The Systemic Risk of Energy Markets

Diane Pierret

Université Catholique de Louvain & New York University

6th PhD Day, Louvain-la-Neuve 2012

Systemic risk: the risk of the financial sector as a whole being in distress and its spillover to the economy at large

Systemic risk is related to

- dependence, causality, externality, interconnectedness, spillover effects
- 2 market integration, contagion, commonality
- Shocks, crises, extreme events

Does this exist in energy markets? How to measure it? How does this affect the rest of the economy? Energy Systemic Risk: the risk of an energy crisis raising the prices of all energy commodities with negative consequences for the real economy.

- increased dependence of the economy on energy
- increased energy market integration
- extreme energy market shock from the supply side
- negative consequences for the energy sector and the rest of the economy

Energy Security: "the uninterrupted availability of energy sources at an affordable price." (IEA)

This project relates to the literature on

- Past energy crises and the impact of energy prices on the economy (Hamilton, 1983)
- Systemic Risk
 - Network (Nier et al. (2007), Battiston et al. (2009), Billio et al. (2010), Hautsch et al. (2011), Diebold and Yilmaz (2011))
 - Co-movements (Billio et al. (2010), Kritzman et al. (2011), Acharya et al. (2010), Brownlees and Engle (2011))
- Energy prices co-movements
 - Cointegration and causality in the mean (Bunn and Fezzi (2008))
 - Multivariate Volatility (Chevallier (2012), Bauwens et al. (2012))
 - Copulae (Benth and Kettler (2010), Boerger et al. (2009), Gronwald et al. (2011))

2 Econometric methodology and application

- Causility in means and variances
- Factor model and tail expectations

Econometric methodology and application

- Causility in means and variances
- Factor model and tail expectations

EnSysRISK

The conditional MES of an energy asset (Acharya et al. (2010), Brownlees and Engle (2011)) is given by

$$MES_{it} = E_{t-1}(r_{it}|energy\ crisis)$$

Corresponding systemic prices are derived from past price levels

$$sysprice_{it} = p_{it-1} * \exp(MES_{it})$$

 $\mathsf{EnSysRISK}$: the total cost of an energy asset to the non-energy sector during an energy crisis

$$EnSysRISK_{it} = max(0, sysprice_{it} * w_{it}),$$

where w_{it} is the quantity exposure of the economy to asset *i* at time *t*.

For an energy contract with maturity and delivery period v, the exposure at time t is

$$w_{it}(v) = \varsigma_i \mathsf{E}_{t-1}(\mathit{fincons}_{\tau} - \mathit{inv}_{\tau}) \text{ for } \tau \in [t+v; t+2v-1]$$

Energy crisis: an extreme positive energy market shock from the supply side

$$MES_{it}(C) = E_{t-1}(r_{it}|r_{EnM,t} > C, r_{M,t} < 0),$$

where $r_{EnM,t}$ is the energy market return, $r_{M,t}$ is the return of the non-energy sector, and C represents the VaR of the energy market at $(1-\alpha)$ %.

An extreme increase in energy prices...

- Not only oil prices: "While the security of oil supplies remains important, contemporary energy security policies must address all energy sources" (IEA 2011)
- Integration dimensions: underlying energy (oil, coal, natural gas, electricity, carbon), maturity/delivery, region
- Futures prices

The MES of energy markets (2/2)

Methodology: the conditional MES as a function of mean, volatility and tail expectation

$$MES_{it}(C) = \mathsf{E}_{t-1} (\mu_{it} + \sigma_{it} u_{it} | r_{EnMt} > C, r_{Mt} < 0)$$

= $\mu_{it} + \sigma_{it} \mathsf{E}_{t-1} (u_{it} | r_{EnMt} > C, r_{Mt} < 0)$

where μ_{it} and σ_{it}^2 are the conditional mean and variance of asset return *i* and $u_{it} = (r_{it} - \mu_{it})/\sigma_{it}$ are the standardized residuals.

Separate causality from common factor exposure:

• Causality in μ_{it} and σ_{it}

Heteroskedasticity and causality are removed to concentrate on the 'pure' commonality or contagion phenomenon (Forbes and Rigobon (2002), Billio and Caporin (2010))

• Common factors in standardized residuals: $u_{it} = f(y_t, \zeta_{it})$

2 Econometric methodology and application

- Causility in means and variances
- Factor model and tail expectations

EEX futures, energy spot and DAX industrial indices

- I0 FFX futures
 - Electricity: Phelix financial futures (M, Q, Y maturity)
 - Natural gas: Gaspool physical futures (M, Q, Y maturity)
 - Coal: ARA financial futures (M, Q, Y maturity)
 - EU emission allowances: EUA financial futures (Y maturity)
- 3 energy spot indices highly correlated to EEX futures returns
 - Brent crude oil
 - European coal
 - EUA

• 1 DAX industrial index (energy consumers) = non-energy index

Thyssengas GmbH (planned in 2st guarter 2011)

Source: EEX

Econometric methodology and application Causility in means and variances

• Factor model and tail expectations

Augmented Vector Error Correction Model (VECM) for the joint mean of the $(n \times T)$ matrix of returns r_t capturing cointegration, autocorrelation, causality, and seasonality

$$r_{it} = \pi_i \eta' \ln(\mathsf{p}_{t-1}) + \sum_{k=1}^{K} \delta'_{ik} \mathsf{r}_{t-k} + \sum_{m=1}^{M} \theta'_{im} \mathsf{x}_{t-m} + \varphi'_i \mathsf{q}_t + \varepsilon_{it}$$

where η are the cointegrating vectors,

 π_i are error-correction parameters,

 δ_{ik} is a $(n \times 1)$ vector of autocorrelation and Granger-causal parameters of order k,

 \mathbf{x}_{t-m} are exogenous variables lagged by m days and

 q_t are deterministic (seasonal) factors.

Similar to Bunn and Fezzi (2008), except that all energy products are here considered to be endogenous variables (as part of the 'system').

Multiplicative Causality GARCH model

Multiplicative Causality GARCH model for the variance with a GARCH component and an interaction component

$$\varepsilon_{it} = \sigma_{it} u_{it} = \sqrt{\phi_{it} g_{it}} u_{it}$$

where

$$g_{it} = (1 - \alpha_{ii} - \beta_i - \frac{\gamma_{ii}}{2}) + \alpha_{ii} \left(\frac{\varepsilon_{it-1}^2}{\phi_{it-1}}\right) + \beta_i g_{it-1} + \gamma_{ii} \left(\frac{\varepsilon_{it-1}^2}{\phi_{it-1}}\right) I_{\{\varepsilon_{it-1} < 0\}},$$

$$\phi_{it} = f(u_{1t-1}, ..., u_{i-1,t-1}, u_{i+1,t-1}, ..., u_{nt-1}) I_i(t),$$

 $I_{\{\varepsilon_{it-1}<0\}}$ is a dummy variable equal to one when the past shock of asset *i* is negative, and $I_i(t)$ is a deterministic function of time.

In this application:

$$\phi_{it} = c_i \exp\left(\sum_{j=1, j\neq i}^n (\vartheta_{ij} u_{jt-1} + \alpha_{ij} |u_{jt-1}|) + \kappa'_i \mathsf{d}_t\right)$$

where d_t are deterministic terms including seasonal dummies.

Networks of Causal Relationships

Causal relationships reflect physical relationships in the energy market (subsitution, merit-order) and spillover effects

Mean Network

Variance Network

Econometric methodology and application Causility in means and variances

• Factor model and tail expectations

Dynamic PCA based on the daily correlation matrices estimated with the Dynamic Conditional Correlation (DCC) model

$$H_t = D_t R_t D_t = D_t \left(A_t \Lambda_t A_t' + R_{\zeta_t} \right) D_t$$

where $D_t = \text{diag}(\sigma_{1t}, ..., \sigma_{nt})$, A_t is a matrix of *s* eigenvectors associated with the *s* largest eigenvalues that are contained in the diagonal matrix $\Lambda_t = \text{diag}(\lambda_{1t}, \lambda_{2t}, ..., \lambda_{st})$ with $\lambda_{1t} \geq \lambda_{2t} \geq ... \geq \lambda_{st}$, $s \leq n$ and R_{ζ_t} is the correlation matrix of idiosyncratic terms ζ_t .

Standardized residuals $u_{it} = (r_{it} - \mu_{it})/\sigma_{it}$ becomes a function of the first s dynamic principal components and idiosyncratic terms

$$u_{it} = \sum_{j=1}^{s} a_{ijt} y_{jt} + \zeta_{it}$$

where a_{ijt} is the element of the eigenvector associated with asset *i* and principal component y_{jt} extracted from R_t , and $\zeta_{it} = u_{it} - \sum_{j=1}^s a_{ijt}y_{jt}$.

Restrictions on the dynamic PCA

The energy crisis condition is defined by 2 factors:

 $\mathsf{E}_{t-1}(\mathit{u_{it}}|\mathit{energy\,crisis}) := \mathsf{E}_{t-1}(\mathit{u_{it}}|\mathit{r_{EnMt}} > C, \mathit{r_{Mt}} < 0)$

- the return on the non-energy sector: $r_{Mt} \simeq y_{Mt} = y_{1t} = a'_{1t}u_t$
- the energy market return: $r_{EnMt} \simeq y_{EnMt} = y_{2t} = a'_{2t}u_t$

Restricted PCA (Ng et al. (1992)): the 1st component is restricted to be the non-energy return (DAX industrial index)

$$\max_{a_{1t}} a'_{1t}R_t a_{1t}$$
s.t. $a'_{1t}a_{1t} = 1, a_{i1t} = 0 \quad \forall t, \forall i \neq DAX industrial$

The other dynamic components are mutually orthogonal and orthogonal to the industrial component

$$\begin{split} \max_{a_{jt}} a_{jt}' R_t a_{jt} \\ \text{s.t.} \ a_{jt}' a_{jt} = 1, \ a_{jt}' a_{lt} = 0 \quad \forall t, \forall l \neq j \end{split}$$

Tail expectations

The non-energy market return: $r_{Mt} \simeq y_{Mt} = y_{1t} = a'_{1t}u_t$ The energy market return: $r_{EnMt} \simeq y_{EnMt} = y_{2t} = a'_{2t}u_t$

The tail expectation $E_{t-1}(u_{it}|energy\ crisis)$ is approximated by

$$\sum_{j=1}^{s} \left[a_{ijt} \mathsf{E}_{t-1} \left(y_{jt} | y_{EnMt} > C, y_{Mt} < 0 \right) \right] + \mathsf{E}_{t-1} \left(\zeta_{it} | y_{EnMt} > C, y_{Mt} < 0 \right)$$

A nonparametric estimator of tail expectations is

$$\hat{\mathsf{E}}(y_{jt}|y_{EnMt} > C, y_{Mt} < 0) = \frac{\sum_{\tau=1}^{T} y_{j\tau} \Phi\left[\left(\frac{y_{EnM\tau}}{\sqrt{\lambda_{EnM\tau}}} - \frac{C}{\sqrt{\lambda_{EnMt}}}\right) h^{-1}\right] I(y_{M\tau} < 0)}{\sum_{\tau=1}^{T} \Phi\left[\left(\frac{y_{EnM\tau}}{\sqrt{\lambda_{EnM\tau}}} - \frac{C}{\sqrt{\lambda_{EnMt}}}\right) h^{-1}\right] I(y_{M\tau} < 0)}$$

where $\Phi(\cdot)$ is the Gaussian cummulative distribution function. The same estimation procedure applies to $E(\zeta_{it}|y_{EnMt} > C, y_{Mt} < 0)$.

Econometric methodology and application
Causility in means and variances

Factor model and tail expectations

The conditional MES of energy assets

$$MES_{it}(C) = \mu_{it} + \sigma_{it} E_{t-1} \left(\sum_{j=1}^{s} a_{ijt} y_{jt} + \zeta_{it} | y_{EnMt} > C, y_{Mt} < 0 \right)$$

EnSysRISK

 ${\sf EnSysRISK}$ = the total cost in million euros of each energy commodity class to the German non-energy sector during a potential energy crisis

'Net' impact on the economy

$$MES_{Mt}(C) = \mu_{Mt} + \sigma_{Mt} \mathsf{E}_{t-1} \left(\sum_{j=1}^{s} a_{Mjt} y_{jt} + \zeta_{Mt} | y_{EnMt} > C, y_{Mt} < 0 \right)$$

'Net' impact of the energy crisis:

 $\Delta MES_{Mt}(C) = MES_{Mt}(C) - MES_{Mt}(VaR(r_{EnMt})_{0.5})$

Summary

Energy Systemic Risk: the risk of an energy crisis raising the prices of all energy commodities with negative consequences for the real economy

 $\mathsf{EnSysRISK}:$ the total cost of an energy commodity to the rest of the economy during an energy crisis

EnSysRISK increases with

- high MES
- high prices
- high dependence of the economy on the energy source

The MES captures co-movements in energy assets

- Causal relationships in means and variances reflect possible spillover effects from one product to another
- Tail exposure to common factors: the MES is conditional on extreme energy market shocks from the supply side (restricted dynamic PCA)

Contact: diane.pierret@uclouvain.be