A metal nitride interlayer for long life lithium sulfur batteries Journal of Energy Chemistry 29 (2019) 1–2 Contents lists available at ScienceDirect Journal of Energy Chemistry journal homepage: www.elsevier.com/locate/jechem A metal nitride interlayer for long life lithium sulfur batteries Jin-Lei Qin a , b , Huiyou Zhao a , Jia-Qi Huang b , c , ∗ a Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing 10 0 083, China b Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 10 0 081, China c CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030 0 01, Shanxi, China a r t i c l e i n f o Article history: Received 30 June 2018 Accepted 3 July 2018 Available online 19 July 2018 Keywords: Shuttle of polysulfides Interlayers Layered double hydroxides Composite separators Lithium sulfur batteries g l h c ( n t s a s a L H a [ d a b t e Fig. 1. SEM images of nanoparticle-stacked Co 2 N and Ni 3 N prepared by NH 3 an- nealing of LDHs on carbon paper [10] . e s e i t w N N h 2 With the growing concerns on global energy crisis and the reenhouse effect, the exploration on renewable energy and re- ated emerging energy conversion and storage technologies are ighly interested [1] . Lithium sulfur (Li–S) battery system re- eives great attention for its high theoretical specific energy 2600 Wh/kg), which is deemed to be a promising candidate as ext generation high energy density batteries [2] . Yet, the prac- ical application of the Li–S batteries is limited by the notorious huttle effect of lithium polysulfides (LiPSs) between cathode and node [3,4] . Among diverse strategies that devoted to suppress the huttle effect, a functional interlayer between the cathode and sep- rator has been proposed to sterically obstruct and chemically bind iPSs, kinetically favoring LiPSs interconversion [5–7] . For instance, e et al. employed an ultrathin interlayer composed of Li 4 Ti 5 O 12 nd carbon nanofiber to effectively retard shuttle of polysulfides 8] . Simultaneously, the functional interlayer formed by the re- uced graphene oxide and activated carbon is proposed by Zhang nd coworkers can capture and reuse polysulfide species in Li–S atteries [9] . Recently, Wang and co-workers from Hunan University for he first time demonstrated the metal nitrides derived from lay- ∗ Corresponding author at: Advanced Research Institute of Multidisciplinary Sci- nce, Beijing Institute of Technology, Beijing 10 0 081, China. E-mail address: jqhuang@bit.edu.cn (J.-Q. Huang). t p o t r ttps://doi.org/10.1016/j.jechem.2018.07.001 095-4956/© 2018 Science Press and Dalian Institute of Chemical Physics, Chinese Academ red double hydroxides (LDHs) as a self-supporting interlayer in- erted independently between sulfur cathode and PP separator, ndowing the cell with long cycling life, excellent cycle stabil- ty, and high Coulombic efficiency retention in working Li–S bat- eries [10] . Nanoparticle-stacked nitride material (Co 2 N and Ni 3 N) as prepared by annealing LDHs on carbon paper (CP) under H 3 atmosphere at 400 °C (named as N-LDH-400/CP). The formed -LDH-400/CP functional interlayer possesses the following attrac- ive attributes: (1) large specific surface area to effectively absorb olysulfides; (2) hydrophilic metal-O groups to anchor polysulfides n the polar surface; (3) good electric conductivity to re-utilize he polysulfides anchored on the interlayer; (4) the structure to etain electrolyte for excellent electrochemical performance. y of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. https://doi.org/10.1016/j.jechem.2018.07.001 http://www.ScienceDirect.com http://www.elsevier.com/locate/jechem mailto:jqhuang@bit.edu.cn https://doi.org/10.1016/j.jechem.2018.07.001 2 J.-L. Qin et al. / Journal of Energy Chemistry 29 (2019) 1–2 Fig. 2. (a) Schematic diagram of the Li-S battery with N-LDH-400/CP interlayer; (b) Long cycle performance of a Li-S battery with N-LDH-400/CP interlayer [10] . A v t R [ Specifically, the surface of transition metal nitrides on CP formed an oxide passivation layer with exposing abundant active sites and adsorption sites, which exhibited excellent chemical stability and hindered the diffusion of polysulfides by chemical and physical ad- sorption. Additionally, Co 2 N and Ni 3 N nanoparticles retain large enough inter-particle space to store electrolyte ( Fig. 1 ). Accord- ingly, the N-LDH-400/CP interlayer between the rGO-S cathode and PP (Celgard 2400) ( Fig. 2 a) exhibited stable cycle performance. As demonstrated in Fig. 2 (b), the discharge capacity was 764.6 mAh g −1 at the first cycle and maintained 62.4% after 800 cycles. The metal nitrides derived from LDHs with above advan- tages significantly improved both capacity and cycling stability of Li–S cells, demonstrating the importance of the rational design of cell configuration and interfacial properties. Furthermore, the em- ployed Co 2 N/Ni 3 N/CP interlayer derived from LDH is highly inspir- ing, which may arouse great interest in exploring emerging func- tional interlayers by accurately regulating active sites for advanced energy storage devices. cknowledgments This work was supported by the National Key Research and De- elopment Program (No. 2016YFA0202500 ) and CAS Key Labora- ory of Carbon Materials (No. KLCMKFJJ1701 ). eference [1] X. Zhang , X. Cheng , Q. Zhang , J. Energy Chem. 25 (2016) 967–984 . [2] J.-Q. Huang , P.-Y. Zhai , H.-J. Peng , W.-C. Zhu , Q. Zhang , Sci. Bull. 62 (2017) 1267–1274 . [3] L.Y. Li , C.G. Chen , A.S. Yu , Sci. China Chem. 60 (2017) 1402–1412 . [4] X. Shen , H. Liu , X.B. Cheng , C. Yan , J.Q. Huang , Energy Storage Mater. 12 (2018) 161–175 . [5] H.J. Peng , J.Q. Huang , X.B. Cheng , Q. Zhang , Adv. Energy Mater. 7 (2017) 1700260 . [6] Y.Z. Sun , J.Q. Huang , C.Z. Zhao , Q. Zhang , Sci. China Chem. 60 (2017) 1508–1526 . [7] Z.H. Sun , J.Q. Zhang , L.C. Yin , G.J. Hu , R.P. Fang , H.M. Cheng , F. Li , Nat. Commun. 8 (2017) 14627 . [8] D. An , L. Shen , D. Lei , L. Wang , H. Ye , B. Li , F. Kang , Y.-B. He , J. Energy Chem. 1 (2018) 208–304 . [9] H. Li , L. Sun , Y. Zhang , T. Tan , G. Wang , Z. Bakenov , J. Energy Chem. 26 (2017) 1276–1281 . 10] Z. Li , Z. Ma , Y. Wang , R. Chen , Z. Wu , S. Wang , Sci. Bull. 63 (2018) 169–175 . http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0001 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0001 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0001 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0001 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0002 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0002 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0002 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0002 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0002 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0002 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0003 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0003 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0003 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0003 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0004 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0004 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0004 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0004 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0004 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0004 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0005 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0005 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0005 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0005 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0005 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0006 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0006 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0006 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0006 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0006 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0007 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0008 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0009 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 http://refhub.elsevier.com/S2095-4956(18)30576-X/sbref0010 A metal nitride interlayer for long life lithium sulfur batteries Acknowledgments Reference