, U> -+ R (the real 
numbers), a score function if the following are satisfied: 

(i) For each Jo (0, l}, f(., j): [a,, a31 -+ If3 satisfies the following 
“regularity” conditions: f( ., j) is continuously differentiable, with a unique 
global minimum in [a,, a,] at aj, (decreasing over [a,, ai] and increasing 
over Cq, ~~1); 

(ii) .f(x, 24) = 0, Vx E [a,, ax]. 

For example, we may interpret the score function as follows: player I has 
selected A E & and o E Q and player II has selected p E AZ, then the score 
for player II is &(A), 1) if A happens to occur, f(p(A), 0) if A does not 
occur. 

Now we need to extend f as a map from the space 

{(a,, 2,): n B 1, jZ.,E [a,, a31n, i,E (0, 1, 24}“> 

to the space IR,: for each n 2 1, J?,, = (x,, . . . . x,), i, = (tl, . . . . t,), 
fcL~,) = (f(XlY t,), *..9 fkY, 47)). 

Similarly, each uncertainty map (or measure) p: d -+ [a,, a,] is extended 
to a map from ZZ& to [al, a3100 as follows: for each n 2 1, 

i,=(A 1, . . . . A,) Ed”, c((A^,) = (AA I), . ..t AA,)) E [a,, dn. 

An obvious way of combining individual scores &(A ;), Ai( 
(i’ 1, 2, . ..) n) to obtain the total score is using addition on R, i.e., take 
Lf, +(a,, w, p) = Cr= 1 f(p(Ai), Ai(o Thus the loss function L,., + 
depends on two functions: f (score) and + (aggregation), This special case 
will be referred to as the additive aggregation case. In general, by an 
aggregation function, we mean a mapping ~9: IR, --t R such that 

(a) II/ is continuously differentiable in all of its arguments; 
(b) 1+9 is increasing in each of its arguments. 
(c) $(O,,) = 0, Vn 2 1, where 0, is the zero vector in R”. 

Note that the additive aggregation function is generated by ordinary addi- 
tion on R: II/ = + is equivalent to the sequence of functions (g,, n 2 l), 
where g,: IR’ + R, g(x,, . . . . xn) = CF= 1 xi. Similarly, we identify an aggrega- 
tion function $ with the sequence (+,, n 3 l), where (I/, is the restriction 
of II/ to R”. Note also that, while the additive aggregation function is 

409’15912-IX 
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symmetric, there is no a priori reason to impose such a condition on 
arbitrary aggregation functions. 

Now, given a score functionf and an aggregation function II/, we define 
the loss function Lf,, as follows: 

(Note that fand ,u are used in the extended sense.) 
The triple (A 1, AZ, Lf,$) is called an uncertainty game and is denoted 

by Gf,,. 
In DeFinetti’s game [6], a, = a2 = 0, a, = a3 = 1, and 

fb,A= {b”-i” ; ;I$ndefined); 

here $ = + . In Lindley’s extension of DeFinetti’s game, uj, j = 0, 1,2, 3, are 
not restricted to [0, 11, $ = + , and f is an arbitrary score function. 

2.3. Subgames 

To formalize various concepts of admissibility in an uncertainty game 
Gr,$, we first introduce the concept of subgame. 

Suppose we are interested only in some given finite collection of condi- 
tional events, say a, then we need to look only at the subgame 

where 

and 

For example, we can view A,E$ as a set a,= {A,, . . . . A,} se. 
Then [a*, a31An= {p: {A,, . . . . A,} --* [az, a,]} so that each p in [a,, ujlAn 
is the restriction of a p in [a,, a3]“. In a subgame, the finite collection of 
conditional events in a is specified; if player II chooses p to express an 
uncertainty about these conditional events, then the overall loss would be 
Lf,ti,,dw ~1. The subgame Gf,+.,i is regarded as a game with partial infor- 
mation, namely player II does know that a is to be considered. 

For example, if a=((ElF), (E”(F)) and $= +, ~(u)=((EIP)(~), 
(EC1 F)(o)), and the set of configurations of a giving rise to non-zero 
losses (f (x, u) z 0) is 

{(EIF), 11, ((E”IF), 01, ((EIF), O), ((E”IF), l,}. 
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For is {(AO), (0, l)}, 2 = (x1, x,), where x1 = p(EI F), .x2 = p(E’I F), we 
have two overall scores: f(xr, l)+f(Xz, 0) (if EIF occurs) and 
f(X,? 0) +f(x*, 1) (if E” 1 F occurs). 

It should be noted that so far only those finite sequences of events have 
been considered which have a common antecedent. Relevant to this, denote 
for any Fe ZZZ’, 

d-fF= {(EIF): EEL}. 

The reason for this is that if one wished to determine the possible 
indicator evaluation combinations among any sequence such as 
((E, I F,), (E, / F2), (E, I F3)), until recently, no standard technique existed 
for dealing with this issue. However, Goodman, Nguyen, and Walker [ 121 
and Schay [24] have proposed independent nonstandard syntactic 
approaches for treating this and related problems. Only one such situation 
will be considered in this paper, namely the fundamental natural conjunctive 
chaining relation, 

(El FG)(F( G) = (EFI G), 

which is obviously true for all corresponding conditional probability 
evaluations 

AEI =I .PV’I (3 =PPI G) 

for p(G) > 0. More details of this will be seen in Theorem 3.2.3 et passim. 

2.4. Equivalent Reduced Forms of Games and Subgames 

The space /1 r = J&, x 52 in the game G/,@ is infinite, in general, but for 
each R E Jm, the space of configurations of a, namely a(Q) is finite, a sub- 
set of 10, 1, u}lA^‘, where Ial denotes the “dimension” of 8; e.g., if A E d”, 
then IAl = n. On the other hand, the domain of Lf,$ involves a, but since 
Lf,JA, ., p) is constant on each (A)-’ (t), t E A(Q), 8 can be replaced by 
the finite d-partition (of Q) generated by a. Specifically, for each a E Jm, 
say A = ((E, IF,), . . . . (E, I F,)), consider the finite collection of events 
%(A^)= {E;F,, E;F;, F;, i= 1, . . . . n}. Let z(a) denote the canonical parti- 
tion of Q generated by +?(A) (which reduces to A^ = { Ei} when all F; = Q. 
Then, rc(a)= {B,,j= 1, 2, . . . . 23n}, where each B, is of the form nr=, 02, 
Dk E %‘(A^), sk = 1 or c; 0: = Dk, 0: is the set complement of D,. Also, each 
D, is a union of the Bis. (See [23, p. 12-153.) Note that because the E’s 
and F’s are not necessarily distinct, the cardinality of z(a), say m = ITCH, 
is most often ~2~“, but at least 2. 

The cardinality of rc(a) may be less than n = I Al as we now demonstrate. 
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Let 

Then 

a = (EF, E”F, F”, F). 

SF@) = {Dl = EF, D, = E”F, D, = F”, D, = F}. 

Only the following configurations of “occurrences” can arise so that 

m=l7c(A)l=3<4=lAj: 

1 0 0 1 for B, =EF, 

0 1 0 1 for B, = E”F, 

0 0 0 1 for B,=F”. 

Thus, 

B’BcBC=EF 1 2 3 

BCBIBC=ECF 1 2 3 

B;B;B,=F” 

B1B;B;uB;B2B;=F. 

Of~ourse,m=3>2when~=((ElF),(Ec~F))for~(~)={EF,EcF,FcJ= 
W ). 

The (equivalent) reduced form of GY,$ is 

G:, = (A:, AZ, L&l, 
where 

where 

n:={(a,B):a~~~,B~.(a)}, 
I I a 

Lj!&k 4 ~0 = W(P(A), A(B))), 

a(B) = t E (0, 1, u}‘“’ -=-B={o:&)=t}, 

i.e., 

/i(B) = &II) for any choice of w in B. 

Similarly, the (equivalent) reduced form G,,,, A is 

G&A = (Ata, Az,a, L&A), 
where 

ny,=?T(A) 
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and 

3. ANALYTIC STUDY OF ADMISSIBILITY 

In this section, we will introduce various concepts of admissibility for 
Gf,$ and then develop analytic techniques for (weak) local admissibility 
with arbitrary aggregation functions $. This also extends Lindley’s results 
in the case of an additive aggregation function, namely, giving sufficient 
conditions for (weak) local admissibility. For related works in Statistics, 
see [4, 143. For the concept of Pareto optimality, see [2, 271. 

3.1. Concepts of Admissibility 

In this subsection, we spell out relevant forms of admissibility in the 
reduced form of the game 

First, ,LL E A, is (ordinary) admissible with respect to GTIL if there is no 
VIZ,~, such that Lz$(A, B, v) <,!,;+.(A, B, p) for all (A, B) E /1: with the 
strict inequality for at least one (a, B). 

Similarly with respect to the subgame Gzti,~, PE/~*,A = [a,, as]” is 
a-admissible (A-AD) if there is no v E AZ,2 such that 

for all BE ~(2) with strict inequality for at least one B. 
More generally, let 8 belong to the power set 9(Jm). Then p E A2 is 

b-admissible with respect to _Gf:+ if p is a-admissible for all 2 E 8’. (Note 
that A2,~ E A,.) When d = SZ!~, p is uniformly admissible. 

It is easy to see that uniform admissibility implies ordinary admissibility. 
Continuing with the subgame where 2 is fixed, we note that p(A) E IR” 

for which there is the usual topology based on the Euclidean norm 11 /I. 
Thus we may have a neighborhood of p 

WP,~)= {vEA~,A: Ilv(~)--~(~)ll <r}. 

Then p E Ax,2 is A-focal admissible (A-LAD) if there is some N(p, r) such 
that (1) does not hold for all VEN(~, r). 

For the last two concepts of admissibility, it will be convenient to 
introduce the following notation. 
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With /i = (A 1, . . . . 4), let {B,, . . . . B,) be a listing of the elements of 
z(a). The set of values 

Lj&i(B,, PL)= W(P(~~), A,(B,)), . . . ..fWL)~ -MB,))), . . . . 

L&-i(L PL)= Icl(f(A~~), A,Mn)), . . ..f(~(An). 4,(&))) 

can be thought of as the value of a transformation L;$,A: [a*, u31n + Iw” 
at the point ,(a) = @(A,), . . . . ,u(A,)). For simplicity, we drop the extra 
symbols and write, in general, L(a) 

L(i)= ; [ I JLO) 

for 2 = (x,, . . . . X,)E [a,, a,]“=D. 
By the natures of $ andf, L can be arranged in the partitioned form L(l) 

il 1 L(2) ’ 
where L(‘) is constant on D but L(‘) (of length k) is not constant in any 
neighborhood in D. Of course, L”’ may not appear. 

Then p E n2,~ or equivalently i E D, is a-weak/y admissible (A-WAD) if 
there is no 9 ED such that L”‘(9) cs L(‘)(Z), where cs is the strong 
(Pareto) order in real Euclidean space Rq: 

P = (PI 9 **., P,) cs (v, 3 . . . . vq) = v^ if pj < vj for all j = 1, 2, . . . . q. 

If pj < vi for all j= 1, 2, . . . . q we write simply /i Q 9; when the inequality 
holds for only some j, we write fi <,,, t. 

It is easy to see that A-AD is stronger than A-WAD; for, if there is a 
9 ED such that L”)(p) cs L(‘)(a), then 

since, if LC2) appears, it is constant on D. Moreover, the admissibility 
considered informally by Lindley turns out to be “weak-local” and will be 
considered further in Section 4. 

Finally, 2 is weak-local admissible (A-WLAD) if for each 9 in R” with 
(lyJ/ = 1, and each c( > 0 there is an r = r(Z, $, a) > 0 such that there is no 
t E (0, r) for which 

L”‘(?i++g)-L”‘(.?),< -atl,. (2) 

Here 1, is a k by 1 vector all of whose components are 1. 
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Note that -at 1, cs 0 in Rk. It is convenient to refer to such j as a 
direction. Then, locally, z? cannot be “beat linearly in any direction.” 

Of course, A-WAD implies &WLAD: if (2) holds for some j, a, t, then 
L”‘(i + tf) <s L”‘(3). 

We close this section with a theorem which gives global and local 
equivalences under the additional hypothesis that L is convex, that is, each 
component of L is convex. 

THEOREM 3.1.1. Let L be convex. Then 

(i) a admissibility is equivalent to A local admissibility; 

(ii) A-WAD is equivalent to A-WLAD. 

Proof Since it is obvious that admissibility implies local admissibility, 
we consider only the converses. 

(i) In terms of L, .? is not A-admissible if there is a i, in D such that 

L(9) <w L(Z). (3) 

Convexity of L means that for each t in (0, l), 

L@+t(j-a))<(l-t)L(i)+tL(g). 

Combining this with (3), we obtain 

L(Z+ t(j-a))<, L(i). 

For any r > 0, choosing t = r/(r + jl j - ill ) makes /) t(j - a)\\ < r whence .? 
is not J-LAD. 

(ii) If i is not A-WAD, there is a j such that L(‘)(p) cs L(‘)(i). Then 
a=min(Lj”(f)-Lj’)(j),j= l(l)k} >O and L~l~(~)<L~l~(~)-cclk. 

Combining this with convexity, we obtain for all t E (0, l), 

L”‘(.? + t(j- a)) = L”‘(( 1 - t)i + tj) 

d (1 - t) L”‘(2) + tL’l’( j) 

<(l-t)L’i’(i)+t(L(‘)-Ml,) 

=L”‘(i)-atlk. 

Therefore, L”‘(~++(+c?))-L”‘(~)< -atl,<,O for all tE(0, l), in 
particular, for t =s/llj-a\l < 1, t(p--i) =si, where llill = 1 and 2 is not 
a-WLAD. 1 

All of the above admissibility concepts-for unrestricted d-can be 
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modified in the obvious way for restrictions such as requiring only finite 
sequences of conditional events, each having a common antecedent. 

3.2. Some Characterizations of A^- WLAD 

Since WLAD involves only the nonconstant L(l), we simplify by writing 
this as L. By regularity conditions on $ and f, L is differentiable. We 
denote the k by n matrix of partial derivatives at f as J= (8Li/8xj); we also 
take 2, 9 as column vectors. Then we have the following. 

THEOREM 3.2.1. i is WLAD if and only if there is no p such that Jjj cs 0. 

Proof If there is a 9 such that Ji, <s 0, then for the direction i = c//II 311, 
Jz^ <s 0. Differentiability yields 

For each component Lj there is an aj such that 

Lj(? + tjg - L(i) < - ajtj 

with tj in a neighborhood of zero. Take t in the intersection of these 
neighborhoods and a = min { c1i, . . . . ak}. Then L(Z + t.f) -L(g) < - at l,, 
which makes 2 not WLAD. Conversely, if 2 is not WLAD, then there is 
a direction 9 and an c1> 0 such that for all r so there is a t, < r for which 
L(2+ t,jq- L(i)< -E&l,. Since t,+O as r-+0, J$<,O. 1 

Recall that for 2 = (A,, . . . . A,), PE [a,, a31A is identified with 
P = (X,) ..*, x,) E D = [a,, asIn. In view of Theorem 3.2.1, the analytic study 
of weak local admissibility of p or 2 is reduced to finding conditions on 
J(a) so that there is no 9 E Iw” for which J(Z). $ cs 0. 

It is well known that the solutions of a system like Ji, = i depend heavily 
on the rank p of J. Also, the columns of J and the rows of J, 9 and i can 
be permuted without changing the rank or character of the solutions; these 
can also be partitioned. In the following, we assume that this has been 
done so that when the rank is p, the system is 

where J, is p by p and nonsingular, C is p by n-p and R is k-p by p. 
Of course, if p = n, the columns involving C do not appear and if p = k, the 
rows involving R do not appear. 

The following theorem contains several results relevant to this work. 
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THEOREM 3.2.2. (a) Zf p =n = k, then i is not WLAD. (Indeed, if J is 
non-singular, then the system Jy = i has a solution j for every i, in particular 
2 <,s 0.) 

(b) Zf n = k and .? is WLAD, then det J= 0. 

(cl ,%? is WLAD zf and only zf there is no i E IV’ such that 

J, [ 1 RJI 
i<,O. 

(d) Zf p = 1, then 2 is WLAD if and only if the vector 

has both positive and negative components or at least a zero component. 

(e) In case k = n = 3, j? is WLAD if and only if det J = 0 and either 
(i) p = 1 and 

J, [ 1 RJ, 

has a zero component or contains both positive and negative components or 
(ii) p=2 and R<O. 

Partial Proof Indeed, if det J= 0, and p = 1 with the above specified 
structure of 

J1 [ 1 RJ, ’ 

then i is WLAD as in (d); if det J= 0 and p = 2, then if 3 is not WLAD, 
there will be j E [w* such that 

i.e., J, j = f cS 0 and Ri cS 0 which is only possible if R < 0. 
Conversely, suppose that i is WLAD. Then first, det J = 0 as in (b); thus 

p = 1 or 2 since J z 0. If p = 1, and i is WLAD, we have the above 
specified structure of 
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by (d). If p = 2, and 2 is WLAD, we have by (c): there is no 9 E I@ such 
that 

JI [ 1 RJ, 
f<,O, 

i.e., there is no G cS 0 such that R6 -q 0, and hence R 6 0. 1 

COROLLARY 3.2.1 (Corresponds to [16, Lemma 11). Let a= {(EIF)}. 
Then p(EIF)=x is WLAD ifand only ifxe [a,, a,]. 

Proof: Here 

J= Yw(4 1 )I f’k 1) 1 IC/‘(f(X? 0)) f’k 0) * 

Obviously, for XE [az, a31 - [a,, a,], the components of J are nonzero 
with the same sign, and hence x is not WLAD. For XE [a,, a,], J has at 
least a zero component, or two nonzero components with opposite signs, 
and thus x is WLAD. 

Remark. In view of Corollary 3.2.1, from now on, the range of uncer- 
tainty measures is restricted to [a,, al]. 

COROLLARY 3.2.2 (Corresponds to [ 16, Lemma 23). Let A^ = {(El F), 
(E’IF)}, then Z= (x, y), x=,u(E(F), y=p(E’JF), is WLAD ifand only if 
det J=O. 

Proof: Here 

J= 
[ 
u-f(x, l), f(Y, 011 .0x? 1) cm, 11, f(Y, 011 S'(Y, 0) 
ti’Cf(X~ Oh f(Y, 1 )I f’CT 0) Ic/‘Cf(& 01, f(Y, 111 S'(Y, 1) 1 . 

The condition is necessary by Theorem 3.2.2 (b). Suppose det J=O, then 
p = 1. The sulkiency follows by Theorem 3.2.2 (d). 1 

COROLLARY 3.2.3 (New Result). For a = {(E, 1 F), (E2 IF), (E, u E, IF)} 
with E, E, = 0; set x = p(E, ) F), y = p(E, I F), z = p(E, u E, I F) with 
x, y, z E [a,, a,], 2 = (x, y, z). Take t,b = + . Then the nonzero losses are 
fk l)+f(Y9o)+f(z, 11, .mo)+f(Y, l)+f(z, l), f(x,O)+f(y,O)+ 
f(z, 0), and hence 

f’(x, 1) f’(Y, 0) f’k 1) 

f’k 0) f'(v, 1) f’k 1) . 
S’(4 0) f'(Y, 0) f’k 0) 1 
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With respect to the game G, +,A, the following are equivalent 

(i) 2 is A-WLAD, 

(ii) det J= 0. 

Proof. (i) j (ii) by Theorem 3.2.1. 
(ii) j (i). Since det J = 0, the rank p of J is either 1 or 2. 

(a) If p = 1, then the first column of J is f ‘(a,, 1) [ 1 0 with f’(a,, 1) < 0 when x = a, 

0 

and is 

with f’(a, , 0) > 0 when x = a, ; 

for XE (a,, a,), this column has both positive and negative components. 
Hence 1 is &WLAD. 

(b) If p = 2, permute the second and third columns of J to obtain 
the partition 

where 

J = f’(x, 1) f’k 1) 
l C f’h 0) f’k 1) 1 

and RJ, = (f’(x, 0), f’(z, 0)). Then 

det J,=f’(x, l)f’(z, l)-f’(x,O)f’(z, l)>O 

when z #a,. In this case, we have 

R = 0) .I-‘(% 1) -S’k 0) f’k 0) f’k 1) f’k 0) -S’(x, 0) f’(Z, 1) 
det J, 

> 
det J, 1 

with f’(x, O)[f'(z, 1) - f’(z, 0)] 6 0. Look at 

f’(x, 1) f’(z, 0) -f’(x, 0) f’(z, 1). (*) 
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By hypothesis, det J= 0 and this is equivalent to P,(z) = P,-(x) + P/(y), 
where P,-: [ao, a,] -+ [0, l] is given by 

f ‘(x9 0) 
pf(x) =f’(x, 0) -f’(x, 1)’ 

Thus Pf(x) <P,(z) which in turn implies that (*) < 0. 
When z = a,, the first and third columns of J become 

Consider 

J, [ 1 RJI ’ 
where 

0 

Id 1 0 . 
f'(Z130) 

J= f’(%l) 0 
’ 1 f’(40) f’(&,O) 1 

(**I 

and RJ1 = (f'(x, 0), 0). We have det J1 =fl(x, 1) f'(a,, O)<O for xfu,. 
In this case 

R- 

-( 

f'(x3 l)f'(ulJvO 
det J, 

with f'(x, i)f'(u,, O)<O. 
Finally, when x = z = a,, the first and third columns of J are 

Let 

0 
f'(u,,O) f'(u,,O) I 

and RJ, = (0,O). 

Then, det J1 = [f ‘(a,, O)]* > 0, and R = (0,O). 1 

The following result is actually an application of Corollary 3.2.3. 
However, as it is basic for most of the rest of our work, we state it as a 
theorem. 

From now on, PE [a,, u,]~. We say that: 

p is g2-WLAD if p is a-WLAD for 2 of the form { (E( F), (EC ( 8’)); 
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.H is &&WLAD if p is A-WLAD for a of the form 
((E, I F), L% I F), (El u J% I F)} with El 4 = fzr. 

Also, P,-(x) is always given by (* * ) above. 

THEOREM 3.2.2’ (Equal Antecedent Counterpart of [16, Lemma 51). 
Suppose $ = + . Then the following are equivalent. 

(i) p is &‘* and &- WLAD, 

(ii). Prop: ~4~4 [0, l] is afinitely add‘ ltive probability measure, for all 
FE&, where ,Q1’F=d ((E(F): EEL}. 

Proof. (i)= (ii). Since p is gZ-WLAD, we have, for any E, FE&‘, 
p(EI F) = x, ,u(EC 1 F) = y, det J= 0, where 

J= 
[ 
f'h 1) f'(Y,O) 
f'(-%O) f'(Y, 1) 1 (1) 

then, P,(x) + P,-(y) = 1. 
In particular, for F= Q, we have 

Pfop(E) + P,+(EC) = 1. 

Next, since p is &s-WLAD, for any E,, E,, FE d with E, E, = a, we have, 
det J = 0, where, x = p(E, 1 F), y = p(E, I F), z = p(E, u E, 1 F) and 

so that Pr(z) = Pf(x) + Pr( y), by computation. In particular, for F = Q, 

PpdE, u Ed = Pp/.@,) + P,oP(&). 

Thus Q = P,o p: &- + [0, l] is a finitely additive probability measure, for 
all FE&. 

(ii) =z- (i). First note that p: & + [0, 11, (ii) means that the restric- 
tion of p to &F (still denoted by p) is such that Pfop is a finitely additive 
probability on JZ?~, say QF = P,o p, for all FE .r4. 

Thus 

which means det J = 0, where J is as in (1). The rank p of J is therefore 1. 
Since x E [a,, a,], each column of J contains a zero component or has 
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both positive and negative components, and hence (x, y) is a-WLAD, 
VA = {(EJF), (E’)F)}, i.e., p is $-WLAD. 

The fact that p is &WLAD follows from Corollary 3.2.3, since for any 
E,, E,, FE -01, with E, E2 = a, the condition 

</o/W, u E, I F) = f’,” ~(4 IF) + +P(E, IF) 

is equivalent to det J= 0, where J is as in (2). 1 

In the proof of Theorem 3.2.2’, it might be tempting to conclude that the 
conditional probability is uniquely compatible with each QF. But this is 
not necessarily so. In fact Aczel Cl, pp. 321-3241 required additional 
properties before proving such as relation. These properties include 
continuity and monotonicity of functional forms in both antecedent and 
consequent probabilities. The appropriate strengthening of Theorem 3.2.2’ 
to account for possibly varying conditional event antecedents utilizes the 
following property: 

For any P E La,, a, 19”, call p &-WLAD, if p is A-WLAD for A^ of the 
form ((El FG), (FI G), (EF( G)), assuming the natural conjunctive chaining 
relation that both DeFinetti and Lindley implicitly assumed (see earlier 
discussions), 

(El FGWI G) = (4 G); all E, F, G E RI, 

and interpreted via DeFinetti’s conditional event indicator function. 

THEOREM 3.2.3 (Corresponds to [16, Lemma 51). The following 
statements are equivalent under the above assumption and for II/ = + : 

(i) p is g2;, 6”, &WLAD. 
(ii) Pro ,u: SCI~ + [O, I] is finitely additive conditional probability 

measure for each FE &, i.e., assuming p(F) > 0, for all E E ~4, 

(+PMEI F)) = U’p/WlF) = f’,MWYPfMF)). 

Proof: Follows a similar format as for the proof of Theorem 3.2.2’, 
where now, in addition to Eqs. (1) and (2) holding when (i) is assumed, 
one has due to p being G$‘,-WLAD, 

1) f’(h 1) f’(w 1) 
J= 0) f’(o, 1) f’(w, 0) 1 , (3) 

f’(u, 0) S’(w, 0) 

where u=p(EJFG), v=p(FIG), w=p(EF(G). 1 
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4. GAMES WITH AN ADDITIVE AGGREGATION FUNCTION AND 
BAYESIAN ANALYSIS 

This section is devoted to a detailed investigation of games with an 
additive aggregation function; to be complete, we consider also their mixed 
extensions. Under an additional assumption on the score functions, we 
establish the equivalences among different concepts of admissibility, 
including Bayesian decision functions and DeFinetti’s coherence measures. 
We also show that nonatomic probability measures are not “coherent” in 
games with improper score functions. 

4.1. Mixed Extensions of Uncertainty Games 

Consider the game G,+ in its equivalent reduced form (A :, A 2, Lf+) 
with 

Because of the nature of /i:, mixed strategies or prior probability measures 
on A: will be defined as follows. 

Player I will first pick an A^ E J& according to some probability measure 
4 on (s&,, SJ), where 3 is some a-algebra of subsets of s&, and then 
depending upon a, pick a configuration of occurrences of A^ (as a finite 
collection of conditional events, equivalently) an element of the partition 
n(A), according to some probability measure rA on the power class 
9y7c(A)) of 7c(A). 

Now, since ~(a) is finite, each probability measure on 9(x(a)) is 
identified by its probability density function on X(A), i.e., 

6: {B,,j= 1, . . . . m} -+ [0, 11, f QB,)= 1, 
j= 1 

where Bis are some listing of the elements of n(a), and m = In(a 
Next, each such 8 generates a probability measure P, on (Sz, &) such 

that 

PdBj) = e(Bj), Vj = 1, . . . . m. 

Indeed, for each j = 1, 2, . . . . m, let Pj be a probability measure on B,, i.e., 
on the a-algebra trace {A Bj: A E &} with Pj( Bj) = 1. Define, for A E A’, 
P,(A) = CJ’= , O( Bj) Pj(ABj). Note that PO(A_) is completely determined by 
8, Vi = 1, . . . . n, where a = (A r, . . . . A,), n= IAJ. Then, since each Aims? in 
general, the probability measure P, on d is extended to d via the condi- 
tional probability operation. For a rigorous treatment of this extension, see 
c121. 
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If (X, 9) is a measurable space, we will denote by P(X, X) the collection 
of all probability measures on it. The collection of probability density func- 
tions on z(a) is denoted by P(rc(a)). Thus, we have, by identification, 

P(7Q)) c P(Q, a). 

The space of prior probability measures on Ai+ is 

The expected loss of p E AZ, with respect to a prior (q( .), z.( ., +)) is 

so that the mixed extension of G;, is 

Similarly, the mixed extension of the subgame CT,,, is 

where ~~,+,a(& PL) = Cj$’ Lf,S,A(Bj, P) NBj). 
Now, we view the subgame GTti,~=(n(A), [a,, uSI’, L!$,J) as a 

statistical game coupled with the random variable X whose distribution P, 
depends on BE n(a); when X is constant, on each BE n(a), the risk is 
L(B, p)+ On the other hand, since ~(2) is finite, standard results from 
decision theory (for finite games) hold for Gzti,A (see, e.g., [7, 31). Then 
the risk set L(D) is closed and bounded since D is compact in R” and L 
is continuous. 

For convenience, we state below some definitions and basic results. 

(i) ,U~E [a,, al] A is Bayes with respect to a prior distribution r on 
.(A) if 

which is the minimum Bayes risk; E, denotes the expectation with respect 
to t. We write ,nL, for the Bayes uncertainty measure with respect to r. 
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(ii) r0 is a least favorable prior if 

infE,,L(.,~)=supinfE,L(.,~) 
P 7 p 

which is the lower value of the game. 
(iii) %?L ~cz,, a,ld is complete if for each ALE [a,, a,]“--%‘, there is 

v E %? which is “better” than p, i.e., 

L( ., VI cw L( ., P) (A-AD). 

V is minimal complete if %’ is complete but no proper subclass of 5%’ is 
complete. 

(iv) For admissibility of Bayes rules in G~,.A, we have 

(a) If pL, exists uniquely up to equivalence (p - v if and only if 
L( ., p) = L( ., v)), then pL, is admissible (A-AD). 

(b) If the prior r is strictly positive (i.e., r(B) > 0, VBE n(a)), then 
pz exists, and is A-AD. 

(v) If p is A-AD, then p = pr for some r. 
(vi) The class of Bayes rules is complete, and the class of admissible 

Bayes rules is minimal complete. 
(vii) Let 6r~&; then p is said to be b-Bayes if p is Bayes with 

respect to Gzi,~ for all a E 8’. In particular, p is uniform Buyes if d = s&. 
Note that p is Bayes with respect to G,!, when the prior is in P(/l,), i.e., 
of the form r = q( .), r.( ., .). 

4.2. Equivalences of Various Concepts of Admissibility 

In the rest of this section, we consider $ = +. 

THEOREM 4.2.1 (Equal Antecedent Form of [ 16, Theorem 21). Consider 
the game Gl + with f such that PY is increasing. Let p E [a,, alId. The 
following are equivalent. 

(i) u is uniformly admissible, w.r.t. all finite equal antecedent condi- 
tional event sequences. 

(ii) p is & and &-weak local admissible. 

(iii) u is untform Bayes, w.r.t. all finite equal antecedent conditional 
event sequences. 

tttve probability measure, for all PEvL Prop: ~4~ [0, l] is a finitely add’ 

Proof (i) =S (ii). Obvious by definition. 

W/l 5912. I9 
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(i) =z. (iii). Follows by standard results of the game GT +, 2, namely if 
p is A-AD, then ,u is Bayes (with respect to some prior z on .(a)), and 
conversely, if p is Bayes (p = ,u~), then since ,u~ is unique, pL, is R-AD. The 
uniqueness of e, (up to equivalence) can be seen as follows. 

Let ZE P’(a(A)), a = ((EiJFi), i= 1, . . . . n); we have 

E7L(a, PI= i C fCP(Ai)3 Ai(B)I T(B) 
i=l Ben(A) 

=,$, {fCP(ai)9 ll C r(B) +fCPCAih Ol C 
BE QlW BE Q2(G 

Q,(i)= {BE7C(A) : BGEiFi) 

Then 

Qz(i) = (BE X(A) I BEiF,= a}. 

since 

2 r(B)=l- c t(B). 
BE PAi) BE Ql(i) 

Therefore, p(Ai) = P;l[&EQ,cil r(B)] is uniquely determined by r. 
(ii) * (iv). By Theorem 3.2.2’. 
(ii)* (iii). Assume (ii). Then (iv) holds. Since Cecnc~) r(B)= 1, 

r = Prop can be taken as a prior for x(a). Then p = ~1~ and hence (iii) 
holds. Conversely, when (iii) holds, (i) also holds, and, a fortiori, (ii). 1 

THEOREM 4.2.1’ (Corresponds to [16, Theorem 21). Make the same 
assumptions as in Theorem 4.2.1. Then Theorem 4.2.1 holds with the 
folIowing strengthening. 

(1) Omit the constraint “w.r.t. all finite equal antecedent conditional 
event sequences” in both (i) and (iii). 

(2) Add the property that p is gh-weak local admissible to (ii). 
(3) Replace s&., for each FE d by simply d in (iv). 
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Proof: Obvious by inspection of the proof of Theorem 4.2.1 and the 
role that &WLAD plays in making stronger Theorem 4.2.1 (iv). 1 

Remark. For any a E J&, relative to CT + ,A, 

(i) A least favorable prior rOg p(rr(A)) can be obtained by 
minimizing the objective function 

Pf, +,,it59 Pu)’ 1 C fCPtA,), Ai(B)I t(B) 
i=l Bcsn(A) 

subject to the constraint CBEkCAI z(B) = 1. 
(ii) Using the proof of the uniqueness of pr in the above theorem, 

we can obtain a minimax uncertainty measure p0 E n 2,A, where 

inf sup P.f, +,A(? PL) = sup 
PEA2.A’ rEP(Tc(a)) rtP(n(A)) 

Pr, +,A(? PO). 

(iii) G T +,A has the value V,(f, a), where 

Vo(f9 4 = sup 
reP(n(A)) 

Pr. +,,.&r, /%I) = P/, +,A(%3 I%J. 

THEOREM 4.2.2. Consider the game GT + with PJ increasing. Suppose that 
f is not a proper score function (i.e., P,(x) E x) andf is twice differentiable. 
Then no nonatomic conditional probability measure p on d can be Gf +- 
uniformly admissible. 

Proof. Assume the contrary, i.e., the nonatomic probability p on d is 
uniformly admissible with respect to GT + . By Theorem 4.2.1, we should 
have, by the nonatomicity of p, 

<r(t) + P,( 1 - t) = 1, VtE [O, 11. (1) 

By hypothesis here, it can be shown 

Pf(XY) = P,(x) Pf(Yh vx, y E I3 11. (2) 

Differentiate (2) with respect to x and then separately with respect to y, 
to obtain 

YV,, (XY) = (Pf)’ (x) pf(YL 

X(Pf)’ bYI = PfbNPJ (Y). 

Simple division yields x[log PJx)]’ = y[log P,(y)]‘, so that 

x[log PJX)] = c (a constant), 

and hence I’,(x) = xc. Then (1) forces c to be 1. 1 
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Remarks. (i) To accomodate this situation, we will consider a concept 
of admissibility in the wide sense of Section 5. 

(ii) The condition (iv) in Theorem 4.2.1 is the coherence principle 
of DeFinetti. The equivalences in Theorem 4.2.1 explain the concept 
of “reasonable” uncertainty measures, from a decision viewpoint, and 
lead to the discoveries of other “reasonable” measures which need not be 
probability measures. In view of Theorem 4.2.1, the coherence principle can 
be used as a definition of admissibility. 

(iii) Relative to the invariance property of the probability transform 
Ps, we present the following. Consider two games G,, + , G, + (say, with the 
same aj, j = 0, 1,2, 3), with Pf, P, increasing. Let p (resp. v) be uniformly 
admissible with respect to G,, ( resp. G, + ). It is not true in general 

Pfo,urPgoV. (*I 

Indeed, let Q,, Q, be two probability measures on &, with Q, # Q2, take 
,u=P+Q, and v = Pi’ 0 Q,. For (*) to hold, one needs to consider the 
uniform admissibility of the (vector-valued) uncertainty measure (,u, v) with 
respect to the joint uncertainty game GcJ,,,, + = (/ii, ,4:, Lcf,,,, +), where 
L (/, g), + (A 03 PL, VI = Lf, + (A a, P) + L,, + (4 0, VI. 

5. ADMISSIBILITY OF POSSIBILITY MEASURES 

This section is devoted to the study of admissibility of a class of uncer- 
tainty measures called decomposable measures and its implications for 
fuzzy logics. 

5.1. Decomposable Measures and Fuzzy Logics 

Since the concept of (Zadeh) possibility measures and the techniques in 
fuzzy logics might not be familiar to all, we first present some background 
(see, e.g., [33, 32, 111). 

Roughly speaking, fuzzy logics differ from ordinary two-valued logic by 
their semantic evaluations of logical connectives. For our purpose here, we 
will focus on the evaluations of the connective “or” which corresponds to 
the main properties of associated uncertainty measures. 

A function (operator) T: [O, l] x [0, l] + [0, l] is called a t-conorm 
(see, e.g., [25]) if T is associative, commutative, and nondecreasing in each 
argument; also T(x, 0) =x and T(l, X) = 1, VXE [0, 11. 

A t-conorm T is said to be Archimedean if T is continuous and 
T(x, x) > x, Vx E (0, 1). 
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Some examples of t-conorms are 

x if y=O 

T(x, Y)’ Y if x=0 (not continuous) 
1 otherwise 

T(x, Y) = Max(x, Y) (not Archimedean) 

T(x, y) = Min(x + y, 1) (Archimedean). 

For the related concept of copulas in Statistics, see, e.g., [9, 10, 191. 
An Archimedean t-conorm T has the following representation [ 181: T is 

an Archimedean l-conorm if and only if there exists an increasing, con- 
tinuous function g (called the additive generator or generator of T) which 
maps [0, l] -+ [0, + co] with g(0) = 0, and such that 

vx, YE lx, 11, T(x> Y) =g*Mx) +gb)L 

where the pseudo-inuerse g*: [0, + co] + [0, l] is detined by 

g*(x)= 1 
i 
g-‘(x) if XE CO, g(l)1 

if x>g(l). 

For example, 

(i) For p>O, Tp(x, Y) = W’ + Y’ - x~Y~)“~ =g;(g,(x) + g,(y)), 
where g,(x) = - (l/p) log( 1 - xp), g;‘(x) = (1 - eppx)“P =g,*(x); note that 
g,( 1) = + co here. 

(ii) For p B 1, T,(x, JJ) = [Min(xP -I- yp, l)]“” has generator 
g,(x) = xp, 

1 
x’IP 

g*(x)= 1 
if xE[O, l] 
if x>l 

with g,( 1) = 1 here. 
Since a t-conorm T is associative and commutative, we can extend T to 

T: co, 11, + co, 11, where T(x) = x, by convention, 

T(x I, -*-, xx) = Tb,, T(x,, . . . . x,)1, n 2 2. 

The representation of an Archimedean t-conorm T becomes 

W,, x2, . . . . x,) =g* 0 1. 
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Now, let (52, J&‘) be a measurable space. A mapping p from & to some 
interval of R, say [a,, a,], is called a decomposable measure if there exists 
T: [a,, a31 x [a,, a31 + [a,, a,] such that, for A, BE d with AB= a, 
p(A u B) = T(p(A), p(B)) (see, e.g., [31]). When such a Texists, it is called 
the composition law of p. 

As a generic example of a decomposable measure, begin with any fuzzy 
set membership function 01: D --, [0, l] and any t-conorm T. Then, if 0 is 
finite, one can make the extension of a as ,u,,~: P(Q) + [0, 11, where for 
any AcSZ, 

,ua, T(A) = T(a(o) : w E A). (+I 

P is clearly decomposable. Conversely, given any decomposable measure 
pa’G.r.t. some t-conorm T, for any finite A as above, Eq. (+ ) holds with 
h,T=k 

In fuzzy logics, composition laws are t-conorms (with [a,, a3] = (0, 11). 
Note that probability measures are decomposable measures with 
T(x, y) = Min(x + y, 1); this is an Archimedean t-conorm with generator 
g(x)= -log(l-x) and g*(x)=g-‘(x)=1-e-“, since g(l)= +oo. 
Indeed, let P be a probability measure on d, and A, BE d with AB = 0. 
Since P(A) + P(B) = P(A u B) < 1, we have P(A u B) = P(A) + P(B) = 
Min(P(A) + P(B), 1). Furthermore, in the case of probability measures, 
the generator g is such that g( 1) = + co (and hence g* =g-r); the 
corresponding t-conorm T is called a strict (Archimedean) t-conorm. 

For a t-conorm T, a T-possibility measure is defined to be a map from 
d to [0, 1 J with T as composition law. For example, (Zadeh) max- 
possibility measure is a decomposable measure with T(x, y) = Max(x, y). 

Let B be discrete and a: Q + [0, 11. Let T be an Archimedean t-conorm 
with generator g. We denote by ,u~,~ the T-possibility measure defined as 
follows. 

For A E Q, finite, 

p,,T(A)= T(a(o), wEA)=g* [I &44)]. 
A 

For A countably infinite, 

PL,,r(A)=g* [z da(w))]. 
A 

Note that CA g(a(w)) < + CCL 

5.2. General Admissibility under Additive Aggregation 

In order to discuss Lindley’s conclusions about the inadmissibility of 
uncertainty measures, we consider G, + . In view of the results of Sections 
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3 and 4, we have to consider the concept of admissibility of a given uncer- 
tainty measure in a wide sense. Specifically, an uncertainty measure 
I-L E [a,, aIlJ is said to be general admissible if there is a game Gf, + such 
that p is uniformly admissible with respect to that game. In this sense, any 
probability measure is general admissible by taking the score functionf to 
be a proper score function ! But for a proper score function f, the 
associated probability transform P,-(x) = x, Vx E [0, 11, is increasing, and 
hence I’;’ exists. So we require, in general admissibility, the existence of a 
score function f such that Py ’ exists. It is seen that with respect to a game 
G’,.+ with Pf increasing, p is general admissible if and only if P,o p is a 
limtely additive probability. It is this equivalent property that we will use 
as a definition for general admissibility. 

In discussing possibility measures on discrete spaces, we can even 
consider a stronger concept of admissibility, namely general admissibility 
in the a-additive sense, i.e., Prop is a a-additive probability measure. 

It will be shown in this subsection that operations in fuzzy logics are, in 
general, “admissible,” and even (Zadeh)-max possibility measures are 
(uniform) limits of admissible decomposable measures. For related works 
in Statistics see, e.g., [lS]. 

Throughout this subsection, Q is a discrete space (finite or countably 
infinite), d = P(Q) and restrict d to all &,,, FE d. For CL: P(Q) + [0, 11, 
we write p( (0)) = p(w), so that the restriction of p to singletons is 
regarded as a function, still denoted as p, from Q to [0, 11. We also omit, 
from now on, the qualification “w.r.t. all finite equal antecedent conditional 
event sequences.” 

THEOREM 5.2.1. Let p’: 8(Q) + [0, 11. Then the following are equivalent: 

(i) p is general admissible in the a-additive sense. 

(ii) p is a decomposable measure with composition law T being an 
Archimedean t-conorm with generator g such that g( 1) = 1, and 

; gtAw)) = 1. (*I 

ProojI (i) * (ii). Let f be a score function such that tr is increasing 
and such that P,.op is a o-additive probability measure. 

For A E 9(Q), we have 

P,WW = 2 P/tA~)), 
A 

and hence p(A) = PF ‘(CA P&(o)). By taking g = Pr, we have g( 1) = 1, 
and we see that p is decomposable with 

Ttx, Y) = P?tP,tx) + Prty)). 
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Of course, 

(ii)*(i). Since p is T-decomposable on a discrete space, we have 
VA E LqQ), 

p(A)= T(P(~), WEA). 

Take P,-= g (noting that we can solve for f), we have 

PpPc(~)=dm4~)? meA) 

= g [g* (; g(cw)] =; dP(W)) 
since, by hypothesis CA g(p(o)) < C, g@(w)) = 1 = g( 1). Thus Pro ,u is a 
a-additive probability measure. 1 

Remark. In view of the above theorem, we see that if p is T-composable 
(or equivalently, if p is generated by its restriction to singletons and T) and 
if p is general admissible in the o-additive sense, then p = 6,,, the Dirac 
(probability) measure at o0 E R when v(wO) = 1. 

The following result provides a necessary and sufficient condition for p 
to be general admissible in the o-additive sense when sup, p(o) < 1. 

THEOREM 5.2.2. Let CC 52 -+ [0, l] with Q countably infinite, such that 
sup, U(O) < 1 (a f 0). 

Then a necessary and sufficient condition for the existence of a 
T-possibility measure ,u, generated by c1 and some T, which is general 
admissible in the o-additive sense, is that 

VXE(O, 11, a-‘[x, 1]={o:x~fx(o)~1} (**) 

is finite. In particular, if S is finite and sup, M(W) < 1, then there exists T 
such that pa,= is general admissible in the o-additive sense. 

Proof: (a) Necessity. If there is X,,E [O, l] such that cr-‘C.-C,, l] is 
infinite, then 

lim 1 g(Ao))= + ~0, n-t +m 4 

where A,cc~[x,,, 11. For, although A, is finite, and A,~c~[x,, l] for 
each n > 1, & g(p(o))>g(x,) [A,(. Thus (*) of Theorem 5.2.1 will not 
hold. 

(b) Sufficiency. In view of Theorem 5.2.1, we need to show only the 
existence of a generator g such that g( 1) = 1 and Cn g(a(w)) = 1. Then we 
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can take pd, r(A) = g* [CA g(cl(w))], where T is the Archimedean t-conorm 
with generator g. 

Let O<x,=sup,a(w)<l. Let {01>0)={~:01(~)>O}=U~~~K,, 
where K, = {o : l/n < a(o) d l/(n - l)}, n > 2. Let n, k 2 such that l/n, < 
x0< l/(n,-- 1). By (**), cr-‘[l/n,,, 1) is finite; thus (a(u) :coEKno} = 

1 Xl 9 x2, . ..1 x,~} for some n, . We can assume 

1 1 
-<Xl<X2< ‘.. <x,*<--- 
n0 no- 1’ 

Note that (**) implies that sup, a(o) is attained at w’, where 
a(d) = x,, = x0. (Indeed, if a(w”) > a(d) =x,, , then 0” E K,,. and hence 
contradicts the definition 

x,, = M$x a(w)). 

Since [0, 1 ] = [0, l/no] u (l/n,, 11, we first construct g on [0, l/n,]. 
For n an, and r>O, define 

g,(O) = 0 

and 

Then l/m < l/n =z. g,( l/m) < g,( l/n) and lim, _ o. g,( l/n) = 0. Thus we 
construct a continuous, increasing function on [0, l/n,] by extending g, 
continuously on each [l/n, l/(n - l)], for n > no, (say by joining g,(l/n) 
and g,( l/(n - 1)) by a straight line). 

On [l/n,, 11, we proceed as follows. Let 

a(r) = 1 s,(a(o)). 
G 

Since x0 E K,, K&= {o : a(w) < l/n,}; i.e., for OE K’n,, a(o) e [0, l/n,], 
which is the domain of g, defined above. 

We have 

OGa(r)= +c” 1 g,(a(o)) 
n=n,,+l K. 

< y (lK,l)g, < +f 1 
n=ng+ 1 n=no+l (n- 1)’ 

Thus lim, _ o1 u(r) = 0. 
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Let r be large enough so that 

where C,=a-‘(xi)cK,,,, Vj= 1, . . ..n.. There exist real numbers yj, 
j = 1, . ..) n such that 

max(,(,),g,(~))<y,<y2~ . . . <y,<l 
and 

u(r)+ t ICjlYj=l 
j=l 

(see the lemma below). Thus, on [l/no, 11, define g,(xi) = yi, j= 1, . . . . n,, 
for r large enough. Extend g, by continuity to [l/n,, x1] and on each 
CXj, xi+ 11, where xnL+ I= 1, and g,( 1) = 1. The condition (*) of Theorem 
5.21 is satisfied. Indeed 

C g,(a(u))=j!l ICjl gAXj)= 5 lcjl Yj 

K&l j=l 

so that 

z g,(a(u)) = $ g,(a(o)) = C g,(a(o)) 
no KW 

=a(r)+ !f lC,j yj= 1. 
j=l 

Finally, take pa, *(A) = G(a(o)), w E A = g-l& g(cr(o))], where g =g, 
for r large enough, g*=g-‘, since VA SD, C,, g(a(o)) < &, g(a(o)) = 
1 =g( 1 ), and T is the Archimedean t-conorm with generator g. 1 

LEMM.4. Let nj, j = 1, . . . . k, be k positive integers. Let ql, q2 E W + such 
that 

0 G go = Max(q,, q2) < 
1 

1 +ci”=1 “i’ 

Then there exist real numbers yl, . . . . yk such that 

(i) 90<.h<y2< ... <yk<L 

(ii) q, =~~=I njyj= 1. 
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Proof: Let yj = q. + j/c, where 

c= [ 5 jnj][l--q,q, 2 nj]p’>o, 
j=l j= 1 

Thus qo<y,<y,< ... < yk. 
Now y, < 1 if and only if q. CT=, jnj = k( 1 - q1 - q. c,“= 1 nj) < xi”= 1 jnj, 

if and only if k(l-q,)<(l-qO)~,k=, jnj+kq,C~=lnj=dk. But dk2 
ek ‘(l-qo)~fzi j+kqo~~=l l=(l-qo)(k(k+1)/2)+k2qo. 

Now (1 -q,)k<e, if and only if 

k+l 
l-q,<-- 2 (l-qd+kq, 

if and only if 0 G ~(1+4cJ+ql~ 

which is true here since qo, q, 2 0, and k 2 1. For (ii) 

ql+ 2 nj.Yj=ql+ i nj(qo+j/C) 
j= 1 j=l 

k 

=ql+qo C n,+ 

,I=1 

If p is T-decomposable with T(x, y) = Max(x, y) then p is not general 
admissible even in the additive sense. This is due essentially to the fact that 
Max(x, y) is not an Archimedean t-conorm. However, Max(x, y) can be 
approximated by Archimedean ones. 

For example, let T,(x, y)= [Min(xP+ yp, l)]“P, pa 1. For each p> 1, 
T, is an Archimedean t-conorm with generator g,(x) = xp, g,( 1) = 1. 

As usual, we extend T, to n arguments, as T,(x,, x2, . . . . x,) = 
T,(x,, T,(x,, . . . . -4). 

Then for each fixed n, T,(x,, x2, . . . . x,) + Max(x,, x2, . . . . x,) as 
p + + cc, uniformly in (x,, x2, . . . . x,). Indeed, since 

we have 

Max(x,, x2, . . . . x,1 d T,(x,, x2, . . . . x,) 

< Min[Max(x,, . . . . xn)n’Ip, 11 

0~ T,(x,, x2, . . . . x,) = Max(x,, x2, . . . . x,) d nlip - 1. 

Thus, if Q is finite, and CL: Y(Q) + [0, l] has Max(x, y) as composition 
law, i.e., VA C Q, 

p(A) = My P(W), 
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uniformly in A. 
Now, it is easy to see that, in Theorem 52.1, if we require only general 

admissibility in the additive sense (which is equivalent to uniform 
admissibility) the condition (*) can be weakened to 

Thus, assuming in addition that En p(w) < 1, for all Vpa 1, 
v,(A) = T,(p(o), o E A) is general admissible in the additive sense, since 

Therefore, in this case, Max-possibility measures are uniform limits of 
general admissible T,-possibility measures. 

More generally, for Sz countably infinite, and a: D + [0, l] such that 
sup, a(o) < 1, the max-possibility measure generated by tl is 

Pa(A) = sup a(o) 
A 

and this can be approximated by admissible measures, 
Specifically, 

THEOREM 5.2.3. Let l2 be countably infinite and a: Sz + [O, l] such that 
sup, a(o) -C 1. Suppose that there are non-negative reals a, b such that 

Then 

(i) For A EP(Q), such that Aa-‘(t, p=(A)=lim,,, +m p,,=,(A), 
the limit being uniform in all such A with (Al in,, for any fixed positive 
integer n,; also t, = sup, u.(o). 

(ii) For Aa-‘(t,)# 0, 
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Proof. (i) We are now going to construct generators g,, for suf- 
ficiently large p, such that 

kp(A)=gpl [I g,(a(w))] 
A 

are general admissible in the o-additive sense. 
More specifically, not only is g, such that g,( 1) = 1 and C, g,(a(o)) = 1, 

but precisely g,(x) = xp on [0, t,], where 

t, > t,, t, = sup a(0) 
CT 

(>O by assumption) and C, = a-‘(t,). 

First Vp > 0, define g,(x) = xp on [O, t,]. We will extend gP to [0, l] by 
defining a value for g,(tl) such that tz<gp(t,)< 1, set g(l)= 1 (with 
extension by continuity as usual) and obtain 

C g,(a(w)) = 1 
R 

Let a(Q)= {ti,j= 1, 2, . ..} and Cj=aP1(tj). 

where 

@p,3= C ap(w)=+f lC$/lT=+f C IC,l t; 
c;c; j=3 n=2 l/n<r,<l/(n--1) 

= 

L 

1 ICj(t,P + y 1 1 IC,l f,“. 
1/2<1,<1 n=3 l/ncr,<l/(n-I) 

By (*), the first term is at most, ~22~ times (a finite sum of tp), 

O<r,<l; this sum tends tozero asp-+ +co. 

In the second term 

c c Icjl ‘75 
n = 3 l/n < ‘, < ll(n - I) 
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Therefore, this second term is bounded by 

+O” (n+ l)b 
a +fnb(n-l)p. 1 np 

n=3 n=2 

+m 3nb1 
<UC - 

( > 
-==a(3/2)b +f n-(~-b). 

n=2 2 np n=2 

Thus lim, _ + o. @P,3 = 0. 
Let p be large enough so that @P,3 < $ and f; < l/2() C1) + ) CJ ). 
Define g,(t,)=(l--~,,)/IC,I. We have t$‘<g,(t,)< 1 if and only if 

if and only if 

@p,,3+w11 + IGot;< 4c,I+@p,* 

which is true by construction ( GPp, 2 > 0 since f2 > 0). Also, by construction, 
we have 

1 = Qp,2 + ICll &#l) =c gpke4). 
52 

Thus, if Aa-‘( $3, 

= T,(a(w), w E A) with 7’,(x, y) = [Min(xP + yP, l)]““. 

Hence lim, ~ + o. ~~,~$A)=Max(a(o), weA} for any finite A. 
(ii) For Aa-‘(t,)#@, we have 

t, = Max{a(o), ok A} < T,(cr(w), o~,4) < 1 

and hence 

I/4z,Tp(4-P12(~)l G 1 -t,. I 

Remarks. (i) Let (Sz, ~44) be an arbitrary measurable space, and 
,u: d + [a,, a,] be general admissible in the a-additive sense with 
Prop = Q, where Q is a discrete probability measure on (0, ,pP). Then p 
has the same representation as in the discrete case. Indeed, let B0 CO, 
countable such that Q(sZ,) = 1. Then VA E &, 
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(ii) A continuous analog is as follows. Let (~2, ~4) = (R, B), ho: R + 
CO, 11, Fe(x) = Q(( - co, xl) and F,: R --) [a,, a,], F,,(x) = p(( - 00, xl). 
Since p = P; ’ 0 Q, and P; ’ is increasing, /J is a nondecreasing set-function; 
hence F, is nondecreasing, and A E 93, p(A) = 9;’ [j,, d(P,o F,(x))]. If, in 
addition, P,- is differentiable, then 

P(A) = PF1 j P;-(F,(x)) dl;,(x) . 
A 1 

6. ADMISSIBILITY OF DEMPSTER-SHAFER BELIEF FUNCTIONS 

Dempster-Shafer belief functions have become very popular in recent 
years for modeling aspects of expert systems and combination of evidence 
problems in AI. The purpose of this section is to respond to Lindley’s 
comments about the inadmissibility of belief functions [16]. 

For simplicity let C2 be a finite set. A belief function Be1 on P(a), the 
power class of G, can be defined as follows. Let m: Y’(n) -+ [0, l] such that 
m(0) = 0, Cscn, m(A) = 1. Then, 

Bel(B)= 1 m(A). 
AGE 

m is the probability allocation for Bel. By the Mobius inversion formula, 
m can be recovered from Bel, 

m(A)= c (-l)'"-"I Bel(B), 
BCA 

where JA( denotes the cardinality of A. Note that if p: B(G) -+ [0, l] is 
such that p(sZ) = 1 and 

VAGQ, 2 (-l)‘“-B’/@)>O 
Bc_A 

then p is a belief function. 
If we think of “sets” as “points,” then m plays the role of a probability 

mass function, and Be1 is a “cumulative distribution function.” Since Sz is 
finite, we have 

Bel(A)= P(Xe.tT(A)), VAEQ, 

where X is a random set, defined on some probability space (a, 9, P), and 
taking values in P(s2) with “density” m, i.e., 

P(B:X(O)=A)=m(A). 
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Note that 

Bel(A) + Bel(A”) < 1. 

We extend Be1 to conditional events s’(Q) as follows. For E, FEY(G), 
define 

Bel(E)F)=P(XcEjXGF) 

when P(Xs F) > 0. 
For more information on belief functions, we refer the reader to 126, 21, 

11, 303. 
As in Section 5, we consider Gf,, with Pr increasing. By the nature of 

belief functions, we consider [a,, a,] = [O, 11. Note also that the existence 
of f such that Pr is increasing is equivalent to that of a (surjective) 
continuous, increasing function h: [O, 1 ] + [O, 11. Thus, in view of 
Theorem 4.2.1, p E [0, 1 ] d is general admissible if and only if there is such 
an h for which h 0 p is a finitely additive probability measure. 

In discussing the admissibility of belief functions on Sz finite, & = P(Q), 
it should be noted that the range of a belief function is not the whole inter- 
val [O, 1 ] ! As we will see, as in the case of fuzzy logics, some classes of 
belief functions are admissible while others are not. Thus, if DeFinetti’s 
coherence principle is viewed as a rational way of choosing “reasonable” 
uncertainty measures, the following analysis will provide criteria for 
selecting “good” belief functions. 

First, a simple condition of inadmissibility. 

THEOREM 6.1. Let (0, d) be a measurable space and p E [0, 1 ] d. 
Zf there is E, FE d such that 

I@) = P(F) and AEC) Z ,W”)> 

then p is not general admissible. 

Proof. If /J were general admissible, then there would be an 
h: [0, l] + [O, 11, (surjective) continuous, increasing, such that h 0 ,u is a 
finitely additive probability measure. Thus 

and hence 

h 0 ,u(E”) = h 0 p(FC) 

which contradicts the hypothesis, since h-’ exists. 1 
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EXAMPLES. (a) 0 = (ml, 02, w3, m4, w5, w6}. Let E = {wl, w2}, 
F= {03, w4}. Let m: P(Q) + [0, l] with 

m(w1) = m(w3) =p, > 0 

m(w2) = m(w4) =p2 > 0 

m({w,,w,})=m({w,,o,))=p,>O 

~({w,~w,~%))=P4~O 

m({w,Y%))=P,>O 

~({%~4))=P,~O 

m(A)=0 for all other subsets 

and 

Pl+Pz+P3+P4+P5+!76=f. 

We have Bel(E)=Bel(F)=p,+p,+p,. Bel(Ec)=p,+p,+p,+p4+p,, 
but Bel(F”) =pl +pZ +p3 # Bel(E”). 

(b) Consider the degenerate belief function focused on A, 

Bel,(B) = 1 if AcB 

and zero otherwise. 
Let B, A # @ and B,A = @. Then Bel,(B,) = Bel,(B,) = 0, but 

Bel,(B;)=O# 1 =Bel,(B”,). 

The hypothesis of Theorem 6.1 expresses the fact that p(E”) is not a 
function of p(E). Thus, an uncertainty measure p is not general admissible 
if there is no rp: [0, l] + [0, l] such that 

YE, FE d, AE” I -F) = cpbWl F)). (*) 

A typical example is the Max-possibility measure (which explains its 
inadmissibility mentioned in Section 5). 

The relation (*) always holds for probability measures, but as we have 
just seen, (*) might fail in the case of belief functions. 

The Theorem 6.1 provides a necessary condition for general 
admissibility: If p is general admissible, then necessarily, (*) must hold. 

The following result provides sufficient conditions for general 
admissibility of belief functions. 

THEOREM 6.2. Let l2 be finite and d = P(Q). 

409/159/2-20 
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(i) Zf Bel: J? + [O, l] (extended to d as mentioned previously) is 
such that 

VE, FE s#‘, with Bel(F) > 0, Bel(E’IF)=q[Bel(ElF)], (**) 

where cp: [0, 11 + [O, 1 ] is differentiable, then Be1 is general admissible. 
(ii) For each, r B 1 and Q: STJ’ + [0, 1 ] a finitely additive probability 

measure, Qr is a belief function on zl which is general admissible. 

Proof: (i) The proof of (i) follows from [S]: let E,, E,, FE& with 
Bel(F) > 0. Using the conditional extension of Bel, we have 

where A: [0, l]* + [0, 11, A(x, y) = xy. 
We also have 

Bel(F( F) = 1. 

Thus, together with (**), Bel’ is a finitely additive probability measure 
on d for some positive real r. Since (.)‘: [0, l] -+ [0, l] is surjective, 
continuous and increasing, Be1 is general admissible. 

(ii) For r > 1 and Q a finitely additive probability measure in 52 
(finite), Q’ is a belief function if 

VAGQ, m,(A)= c (-l)lA-BI Q’(B)>O. 
BEA 

For JAI =0, i.e., A=@, we have m,(@)=O. 
For IAl = 1, say, A = (or>, we have 

m,(~~l~)=Q’(~~l~)~O. 
For IAJ =2, say A= {CD,, co,}, 

mr({~~~~2~)=Q'({ o,,w,>,-Q'((ol>,-Q'((~2}) 
=CQ({o,>,+Q({o,>,lr-Q'({o,>> 

-QW4)N. 

Since the function u(tl) = CZ” + (1 - a)l is such that u(O) = u( 1) = 1 and u( . ) 
is convex with minimum at LI = i, u(f) < 1, we have 



SCORING APPROACH TO ADMISSIBILITY 589 

For IAl=3, say A={w,~~,w~}, let a=Q{w,), b=Q({w2}), 
c=Q((c+}). Then m,(A)=(a+b+c)‘-(a+h)‘-(a+~)‘-(b+c)’+ 

u’ + b’ + c’. Thus m’(A) 3 0 if 

(a+b+c)‘>(u+b)‘-a’+(u+c)‘-c’+(b+c)’-b’. (*) 

Now, if r = n >, 1 is integral, then the right hand side of (*) is 

uibJck, 

where S = {(i, j, k) : i+ j + k = n and not all the i, j, k are positive}. Thus 
(* ) holds since a, b, c 3 0 and 

Sc{(i,j,k):i+j+k=n}. 

For r > 1, real, we rewrite (*) as 

(u+b+c)‘+a’+b’+c’~(u+b)‘+(u+c)‘+(b+c)’. (**) 

Let u(r), w(r) be the left and right hand sides of (** ), respectively. Observe 

that u(r) and w(r) are convex functions on [ 1, + cc), since 
Ofu+b+c<l. Also u(l)=w(1)=2(u+b+c) and 

lim u(r)= lim w(r)=O. 
r- +cr ” +r 

Thus (**) holds since (**) holds for any integer r > 1. 
The above argument applies to the case IAl > 4 as well. 1 

Remarks. (i) Of course if Be1 = Q’ where Q is a finitely additive 
probability measure and r > 1, then Be1 is general admissible by 
Theorem 6.2 (i): VE, FE .ra2, Bel(E’ 1 F) is a function of Bel(E 1 F), namely 
cp(x)=(l -x)‘. 

(ii) We have seen that, in the scoring approach to admissibility of 
uncertainty measures, if the aggregation function is taken to be addition 
(as in Lindley’s work), then well-known measures such as Max-possibility 
measures (which are consonant plausibility functions) and degenerate belief 
functions are not general admissible (i.e., they are incoherent in DeFinetti’s 
sense). Although, we have shown that, in this case, there exist admissible 
T-possibility measures and admissible belief functions, it is useful to 
consider arbitrary aggregation functions in order to set up a general 
framework for studying the question of admissibility, i.e., a general concept 



590 GOODMAN, NGUYEN, AND ROGERS 

of coherence. From a logical viewpoint, this is precisely the concern of AZ 
researchers as well as statisticians dealing with applications of belief 
functions to statistical inference (e.g., [30, p. 1061071). Section 7 will give 
some insights in this direction. 

7. UNCERTAINTY GAMES WITH NONADDITIVE AGGREGATION FUNCTIONS 

In this section, some specific nonadditive aggregation functions are 
considered. In Example 1 it is shown that a simple nonadditive form of 
aggregation leads to a corresponding uncertainty game for which uniformly 
admissible measures are not transformable to probabilities; this is in 
opposition to Lindley’s games with an additive aggregation function. 
Example 2 presents a situation in which a nonadditive aggregation function 
has a general additive form. In this case, uniformly admissible measures 
have probability-like characterizations. In Example 3, we present some 
specialized cases of Example 2. 

EXAMPLE 1. Consider a = ((E, 1 F), (E, ( F), (E, u Ez 1 t;)), with 
E,E,=@. 

Let x = WI If’), Y = AE2 I J’), z = WI u E2 IF). 
We will discuss the weak local admissibility of 2 = (x, y, z) with respect 

to the game GJti,~, where the game is specified as follows. 
Recall that $: [w, + [w is specified by the sequence Ic/, : BY --t 58, n > 1. 

For our purpose here, it suffices to consider ti3: R3 + R. 
We take $Ju, u, w) = uu + w. 
For the score function f, we take a, = 0, a, = 1 and 

f(x, 0) =x2, f(x, 1)=(x-1)2 on CO, 11, 

We are going to show that there is no transform h: [0, l] -+ [0, l] such 
that 

h(z) = h(x) + h(Y) when (x, y, z) is WLAD. 

As a consequence, if p is uniformly admissible, p need not be transformable 
to a finitely additive probability measure. 

With the notation of Section 3, we have 

[ 

(x-l)y2 (x-1)2y z-l 
J=2 x(y-1)2 x2+ 1) z-l . 

XY2 X’Y Z 1 
To find 2 = (x, y, z) - WLAD, we use the sufficient condition given in 

Theorem 3.2.2 (e). 
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First, det J = 0 gives 

x*+-y*-xy(x+y) 
‘(” ‘)= 2(x+y)-3xy- 1 

for xy#O, 1. (*) 

ForO~x~l,y=l,wehavez=1.For~=(x,1,l)withO~x~l,Jhas 
rank p = 2 with R = (0, 0), and so (x, 1, 1) is WLAD. 

If h: [0, l] -+ [0, I] is such that h(z) =h(x)-th(y) for any 
(x, y, z) - WLAD, then, in particular, 

h(l)=h(x)+h(l), VXE(O, l), 

implying that h(x) = 0, Vx E (0, 1). 
From (*), we see that when x= y= i, we have z= 1. For x= ($, i, I), 

and p = 2. For 

with 

and RJ, = ($, -a), we have R = ( - LO), so that f = (4, 4, 1) is WLAD, 
and hence 

Now it can be seen that i = (0, 0,O) is WLAD, since 

P’L and 

contains one zero component. Thus h(O)= h(O)+ h(O), implying that 
h(O) = 0. 

Therefore, h c 0 on [0, 11. 
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EXAMPLE 2. Consider a as in Example 1. Let f be an arbitrary score 
function and 

ti3(& u, w) = 4%(401(~) + e(u) + %(W))> 

where ‘pi: R + R, j = 0, 1,2, 3 are four surjective, increasing, continuously 
differentiable functions. This is a generalized form of the additive aggrega- 
tion function. Note that 11/3(~, v, w) = UD + w in Example 1 is not of this 
form. Large classes of functions of several variables can be represented, or 
approximated, by general forms of addition of simple argument functions 
as above; see, e.g., the survey paper of Sprecher 1291 on the work of 
Kolmogorov and others in considering the related 13th-problem of Hilbert. 

If $ = (x, y, z) is WLAD then det J= 0, implying that 

p~p,of(4 = Pqp,&) + p,,of(Y)7 

where 

Pa,&) = dCf(c 011 f’(c 0) 
cp: Cf(k O)l f’(c 0) - dCf(& 1 )I f’(t, 1)’ 

EXAMPLE 3. As a special case of Example 2, one can consider uncer- 
tainty games with symmetric aggregation functions as follows. 

Let g: R + R be a (surjective), increasing, continuously differentiable 
function. 

For n 2 1, define 

as 

IClg,ntXIY ae.9 xn)=g-l ,i gtxi) 

L > 

The game Gs,*, can be identified with G,,, + , where II/, is specified by $g,n, 
n > 1. For example, for a fixed p > 1, take 

gpw = tP for t>O. 

Note that Max(x,, x2, . . . . 
However, II/ = Max yields 

x,) is a limiting case of tigptn when p + + co. 
essentially only trivial admissible uncertainty 

measures and hence is not a good candidate for being a viable nonadditive 
aggregation function. 



SCORING APPROACH TO ADMISSIBILITY 593 

ACKNOWLEDGMENTS 

We thank D. V. Lindley and L. A. Zadeh for their kind discussion on an earlier draft of 
this work. 

REFERENCES 

1. J. ACZEL, “Lectures on Functional Equations and Their Applications,” Academic Press, 
New York, 1966. 

2. J. P. AUL~N, A Pareto minimum principle, in “Differential Games and Related Topics” 
(H. W. Kuhn and G. P. Szego, Eds.), pp. 147-175, North-Holland, Amsterdam, 1971. 

3. D. BLACKWELL AND M. A. GIRSHICK, “Theory of Games and Statistical Decisions,” 
Dover, New York, 1979. 

4. L. D. BROWN, A heuristic method for determining admissibility of estimators-with 
applications, Ann. Sfatisi. 7, No. 5 (1979), 96&994. 

5. R. T. Cox, “The Algebra of Probable Inference,” The Johns Hopkins Press, Baltimore. 
1961. 

6. B. DEFINETTI, “Theory of Probability,” Vols. 1 and 2, Wiley, New York, 1974. 
7. T. S. FERGUSON, “Mathematical Statistics,” Academic Press, New York, 1967. 
8. D. A. FREEDMAN AND R. A. F?JRVES, Bayes’ method for bookies, Ann, Math. Statist. 40 

(1969), 1177-1186. 
9. C. GENES AND R. J. MACKAY, Copules ArchimCdiennes et families de lois bidimension- 

nelles dont les marges sent donnkes, Canad. J. Statist. 14 (1986), 145-159. 
10. C. GENEST AND R. J. MACKAY, The joy of copulas: bivariate distributions with uniform 

marginals, Amer. Statist. 40 (1986), 28&283. 
11. I. R. GOODMAN AND H. T. NGUYEN, “Uncertainty Models for Knowledge-Based Systems,” 

North-Holland, Amsterdam, 1985. 
12. I. R. GOODMAN, H. T. NGUYEN, AND E. A. WALKER, ‘*Conditional Inference and Logic 

for Intelligent Systems: A Theory of Measure-Free Conditioning,” North-Holland, 
Amsterdam, 1991. 

13. D. HEATH AND W. SUDDERTH, On finitely additive priors, coherence, and extended 
admissibility, Ann. Sfafisr. 6 (1978), 333-345. 

14. A. KOZEK, Towards a calculus for admissibility, Ann. Statist. 10, No. 3 (1982), 825-837. 
15. R. B. LATTA, Composition rules for probabilities from paired comparisons, Ann. Sfafisf. 

7, No. 2 (1979), 349-371. 
16. D. V. LINDLEY, Scoring rules and the inevitability of probability, Intern. Statist. Reo. 50 

(1982), l-26. 
17. D. V. LINDLEY, The probability approach to the treatment of uncertainty in Artilicial 

Intelligence and expert systems, Statist. Sci. 2, No. 1 (1987), 17-24. 
18. C. H. LING, Representation of associative functions, Puhl. Math. Debrecen 12 (1965), 

189-2 12. 
19. A. W. MARSHALL AND I. OLKIN, Families of multivariate distributions, J. Amer. Stofisf. 

Assoc. 83, No. 403 (1988), 834-841. 
20. D. MCDERMOTT AND J. DOYLE, Non-monotonic logic, I, Artificial Intelligence 13, No. 1 

(1980), 41-72. 
21. H. T. NGUYEN, On random sets and belief functions, J. Math. Anal. Appl. 65, No. 3 

(1978), 531-542. 
22. E. REGAZZINI, DeFinetti’s coherence and statistical inference, Ann. Sratisf. 15, No. 2 

(1987). 845-864. 



594 GOODMAN, NGUYEN, AND ROGERS 

23. A. RENYI, “Foundations of Probability,” Holden-Day, San Francisco, 1970. 
24. G. SWAY, An algebra of conditional events, J. Math. Anal. Appl. 24, No. 2 (1968), 

334344. 
25. B. SCHWEIZER AND A. SKLAR, “Probabilistic Metric Spaces,” North-Holland, Amsterdam, 

1983. 
26. G. SHAFER, “A Mathematical Theory of Evidence,” Princeton Univ. Press, Princeton, NJ, 

1976. 
27. S. SMALE, Global analysis and economics, I, Pareto optimum and a generalization of 

Morse theory, in “Dynamical Systems” (M. M. Peixoto, Ed.), pp. 531-544, Academic 
Press, New York, 1973. 

28. D. J. SPIEGELHALTER, A statistical view of uncertainty in expert systems, in “Artificial 
Intelligence and Statistics” (W. A. Gale, Ed.), pp. 17-56, Addison-Wesley, Reading, MA, 
1986. 

29. D. A. SPRECHER, A survey of solved and unsolved problems on super-positions of 
functions, J. Approx. Theory 6 (1972), 123-134. 

30. L. A. WASSERMAN, “Some Applications of Belief Functions to Statistical Inference,” Ph.D. 
thesis, Univ. of Toronto, Ontario, 1987. 

31. S. WEBER, I-decomposable measures and integrals for archimedean f-conorms I, 
J. Math. Anal. Appl. 101 (1984), 114-138. 

32. L. A. ZADEH, The role of fuzzy logic in the management of uncertainty in expert systems, 
Fuzzy Sets and Systems 11 (1983), 199-227. 

33. L. A. ZADEH, Possibility theory and soft data analysis, in “Mathematical Frontier of the 
Social and Policy Sciences” (L. Cobb and R. M. Thrall, Eds.), pp. 69-129, Westview, 
Boulder, CO, 1981. 

34. T. L. FINE, “Theories of Probability,” Academic Press, New York, 1973. 


