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Abstract: The urea oxidation reaction (UOR) is a possible solution to solve the world’s energy crisis.
Fuel cells have been used in the UOR to generate hydrogen with a lower potential compared to
water splitting, decreasing the costs of energy production. Urea is abundantly present in agricultural
waste and in industrial and human wastewater. Besides generating hydrogen, this reaction provides
a pathway to eliminate urea, which is a hazard in the environment and to people’s health. In this
study, nanosheets of CuCo2O4 grown on nickel foam were synthesized as an electrocatalyst for urea
oxidation to generate hydrogen as a green fuel. The synthesized electrocatalyst was characterized
using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.
The electroactivity of CuCo2O4 towards the oxidation of urea in alkaline solution was evaluated using
electrochemical measurements. Nanosheets of CuCo2O4 grown on nickel foam required the potential
of 1.36 V in 1 M KOH with 0.33 M urea to deliver a current density of 10 mA/cm2. The CuCo2O4

electrode was electrochemically stable for over 15 h of continuous measurements. The high catalytic
activities for the hydrogen evolution reaction make the CuCo2O4 electrode a bifunctional catalyst
and a promising electroactive material for hydrogen production. The two-electrode electrolyzer
demanded a potential of 1.45 V, which was 260 mV less than that for the urea-free counterpart.
Our study suggests that the CuCo2O4 electrode can be a promising material as an efficient UOR
catalyst for fuel cells to generate hydrogen at a low cost.

Keywords: urea oxidation reaction; fuel cells; cyclic voltammetry; hydrogen production

1. Introduction

In recent years, the utilization of urea as an alternative fuel in fuel cells has grown significantly,
since it is highly available, stable, and nonflammable [1]. Fuel cells are devices that convert chemical
energy into electrical energy, playing a vital role in overcoming the world energy crisis [2,3]. Urea is an
abundant waste generated in agricultural land, and it is present in industrial and human wastewater
as well. Urea is produced from natural gas or can be synthesized from ammonia. When in contact
with atmosphere and groundwater, urea breaks down into ammonia and nitrate, causing health
and environmental problems [4–6]. A solution to eliminate these problems caused by urea, and to
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also generate clean energy, is the urea oxidation reaction (UOR) [7]. This reaction is described as
follows [4,5]:

CO(NH2)2 + H2O→ N2 + 3H2 + CO2 (1)

Thermodynamically, water splitting occurs at 1.23 V to generate hydrogen, while urea oxidation
could provide hydrogen at a lower potential of 0.37 V [4,8]. This means that urea oxidation provides
cheaper hydrogen production than water electrolysis. In previous reports, it is common to see the
intense utilization of nickel-based catalysts to oxidize urea efficiently at low overpotential [3,9,10].
Forslund et al. reported a study on the use of LaNiO3 as a catalyst for the electrooxidation of
urea in alkaline conditions [4]. The nonstoichiometric spinel structure Ni1.5Mn1.5O4 synthesized by
Periyasamy et al., using a hydrothermal synthesis process, showed excellent electrochemical properties
with the highest activity toward electro-oxidation of urea in alkaline solutions [1]. The development of
porous Ni3N nanosheet arrays on carbon cloth studied by Liu et al. also showed high performance
and was a durable electrocatalyst for urea oxidation [11].

A possibility to use the same principles, but with a different component, led us to develop and
produce copper-based catalysts that can oxidize urea efficiently to improve the properties of fuel cells.
Electrode materials made of transition metal oxides are often used as electrocatalysts because of their
high electrochemical performance, natural abundance, and low cost. In addition, copper and cobalt
salts are considered a promising electrode material for energy generation and storage devices due to
its nontoxicity and high electrical conductivity. Zheng et al. have shown that cobalt-based compounds
are excellent for hydrogen adsorption [12]. Mesostructured CuCo2S4/CuCo2O4 nanoflowers
were synthesized by Xu et al. and showed an excellent electrochemical performance for energy
applications [13]. An asymmetric supercapacitor based on CuCo2S4/CuCo2O4 as the cathode and
graphene aerogel as the anode delivered a high energy density of 33.2Wh/kg and power density of
13.3 kW/kg. Tong et al. used NiMoO4 nanosheets to study the performance in the urea oxidation
reaction. They found a larger number of exposed active sites, faster electron transport, and lower
adsorption energy of urea molecules. Comparing the cyclic voltammetry (CV) curve recorded in KOH
solution, the anodic current density of NiMoO4 increased largely after adding urea, demonstrating
its high catalytic response activity for electro-oxidation of urea [5]. As reported by Wu et al., a nickel
hydroxide electrode with nanocup architecture offered better electrocatalytic performance during
electrolysis of urea [14]. Nickel oxide−nickel hybrid nanoarrays on nickel foam (NiO−Ni/NF) was
studied by Yue et al. for water splitting and urea oxidation [9]. The electrode showed excellent activity
for urea oxidation with the need of a low potential in 1.0 M KOH with 0.33 M urea. Ji et al. reported that
open-ended α-Ni(OH)2 nanotubes provided effective surface area and active sites when exposed to an
electrolyte for urea electrolysis, ensuring a much higher current density during urea electrolysis [15].
Hence, in this work, CuCo2O4 was synthesized by the hydrothermal method, and the electrocatalytic
activity was studied for the oxidation of urea. Materials with three-dimensional (3D) architectures are
attractive because their high surface area provides many active sites, and, thus, better electron transfer.
The material studied in this report is a 3D flower-like structure composed of CuCo2O4 nanosheets,
which showed excellent electrochemical properties with a high activity.

2. Experimental Details

2.1. Preparation of CuCo2O4 on Ni Foam

The CuCo2O4 was synthesized on Ni foam using a one-pot hydrothermal method followed by an
annealing process. A piece of Ni foam was cleaned with 3 M HCl solution in an ultrasound bath to
remove the NiO layer on the surface, and was then washed with deionized water several times. In a
typical synthesis, 528 mg of Co(NO3)2.6H2O, 93.8 mg of Cu(NO3)2.3H2O, and 721 mg of urea were
dissolved in 34 mL of ethanol. The solution was transferred to a 45 mL Teflon autoclave reactor along
with the pre-cleaned Ni foam and maintained at 120 ◦C for 8 h. After cooling to room temperature,
the Ni foam was washed with water and dried under vacuum at 60 ◦C overnight. Finally, in order to
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obtain CuCo2O4 on the Ni foam, the sample was annealed at 350 ◦C with a temperature ramp rate of
5 ◦C/min for 2 h in an air atmosphere to obtain CuCo2O4 (Figure 1).
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2.2. Structural Characterization

The structural identity, phase purity, and physical morphology of the fabricated electrode were
analyzed using X-ray diffraction (XRD), FEI Versa 3D Dual Beam scanning electron microscopy (SEM),
FEI Tecnai F20 XT Field Emission transmission electron microscope (TEM), and Phi 5000 VersaProbe II
X-ray photoelectron spectroscopy (XPS). CuKα1 (λ = 1.5406 Å) radiation was used to record the X-ray
diffraction patterns in 2θ-θ mode.

2.3. Electrochemical Characterization

To evaluate the catalytic activity of CuCo2O4 and investigate the function of OH- ions in the
electro-oxidation of urea, cyclic voltammetry (CV) was performed in 1 M KOH solution containing
0.33 M urea. These measurements were performed using the standard three-electrode method.
A Versastat 4-500 electrochemical workstation (Princeton Applied Research, USA) was used for
all electrochemical measurements. A platinum wire and a saturated calomel electrode were used as a
counter and a reference electrode, respectively. The synthesized sample on nickel foam was used as
the working electrode.

3. Results and Discussion

3.1. Structural Characterization

X-ray diffraction analysis confirmed a high phase purity of the synthesized CuCo2O4, as seen
in Figure 2a. All of the diffraction peaks matched well with the JCPDS card no. 78-2177,
which corresponded to the pure cubic spinel phase of CuCo2O4 with a lattice parameter value

of a = 8.128
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[16,17]. Scanning electron microscopy was employed to investigate the sample
morphologically. High-magnification SEM images confirmed that CuCo2O4 was uniformly grown on
Ni foam, with a flower-shaped structure composed of nanosheets in different orientations and a smooth
surface, revealing a three-dimensional porous structure (Figure 2b). This uniform flower-shaped
structure may have been the result of the Faradic reaction. The average diameter of the flower structure
was about 5 µm, and it was interconnected with the nanosheets that had a thickness of 160 nm. TEM
images of CuCo2O4 powder scraped from the Ni foam at various magnifications are shown in Figure 3.
TEM images reveal nanorod-like structures with good crystallinity. X-ray photoelectron spectroscopy
of the CuCo2O4 is shown in Figure 3. The XPS survey spectra confirmed the presence of copper, cobalt,
oxygen, and carbon elements (Figure 4a). The high-resolution XPS spectrum for Cu 2p showed the
existence of 2p1/2 and 2p3/2 peaks of copper (Figure 4b) [8,18]. The high-resolution XPS spectrum for
Co 2p is shown in Figure 4c. The two main peaks of Co 2p3/2 and Co 2p1/2 were observed around
779.6 and 794.7 eV, respectively, suggesting the existence of both Co2+ and Co3+ [8,18]. Considering
the Co 2p peak shape, this was consistent with spectra of Co3O4 standards given by Gu et al. [19] and
Yang et al. [20]. These studies showed a 2p3/2 peak binding energy of 779.9 eV and a broad plateau-like
satellite structure to higher binding energies between the 2p3/2 and 2p1/2 peaks. The high-resolution
spectrum for O 1s is shown in Figure 4d, which shows two peaks centered at 529.4 and 531.3 eV,
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respectively. The peak around 529.4 eV corresponded to metal–oxygen bonding, while the second
peak corresponded to a high number of defect sites with low oxygen coordination in the material with
a small particle size [21].
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Figure 4. XPS spectra of the CuCo2O4: (a) full survey spectra, (b) Cu 2p spectrum, (c) Co 2p spectrum,
and (d) O 1s spectrum.

3.2. Electrocatalytic Activities

The electrocatalytic activities of the CuCo2O4 electrode were examined using a three-electrode
setup in 1 M KOH, without and with 0.33 M urea. As seen in Figure 5a, the anodic current density
of CuCo2O4 increased significantly after the addition of urea, confirming a high catalytic activity
response of CuCo2O4 for the electro-oxidation of urea. The CuCo2O4 electrode demanded a potential
of 1.36 V to deliver a current density of 10 mA/cm2, which was much lower than that without urea.
The potential required to deliver 10 mA/cm2 using the CuCo2O4 electrode was among the more
favorable reported values. For example, the Ni(OH)2 nanosheet and nanocube required a potential of
1.52 V and 1.55 V, respectively, to produce a current density of 10 mA/cm2 [14,22]. Ni2P, Rhodium-Ni,
and NiMo nanosheets demanded a potential 1.37 V, 1.47 V, and 1.37 V, respectively, to generate a
current density of 10 mA/cm2 [23–25]. The Tafel slope for the CuCo2O4 electrode was calculated using
polarization data, and was observed to be 82 and 46 mV/dec in 1 M KOH without and with 0.33 M
urea, respectively (Figure 5b). The lower Tafel slope in the urea solution indicated faster catalytic
kinetic energy for the CuCo2O4 electrode.
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Figure 5. (a) Cyclic voltammetry curves in 1 M KOH with and without 0.33 M urea, and (b)
corresponding Tafel slopes.

Furthermore, the urea oxidation kinetics were investigated by electrochemical impedance
spectroscopy (EIS). The Nyquist plots for the CuCo2O4 electrode at various potentials are given
in Figure S1. As seen in the Nyquist plots, CuCo2O4 had a low impedance and, thus, markedly fast
kinetics toward urea electro-oxidation. Furthermore, the behavior of the Nyquist plots depended
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on the potential. With the increase in the potential, the diameter of the semicircle was decreased,
suggesting a lowering in charge transfer resistance. An important method to evaluate the long-term
stability of the obtained electrodes in urea oxidation is the chronoamperometric response test. Figure S2
shows the superior catalytic stability with low degradation in current density after 15 h. From this
measurement, it was observed that CuCo2O4 exhibited a stable and durable catalytic performance.
The CV curves of the CuCo2O4 electrode in 1 M KOH electrolyte with 0.33 M urea was measured at
various scan rates. Figure S3 shows the variation of measured potential versus scan rates determined
using CV data at 50 mA/cm2. As seen in Figure S4, the CuCo2O4 electrode showed almost no change
in potential during CV measurements at various scan rates, indicating superior rate capability for
the UOR process. Tests performed by Shi et al. demonstrated an increase in the anodic current
density for the Ni/Mo/graphene nanocatalysts after addition of urea in the system [26]. This increase
was also found by Barakat et al. in the urea oxidation test for Ni and Mn nanoparticle-decorated
carbon nanofibers [27]. Sodium nickel fluoride nanocubes were studied by Kakati et al. in different
concentrations of urea for its oxidation [28]. It was found that the peak potentials of urea oxidation
increased linearly with increasing urea concentration. Zeng et al. studied the effect in NiCo layered
double hydroxide for promoted electrocatalytic urea oxidation, which proved to be efficient, showing
a low onset potential and a high faraday efficiency [29].

The electrocatalytic performance of the CuCo2O4 electrode for hydrogen evolution reaction (HER)
was also studied. Figure 6a shows the polarization curves for a CuCo2O4 electrode in 1 M KOH,
without and with 0.33 M urea. As observed, the polarization curves were overlapping each other,
indicating the little impact that urea had on the electrochemical activity of the CuCo2O4 electrode
in the HER region. The CuCo2O4 electrode required a potential of 168 mV to generate 10 mA/cm2.
The Tafel slope for the CuCo2O4 electrode in 1 M KOH without and with urea was observed to be 113
and 112 mV/dec, respectively, suggesting no change in the kinetics for the HER process after addition
of urea (Figure 6b). Liu et al. have reported a Tafel slope of 172 and 180 mV/dec for Ni3N and Ni(OH)2

nanosheets on carbon cloth in 1 M KOH + 0.33 M urea solution [11]. The efficiency (η) for the urea
electrolysis can be estimated by the following expression [14]:

η =
it − iOER

it
× 100% (2)

where it is the overall current density during electrolysis of urea (1 M KOH + 0.33 M urea) and the
iOER is the current density of OER process in 1 M KOH at 250 s (Figure S4). An efficiency of 95% was
observed for the CuCo2O4 electrode.
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Figure 6. (a) Linear sweep voltammetry (LSV) curves of the CuCo2O4 electrode toward HER in 1.0 M
KOH with 0.33 M urea, and (b) corresponding Tafel plots.
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The electrocatalytic activities of the CuCo2O4 electrode were further examined in a two-electrode
electrolyzer configuration. The CuCo2O4 electrode was used as the anode for the UOR and the cathode
for the HER process in alkaline media. Figure 7a shows polarization curves of the two-electrode
electrolyzer in 1 M KOH, without and with 0.33 M urea. The electrolyzer required a cell voltage of
1.45 V to deliver a current density of 10 mA/cm2 in urea solution, which was 260 mV less than the
cell voltage required without urea in the alkaline solution. The observed cell voltage was better than
many other reported systems, such as Ni(OH)2-Ni(OH)2 and Pt/C-RuO2 [11]. In addition, it had
a performance in urea solution, and the CuCo2O4 electrode showed outstanding electrochemical
durability (Figure 7b). The chronopotentiometry test, performed for porous pomegranate-like Ni/C in
the urea oxidation reaction made by Wang et al., had a stable performance over 12 h [30].
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4. Conclusions 

In conclusion, it is possible to prove the two main advantages that the urea oxidation reaction 
can bring to the world: (1) it is a solution to eliminate the urea from groundwater systems and the 
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cost, which helps to solve the energy crisis. CuCo2O4 grown on nickel foam was successfully 
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conditions. The high surface area favors charge transfer capacity and improves the reaction kinetics. 
The CV curves clearly show a significant decrease in potential after the addition of urea, which leads 
to cheaper hydrogen production. The two-electrode electrolyzer need a potential of 1.45 V, which is 
260 mV less than that for the urea-free counterpart. From the overall investigation, the results suggest 
that CuCo2O4 can be used in fuel cells for low-cost hydrogen generation. 
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4. Conclusions

In conclusion, it is possible to prove the two main advantages that the urea oxidation reaction
can bring to the world: (1) it is a solution to eliminate the urea from groundwater systems and the
environment that are harmful to people, and (2) the production of H2 uses less energy and has a
lower cost, which helps to solve the energy crisis. CuCo2O4 grown on nickel foam was successfully
synthesized, making it possible to utilize them as a highly efficient UOR electrocatalyst under alkaline
conditions. The high surface area favors charge transfer capacity and improves the reaction kinetics.
The CV curves clearly show a significant decrease in potential after the addition of urea, which leads
to cheaper hydrogen production. The two-electrode electrolyzer need a potential of 1.45 V, which is
260 mV less than that for the urea-free counterpart. From the overall investigation, the results suggest
that CuCo2O4 can be used in fuel cells for low-cost hydrogen generation.
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