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Mitochondrial dysfunction is increasingly recognized as an accomplice in most of the common human diseases
including cancer, neurodegeneration, diabetes, ischemia/reperfusion injury as seen in myocardial infarction
and stroke, and sepsis. Inflammatory conditions, both acute and chronic, have recently been shown to affect
mitochondrial function. We here discuss the role of oxidative phosphorylation (OxPhos), focusing on acute
inflammatory conditions, in particular sepsis and experimental sepsis models. We discuss mitochondrial alter-
ations, specifically the suppression of oxidativemetabolism and the role ofmitochondrial reactive oxygen species
in disease pathology. Several signaling pathways includingmetabolic, proliferative, and cytokine signaling affect
mitochondrial function and appear to be important in inflammatory disease conditions. Cytochrome c oxidase
(COX) and cytochrome c, the latter of which plays a central role in apoptosis in addition to mitochondrial respi-
ration, serve as examples for the entire OxPhos system since they have been studied in more detail with respect
to cell signaling. We propose a model in which inflammatory signaling leads to changes in the phosphorylation
state ofmitochondrial proteins, including Tyr304 phosphorylation of COX catalytic subunit I. This results in an in-
hibition of OxPhos, a reduction of the mitochondrial membrane potential, and consequently a lack of energy,
which can cause organ failure and death as seen in septic patients.

© 2014 Published by Elsevier B.V.
1. Introduction

Sepsis is an acute systemic condition that is sometimes referred to as
blood poisoning in the non-medical literature, but whose definition has
changed to reflect the inflammatory response of the body, including the
development of multiple organ dysfunction syndrome (MODS) [1].
About 10% of all patients in intensive care units (ICUs) have severe sep-
sis [2] with a higher incidence in blacks than in whites [3]. This life-
threatening condition develops in a million people annually in the
United States with more than 200,000 deaths, making it the leading
cause of mortality in ICU patients [4]. Apparently, the combination of a
pathogenic infection with a maladaptive immune response can cause
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organ dysfunction and eventual death. A major hurdle is the lack of
markers that allow early diagnosis and that can predict outcome. A re-
cent review of the literature reports 178 biomarkers including microbi-
ological cultures to identify the pathogen, and markers of inflammation
such as C-reactive protein and procalcitonin analyzed from blood [5]. In
the future, panels of markers will likely be used to increase sensitivity
and specificity, such as multiplexed quantitative PCR [6], which can be
easily employed with a fast readout.

A possible explanation for the lack of robust markers is the inherent
problem of defining sepsis due to the large heterogeneity of the patient
population that presents with acute infection. Sepsis can originate from
any site in the body in combination with unspecific responses such as
tachycardia and tachypnea all the way to organ dysfunction and failure
[7]. Severe sepsis is characterized by acute organ dysfunction,which can
develop during the course of an overwhelming infection, and septic
shock is severe sepsis in combination with a dangerous drop in systolic
blood pressure [8]. Sepsis is mostly caused by bacterial infections in ad-
dition to fungal infections originating at various sites in the body. Given
the large heterogeneity of sepsis including the different stages, special
care is needed when experimental data are interpreted and studies
are compared.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2014.05.031&domain=pdf
http://dx.doi.org/10.1016/j.bbadis.2014.05.031
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To study acute inflammation in animals several models are com-
monly used, such as i.v. and i.p. injections of LPS (lipopolysaccharide,
endotoxin), fecal peritonitis including cecal ligation and puncture
(CLP), and injection of live bacteria. Most studies are performed in rats
and mice but other animals are commonly used too, such as pigs. It
should be noted that animal models used by researchers have certain
limitations and sometimes only reflect certain aspects of the condition.
For example, researchers often administer large doses of bacteria or en-
dotoxin as a single bolus, whereas in patients there is a gradual increase
in pathogen load over time. Therefore, a bolus administration of bacteria
or endotoxin to a healthy animal has no clinical correlate [9]. The latter
models produce a profound and fast hypodynamic response, a decrease
in cardiovascular function and cardiac output leading to death within
hours, whereas septic patients show a hyperdynamic response [9]. If
lower amounts of endotoxin are administered a short hyperdynamic
response can be seen followed by the hypodynamic response [10]. The
fecal peritonitis model including the CLP model may better reflect
human sepsis due to the temporal worsening along with an extended
hyperdynamic cardiovascular response [9]. Differences betweenmodels
such as bolus administration of LPS or bacteria versus fecal peritonitis
may at least in part explain some data in the literature which at first
sight seem to be conflicting. In addition, experimental shortcomings to
realistically reflect sepsis may explain why there has been relatively lit-
tle success in the past in translating promising findings from preclinical
animal studies into the clinic [7]. These experimental limitations have to
be taken into consideration at the planning stage of preclinical studies
and when comparing experimental results using different models.

2. Role of oxidative phosphorylation in acute inflammation

Several lines of evidence, genetic and functional, suggest that themi-
tochondrial OxPhos system is a primary site of action during acute in-
flammation and that it is a central determinant of clinical outcome.
Inflammatory responses are key for the outcome of sepsis and may af-
fect cellular function at a very basic level, i.e., themitochondrial OxPhos
system, whose role in sepsis is still somewhat controversial. Most stud-
ies we are aware of reported decreased ATP levels in animal models of
sepsis and in human patients [11–17]. For example, a human compara-
tive study found that the average ATP/ADP ratio in muscle tissue was
7.44 in septic survivors versus 4.39 in non-survivors [11]. Using a rat
fecal peritonitis model, the same group later reported a drop of ATP
and an increase in AMP levels in skeletal muscle and liver tissues
starting at 24 h and 48 h in liver and muscle tissues, respectively [13].
Applying a single bolus of LPS, the Kozlov lab reported a 70% reduction
in liver ATP levels after 8 h which improved at later time points in
surviving animals [14]. However, there are some reports that found no
changes in cellular energy levels [18–21], likely because OxPhos was
still able to support cellular function at the time of measurement or
because overall metabolism and energy utilization are reduced [22].
Even if changes in cellular energy levels were not detected in the afore-
mentioned studies, metabolic changes did occur including increased
lactate production [19,21], suggesting that increased glycolytic flux
can maintain cellular energetics at least for some time.

In addition to differences between animalmodels and their ability to
reflect sepsis as discussed in the previous section, bioenergetic discrep-
ancies between some of the published reports may also be explained, at
least in part, by the utilization of assay protocols that do not preserve
posttranslational modifications, since almost all older protocols for mi-
tochondria isolation or mitochondrial assays do not utilize phosphatase
inhibitor cocktails. We have thus modified existing protocols to main-
tain the physiological phosphorylation state of mitochondrial proteins
and described the methods in detail for COX [23] and Cytc [24],
which has allowed us to map and study over 10 phosphorylation sites
on the two proteins in different animals and tissues [23–30]. Suchmod-
ifications, in particular cytokine-mediated phosphorylations in the con-
text of sepsis, may be easily lost when enzymes, i.e., phosphatases, that
reverse such modifications are not inhibited. Therefore, most studies
that involve mitochondria isolation followed by mitochondrial activity
measurements have to be interpreted in light of the possible event that
protein phosphorylations and perhaps other posttranslational modifica-
tions have been lost.
2.1. The energy metabolism crisis model

A recent study conducted by Kingsmore and colleagues analyzed the
plasmametabolome (i.e., the composition of metabolites such as amino
acids, Krebs cycle intermediates, and acyl-carnitines) and proteome
(i.e., the protein complement expressed in cells, tissues, or bodily fluids)
of sepsis survivors and non-survivors [31]. The study revealed several
interesting findings. First, survivors of sepsis, severe sepsis, and septic
shock showed no prominent differences in their metabolome and
proteome. Second, there were no major differences among patients
infected with three different pathogens, Streptococcus pneumoniae,
Staphylococcus aureus, or Escherichia coli. In contrast, there were sig-
nificant differences between sepsis survivors and non-survivors. For
example, nine proteins involved in fatty acid transport were de-
creased in sepsis non-survivors suggesting a defect in β-oxidation.
The non-uptake and non-utilization of fatty acids by the mitochon-
dria led to an accumulation of acyl-carnitines in the plasma, another
predictive marker for outcome established by the study. Glycolysis and
gluconeogenesis were also markedly different. Sepsis survivors showed
decreased levels of citrate, malate, glycerol, glycerol 3-phosphate, phos-
phate, and glucogenic and ketogenic amino acidswhereas non-survivors
showed increased levels of citrate, malate, pyruvate, dihydroxyacetone,
lactate, phosphate, and gluconeogenic amino acids [31]. This data sug-
gests that non-survivors cannot effectively utilize common metabolites
to generate energy through the aerobicmitochondrial pathway. Another
study reported that mitochondria are dysfunctional in human skeletal
muscle of septic patients, but this effect is not due to altered mitochon-
drial biogenesis since in vivo protein synthesis and expression of mito-
chondrial genes is indistinguishable from controls [32]. These studies
demonstrate that cellular metabolism is altered and affects several met-
abolic pathways in sepsis and suggest that metabolic enzyme levels
might not be the culprit. In this article, we put forth the proposal that in-
flammatory signaling suppresses the activity of key metabolic enzymes
leading to metabolic dysfunction.

We propose that an important functional target of inflammatory sig-
naling is the mitochondrial OxPhos machinery. It has long been known
that direct systemic delivery of oxygen during the course of sepsis does
not improve disease outcome in septic patients [33]. Rats subjected to
CLP had muscle tissue oxygen levels similar to the sham control and
septic animals after 6 h, but the septic animals had significantly (19%)
reduced ATP levels [34]. This suggests that oxygen utilization but not
delivery is impaired, a condition referred to as cytopathic hypoxia
[35]. This may further suggest that COX as the terminal acceptor of
oxygen might be functionally different during the course of sepsis. In
this and the following sections, we develop amodel (Fig. 1), inwhich in-
flammatory signaling leads to the inhibition of COX via tyrosine phos-
phorylation followed by the depolarization of the mitochondrial
membrane potential, impaired ATP production and finally energy
failure.

Together with the other OxPhos complexes, the reaction catalyzed
by COX and Cytc generates energy to drive all cellular functions. In
addition, Cytc regulates cellular survival and executes apoptosis. It is
thus not surprising that both COX and Cytc have been implicated in
the pathology of sepsis. In a recent editorial, Dolganiuc concludes that
“howandwhyexcessive COX inhibition becomes detrimental and limits
the survival during sepsis may be among the top research priorities of
this area” [36]. A preliminary answer to this question may already be
at hand, via the phosphorylation of COX, as we will discuss at the end
of this section.



TK

Fig. 1. Proposed sequence leading to mitochondrial dysfunction and energy crisis during
acute inflammation. Pathogen associated molecules such as LPS are recognized by Toll-
like receptors triggering inflammatory responses including the production of TNFα.
TNFα leads to the activation of an unknown downstream tyrosine kinase (TK) that phos-
phorylates COX on Tyr304 leading to strong enzyme inhibition, a critical reduction in the
mitochondrial membrane potential ΔΨm, and a drop in energy levels in target organs that
can leadorgan failure anddeath (black arrows). It remains to be shown if Toll-like receptor
signaling can directly activate the downstream TK and if there are OxPhos complexes
other than COX that are also targeted for phosphorylation (green arrows).
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2.2. Genetic evidence: nuclear polymorphisms and the mitochondrial
haplogroup as predictive markers

A small number of non-mitochondrial genetic markers for the out-
come of sepsis have been proposed. A polymorphism (11367C) identi-
fied in the gene of Toll-like receptor 4 (TLR4), which is important for
the activation of the innate immune response and recognizes LPS, was
associated with a better prognosis [37], likely due to a decreased
immune response including lower levels of cytokines such as TNFα.
The same concept is supported by another study showing that a
polymorphism in the TNFα gene, which results in higher circulating
TNFα concentrations, is associated with higher rates of MODS [38].
Other examples with various levels of predictive power are polymor-
phic variants in the 3′-UTR of the human leukocyte antigen G (HLA-G)
gene [39], polymorphisms in the leptin and leptin receptor genes [40],
a polymorphism in the promoter of themacrophagemigration inhibito-
ry factor (MIF) gene [41], the 372T/C polymorphism of tissue inhibitor
ofmatrixmetalloproteinase (TIMP)-1 inwhich the T allelewas associated
with 16% higher mortality [42], and the 1595C/T polymorphism in the
interleukin-1-receptor-associated kinase 1 (IRAK1), which was associat-
ed with the need for prolonged mechanical ventilation and decreased
survival [43]. These genetic markers suggest that a dysregulation of the
immune response, specifically an overactivation, is associated with de-
creased survival.

Interestingly, the composition of mitochondrial DNA, the so-called
haplogroups have also been suggested as predictors of survival after
sepsis. Mitochondrial haplogroups are defined by a relatively small
number of mitochondrial DNA polymorphisms that are preserved in
various populations, and these subtle changes have been associated
with certain phenotypes, such as longevity, male fertility, cardiomyopa-
thy, and neurodegenerative diseases [44–46]. A study conducted in
England revealed that Europeans who are haplogroup H carriers
have a more than twofold increased chance of survival after sepsis
compared to patients with other haplotypes [47]. Thus, mitochondrial
haplogroups may behave as susceptibility factors for the outcome of
certain diseases including sepsis. Another recent study conducted in
Spain showed that the JT haplotype is also associated with higher sur-
vival rates and that patients with this haplotype have on average a
14% higher COX activity and 51% increased COX protein levels normal-
ized to citrate synthase activity in platelets at the time of diagnosis
[48]. At days 4 and 8 after diagnosis, average COX amount was statisti-
cally significantly increased (52% and 49%, respectively). The authors
suggested that while COX levels in platelets and thus platelet function
is unlikely to be a factor determining survival, it might reflect differ-
ences in mitochondrial function in other tissues and organs [48]. It is
not fully clear at this point what functional and mechanistic effects dif-
ferent haplogroups have and how they relate to improved survival.
However, there are studies that have concluded that there are changes
in mitochondrial function depending on the haplogroup. For example,
using cybrid methodology, which allows studying mitochondria
derived from different haplogroups in the same cellular (i.e., nuclear
DNA) background, Gomez-Duran and colleagues showed increased
mitochondrial membrane potential and cytochrome c oxidase (COX)
activity in H versus Uk haplogroup mitochondria [49]. It is therefore
possible that COX activity and amount could serve as a predictive
blood-based marker for the outcome of sepsis. Recent studies in
C57BL/6 and C3H/HeN mice strains and strains generated by replacing
the endogenousmitochondriawith themitochondria of the other strain
indicated that themitochondrial haplogroupdetermines state 3 respira-
tion rates of isolated cardiac mitochondria as well as basal membrane
potential and ROS levels [50]. It is unclear, however, how important
ROS are as a determinant of outcome after acute inflammation versus
ATP, as discussed in Section 3.

2.3. Oxidative phosphorylation - temporal changes during acute
inflammation

Acute inflammation causes both short-term and longer-term effects
and adaptations at the level of OxPhos. Crouser and colleagues observed
a 40% reduction of COX activity in cats 4 h after LPS administration in
combination with partial uncoupling of mitochondrial OxPhos [51].
Another study found that electron transport chain (ETC) complexes I,
II, and COX were down-regulated in the diaphragm within 24 h after
LPS administration in rats, both at the mRNA and protein level, and
state 3 respiration declined by 48% [52]. Proteomic analysis of cat liver
mitochondria 4 h after LPS administration revealed 14 proteins that
showed differences in protein levels. Among them was one OxPhos
member, ATP synthase α subunit, which was 41% reduced in the septic
animals [53]. Early during septic shock using the CLPmodel, rat livermi-
tochondria showed significantly reduced mitochondrial respiration
rates and reduced COX levels [54]. Interestingly, Lu and colleagues
observed significantly increased and decreased mitochondrial ATP
synthase activity in rats after applying 5 mg/kg LPS at the early and
late stages of endotoxic shock, respectively [55]. These findings may
be explained by the temporal development in this model, with a
hyperdynamic followed by a hypodynamic response, utilizing a rela-
tively low LPS bolus. At the level of COX, early in sepsis after CLP, the ox-
idation of Cytc by COXwas competitively and reversibly inhibited in the
hearts of mice, whereas at a later time point (48 h), it became noncom-
petitive and irreversible [22]. At that time point animals with fulminant
sepsis showed about 38% reduced Vmax of COXmeasured spectrophoto-
metrically. After LPS injection rats showed a time-dependent increase of
Cytc in the cytosolic fractions in the heart along with increased apopto-
tic markers [56,57], suggesting that Cytc release from the mitochondria
and the execution of apoptosis becomemore prevalent in the late stage
of sepsis in the animalmodel. In the brain of septic rats after CLP, certain
cell types, such as the hippocampal CA1 region, the choroid plexus, and
Purkinje cells of the cerebellum, showed increased susceptibility levels
to the induction of apoptosis [58]. The authors found that among the ap-
optotic markers tested, Cytc release was the only one with prognostic
power. It is important to note, however, that the finding of increased
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apoptosis as observed in several animal studies might be a shortcoming
of themodels, since apoptosis does not seem to be the key determinant
in patients with sepsis. In contrast to organs such as the heart or brain
shown to be affected in the animal models, only a few cell types includ-
ing lymphocytes and gastrointestinal epithelial cells die through an
apoptotic process in septic patients [59]. In lymphocytes, the release of
Cytc from the mitochondria would trigger apoptosis and also augment
OxPhos dysfunction due to the interruption of electron flux in the ETC.
Thismay contribute to a failure of the immune system since the preven-
tion of lymphocyte apoptosiswas shown to improve survival [59]. Inter-
estingly, the Levy groupwas able to restoremitochondrial respiration in
the hearts of mice subjected to cecal ligation and puncture by i.v.-injec-
tion of cow heart Cytc [60,61], apparently without triggering apoptosis.
The treatment led to an uptake of Cytc into the cardiomyocytes, and sur-
vival increased from 15% for the sepsis control group to about 50% in
mice that were also injected with Cytc. The uptake might be facilitated
by an interesting feature of Cytc; it contains a cell-penetrating peptide
sequence located in the C-terminus of the protein [62], enabling it to
cross cellular membranes in a non-traditional fashion.

Taken together, these studies suggest that mitochondrial dysfunc-
tion via a decrease of OxPhos function and an increase in apoptotic ac-
tivity in selected cell types may contribute to the septic phenotype.
The role of inflammatory signaling discussed below and temporal
changes thereof may be important to understand the different phases
during the course of sepsis and the point of no return when mitochon-
drial failure cannot be reversed any longer, leading to death.

2.4. Tyrosine 304 phosphorylation on cytochrome c oxidase subunit I as a
metabolic switch to strongly inhibit OxPhos in acute inflammation

LPS administration in experimental sepsis leads to a TLR4-mediated
burst of pro-inflammatory cytokines, including tumor necrosis factor α
(TNFα). In a rat model of endotoxic shock TNFα expression peaked
early after LPS injection and led to a 70% decrease in cellular ATP levels
[14] (Fig. 1). In septic patients plasma levels of TNFαwere significantly
higher in patients that died compared to the surviving group [63],
making TNFα an interesting target for therapy. Neutralizing it with an
antibody fragment against TNFα in experimental sepsis resulted in sig-
nificantly increased survival rates [64]. However, a similar treatment
only slightly improved survival in patients with sepsis [65], suggesting
that there is redundancy in inflammatory signaling. Nevertheless,
TNFα alone is sufficient to induce metabolic changes similar to those
seen in sepsis. For example, TNFα induces the generation of lactate
in vitro and in vivo [66,67], pointing to an impairment of aerobic energy
metabolism.

In order to investigate the effect of inflammatory signaling at amore
mechanistic level we analyzed the effect of TNFα on liver tissue from
cow and mouse as well as mouse hepatocytes in culture. TNFα treat-
ment of liver tissue homogenates resulted in a fast (within 5 min) 60%
reduction of COX activity [68]. Purification of cow COX after TNFα treat-
ment, using protocols that preserve phosphorylations, following
Western analysis suggested tyrosine phosphorylation on catalytic
subunit I. Further analysis with a phospho-epitope-specific antibody re-
vealed the phosphorylation of tyrosine 304, the same site thatwe earlier
mapped by mass spectrometry after activating the cAMP-dependent
pathway in the liver [25]. In cultured mouse H2.35 hepatocytes TNFα
treatment for 5min had a profound diminishing effect on themitochon-
drialmembrane potential and resulted in a 64% reduction of cellular ATP
levels [68] (Fig. 1). Tyr304 is located on helix VIII of catalytic subunit I,
close to the intermembrane space (Fig. 2). Helix VIII is in contact with
the heme a3–CuB reaction center where oxygen is reduced to water
(Fig. 2, right), an ideal site for COX regulation. Tyr304 and the surround-
ing epitope are highly conserved in eukaryotes [25]. Interestingly, the
COX substrate Cytc has a similar epitope surrounding Tyr97 with 5 out
of 10 amino acids being identical and this site is phosphorylated in
heart tissue under normal conditions, although it is unclear to what
extent [26]. Because Cytc Tyr97 phosphorylation leads to a shift of the
Km of COX for Cytc from 2.5 μM for dephosphorylated Cytc to 5.5 μM
for phosphorylated Cytc, and because the epitopes in COX and Cytc
are similar, TNFα-mediated phosphorylation of Cytc would augment
the effect of COX Tyr304 phosphorylation, a concept that we will ex-
plore in future work.

It should be noted that OxPhos components other than COX (and
perhaps Cytc)may also be affected in a similar way by posttranslational
modifications. For example, decreased activity has been reported in sev-
eral animal sepsis models as well as in patients for one or more of the
other ETC complexes [13,16,69–73], but the molecular mechanism still
has to be elucidated. Over 200 phosphorylation sites have beenmapped
on OxPhos complexes but for almost all of them the functional effects
and the signaling pathways involved, including kinases and phospha-
tases, remain unknown (reviewed in [74]).

Other proposals to explain reduced OxPhos activity exist. For exam-
ple, one study reported selective degradation of some subunits of the
OxPhos complexes I, III, IV, and V in the diaphragm after experimental
sepsis using 2D blue native gel electrophoresis [75]. However, the
authors also reported the strong upregulation of COX subunit IV.
Given the usually assumed 1:1 stoichiometry of the OxPhos subunits,
additional follow-up experiments including direct Western blotting
after 1D SDS PAGE would be needed to strengthen or disprove such a
model. Later, using the same experimental approach, the authors
reported the downregulation of all OxPhos subunits analyzed 48 h
after LPS administration [52]. More recently and in agreement with
the model put forth in this review, the authors favored a mechanism
involving cell signaling and identified p38mitogen activated protein ki-
nase and double-stranded RNA-dependent protein kinase as kinases
that determine the extent of the execution of apoptosis [76,77]. They
also showed that the stress enzyme Jun N-terminal kinase (JNK) was
activated in the LPS sepsis model of diaphragmatic dysfunction, and
that its pharmacologic inhibition prevented caspase 8 activation and di-
aphragm weakness in septic mice [78]. Under conditions of stress,
activated JNK translocates to the mitochondria, inhibits mitochondrial
respiration, and can induce apoptosis via a permeability transition
pore dependent or independent mechanism, resulting in the release of
proapoptotic factors from the mitochondria such as Cytc [79,80]. As
expected, the suppression of JNK translocation to themitochondria pro-
tects mitochondrial integrity and function [81]. It was shown that JNK
translocates to the mitochondrial outer membrane where it phosphor-
ylates pyruvate dehydrogenase, leading to enzyme inhibition and thus
limited substrate delivery for the Krebs cycle and OxPhos [82]. It is
possible that JNK activates other kinases within the mitochondria,
such as the as-of-yet unknown tyrosine kinase that phosphorylates
COX subunit I Tyr304 (Fig. 1).

In addition to kinases that act on mitochondrial enzymes, protein
phosphatases are equally interesting therapeutic targets. For example,
in a rat sepsis heart failure model it was shown that LPS administration
leads to protein phosphatase 2A activation and a concomitant reduction
of mitochondrial calcium retention capacity [83]. PP2A is an interesting
phosphatase candidate to dephosphorylate and thus regulate mito-
chondrial proteins because it localizes to the mitochondria in many
tissues, including the heart and brain [84]. PP2A is a multifunctional
heterotrimeric serine/threonine protein phosphatase composed of a
scaffolding A subunit, a catalytic C subunit, and a regulatory B subunit,
the latter of which is expressed as several distinct isoforms. For exam-
ple, among B subunit isoforms, the brain-specific splice isoform Bβ2,
upon neurotoxic stress, translocates from the cytosol to the outer
mitochondrial membrane, triggered by the phosphorylation of three
N-terminal residues [85], to inducemitochondrial fission and to execute
apoptosis [86], a process which is accompanied by increased ROS pro-
duction [87]. Mitochondrial PP2A also provides a direct link to autoph-
agy, which is induced in several disorders including neurodegenerative
disease due to mitochondrial dysfunction or cellular stress and can fur-
ther enhance cellular demise [88]. The protein may also localize to the



Fig. 2. TNFα leads to the phosphorylation of Tyr304 of COX catalytic subunit I. Crystal structure data of cow heart COX [119] were used and processedwith the program Swiss-PDBViewer
4.1. Left, overview of COXwith catalytic subunits I and II highlighted in blue and green, respectively (IMS, intermembrane space). Tyr 304, which is phosphorylated in a TNFα-dependent
manner, is highlighted in red. Right, higher magnification of the catalytic center in subunit I showing the close proximity of Tyr304 with the binuclear CuB-heme a3 oxygen binding site.
Histidines 240, 290, and 291, which bind CuB and Tyr244, which is involved in the catalytic cycle of the enzyme, are shown in sticks.
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innermitochondrial compartments including the intermembrane space
and the matrix as predicted by the localization prediction tool Psort II
[89]. If so, due to its broad specificity, it could also act on OxPhos.

Taken together there is clear evidence that OxPhos is targeted by cell
signaling pathways. However, depending on the animal model and ex-
perimental procedures utilized there are some conflicting data regarding
OxPhos activity and enzyme levels. Both enzyme activities of individual
complexes and reported protein levels may be affected by phosphoryla-
tions. For example, in the latter case it is possible that the epitope(s) rec-
ognized by antibodies are masked by phosphorylation, preventing
antibody binding and thus erroneously suggesting changes in protein
amount. Although it is possible that protein degradation is increased
during sepsis, in general, under normal conditions mitochondrial protein
turnover is slow, with a half life of about 17 and 4 days averaged across
several COX subunits in mouse heart and liver, respectively (calculated
from [90]). In patients with sepsis where the condition develops over
longer periods of time mitochondrial protein degradation may be a
more important contributing factor to mitochondrial dysfunction com-
pared to animal studies in which protein levels are analyzed after a few
hours. In any case, it might be worth revisiting protein levels in the vari-
ous models by comparing results using mitochondrial isolation buffers
which lack and contain phosphatase inhibitors, respectively.

3. Reactive oxygen species

Increased levels of reactive oxygen species and (ROS) have long
been implicated in sepsis [72,91,92]. ROS cause tissue damage and
they can also trigger apoptosis. Therefore, antioxidants and radical
scavengers have been proposed as a possible therapy and have shown
some efficacy in sepsis models [71,93–95]. More recently, ROS scaven-
gers especially targeted to the mitochondria, such as MitoQ, SkQ1,
MitoE, and Tempol conjugates, which accumulate in the mitochondria
manifold raising their effective concentration at the sub-cellular sites
needed, were proposed as a novel strategy (reviewed in [96]). In addi-
tion to a direct protective effect by detoxifying ROS, scavengers may
also affect the communication between immune cells. For example,
SkQ1, a mitochondria targeted plastoquinone derivative developed by
the Skulachev lab [97], affects levels of certain immune cells, including
CD8(+) T cells, naïve T cells, and memory T cells [98]. However, the
compound still has to be tested in a sepsis animal model.

Mitochondria-generated ROS may serve as signaling molecules to
communicate with the other cellular compartments. Complex III may
play a key role in this communication process because it generates
ROS, which are released into the mitochondrial intermembrane space
and thus the cytosol, usually at high mitochondrial membrane poten-
tials or in the presence of complex III inhibitors [99]. It is possible, how-
ever, that different types of immune cells responddifferently to ROS. For
example, it was recently shown that complex III-generated ROS are re-
quired for T cell activation [100]. In contrast, a study using in vitro cul-
ture of neutrophils in the presence of LPS and inhibitors of complex III
concluded that increased ROS levels inhibit inflammatory responses re-
quired for the production of cytokines such as TNFα and macrophage
inflammatory protein 2 (MIP-2) [101]. Another important source of
mitochondrial ROS is via the p66shc pathway [102]. p66shc is intimately
linked to OxPhos because it accepts electrons from Cytc and transfers
them to oxygen, generating superoxide. It is activated by phosphoryla-
tion and was strongly induced in rodent models of burn trauma and
sepsis [103]. Since Cytc is also targeted and regulated by phosphoryla-
tion [24,26,30,104,105] it is possible that changes in the phosphoryla-
tion state of Cytc during sepsis may affect its interaction with p66shc.
Finally, in addition to mitochondrial ROS production, NADPH oxidase-
dependent ROS generation may significantly contribute to the total
ROS load during sepsis and could be therapeutically targeted [106].
Although ROS are clearly part of the septic sequence their specific role
and importance relative to the energy crisis component has to be fur-
ther examined.

4. Conclusion

Our proposed model emphasizes the energetic aspect during acute
inflammation. We propose that inflammatory signaling leads to the
phosphorylation of COX and other mitochondrial targets followed by
the suppression of mitochondrial function, reduced mitochondrial
membrane potentials, and energy failure (Fig. 1). The inhibition ofmito-
chondrial energy metabolism during sepsis and its life-threatening
consequences may, at first sight, not seem reasonable. However, such
a systemic condition is very rare in comparison to daily events that gen-
erate small wounds and areas of inflammation locally. Here, containing
the affected area by locally inhibiting mitochondrial function makes
sense because some pathogens seize the host energetic infrastructure
and energy production system. For example, chlamydiae express a
number of nucleotide transporters facilitating the acquisition of mole-
cules such as ATP [107]. As a result, inhibiting mitochondria locally
at the site of infectionmight counteract pathogenic growth because im-
portant metabolites are no longer generated by the host. However, in
the rare condition of a systemic inflammatory response, this response,
i.e., the inhibition of mitochondria, might lead to energy depletion,
MODS, and death.
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Future therapeutic approaches should target OxPhos and could
be combined with strategies already in place that show some effica-
cy. Several mitochondria-targeted therapies have been tested in-
cluding treatment with mitochondrial substrates (e.g., carnitine,
succinate, and MgCl2–ATP), cofactors (e.g., coenzyme Q and α-lipoic
acid), antioxidants and ROS scavengers (e.g., MitoQ, SkQ, phenyl-tert-
butylnitrone, N-acetylcysteine, and Tempol), and membrane stabilizers
(e.g., cyclosporine A andmelatonin), which restoremitochondrial func-
tion to some extent (reviewed in [108]). However, interfering with
inflammatory signaling at the level of the mitochondria might result
in better outcomes. For example, the synthetic cortisol homologue
dexamethasone, which affects several signaling pathways including
Wnt/β-cateninin, NFκB, MAPK/Erk, and PI3K signaling, was shown to
partially rescue COX function 24 h after cecal ligation and puncture in
the cortex and outer stripe of the outer medulla of mouse kidneys
[109]. Additional signaling pathways have been shown to target COX
(reviewed in [110]), which might be explored to boost aerobic activity.
Among those, non-receptor tyrosine kinase Src and protein kinase Cε
(PKCε) have been identified as positive regulators of COX. In addition
to its primary localization in the cytosol Src was found in the mito-
chondrial intermembrane space [111]. Here it was shown to phos-
phorylate COX catalytic subunit II in osteoblasts on a yet-to-be
identified residue leading to enzyme activation [112]. Treatment of
rat neonatal cardiac myocytes with PKC activators diacylglycerol or
4β-phorbol 12-myristate 13-acetate (4β-PMA) resulted in the phosphor-
ylation of an 18 kDa protein and a two- to fourfold increase in COX activ-
ity [113,114]. It was further shown that PKCε co-immunoprecipitated
with COX and that the 18 kDa band contained COX subunit IV as identi-
fied by mass spectrometry although the precise phosphorylation site
still has to be identified. A third kinase that leads to COX activation is
matrix-localized carbon dioxide/bicarbonate-regulated adenylyl cyclase
which phosphorylates COX subunits I and IV [115]. There is also evidence
that protein tyrosine phosphatase Shp2, which is part of the Ras path-
way, directly or indirectly activates COX. Similarly to Src, Shp2 also local-
izes to themitochondrial intermembrane space [116]. Inmouse cell lines
with mutations in the Shp-2 encoding gene PTPN11 leading to constitu-
tively active Shp2 [117] and in human lymphoblasts with activating
mutationswe found about 74% and 63% increased COX activities, respec-
tively [118].

In conclusion, a better understanding of the multifaceted regulation
of OxPhos might provide strategies in the future to activate aerobic en-
ergy metabolism during acute inflammation by selectively targeting
downstream kinases and phosphatases that regulate the activity of the
OxPhos complexes including the examples discussed above for COX.
An important goal should be the identification of kinases and phospha-
tases that directly act on OxPhos during acute inflammation, which
might allow direct control of OxPhos activity and restoration of its func-
tionality to levels allowing cell survival and maintenance of cellular
functions during sepsis in order to decrease mortality.
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