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Abstract
In this work, we use commercial powder particulates (a cosmetic fixing powder) as triboelectric materials for
constructing a triboelectric nanogenerator (CFP-TENG). Through finger pressing, the CFP-TENG generated approximate
open-circuit voltage, short-circuit current, and maximum power density values of 1141 V, 521 µA, and 570.96 μW/cm2,
respectively. Thirty-seven commercial blue LEDs can be easily lit up by the CFP-TENG. Moreover, this TENG, which was
designed as a novel palette structure for harvesting mechanical energy from bicycle motion, serves as a self-powered
bicycle speed sensor. In addition, the cosmetic fixing powder can be used as an effective material to enhance the
triboelectric property of skin. This study provides an effective method for developing a cost-effective TENG without the
use of complex surface micro-/nano-texturing.

Introduction
The global energy crisis is becoming increasingly severe

with the fast-paced growth of the global economy1–3.
Moreover, with the continued acceleration of human
civilization, exhaustion of fossil energy in the first half of
the twenty-first century is expected4,5. Renewable energy
for electricity generation has been considered a means of
solving the energy crisis6–10. Solar energy, tidal energy,
mechanical motion, and thermal changes are all con-
sidered potential forms of energy that are convertible into
electrical energy in the environment. Among these,
mechanical energy is the most extensively distributed
type, as it occurs in diverse forms11,12. Daily activities such
as walking, running, cycling, and even tiny facial expres-
sions (for example, smiling and crying) are accompanied
by mechanical distortions, suggesting that the human
body constitutes a pivotal means of mechanical power
generation13,14. However, it is difficult to apply traditional
electromagnetic induction generators for harvesting

mechanical energy from the surrounding environment
(human daily activities, etc.).
In 2012, Prof. Zhonglin Wang (Georgia Institute of

Technology) proposed the first-ever triboelectric nano-
generator (TENG), which converts mechanical energy
from the surrounding environment into electrical energy
on the basis of the triboelectric effect15–25. During the
past few years, the TENG has received considerable
attention and has been widely applied to multidisciplinary
fields owing to its outstanding output performance, sus-
tainable power output, and ease of integration26–34. Sev-
eral materials (for example, PDMS, Kapton, Al, and
Teflon, each with its own merits and demerits) have been
applied to the construction of TENGs35–41. Although
silica-based powder is also used as one of the triboelectric
pair42, the output voltage is relatively low (~11 V). The
triboelectric substances proposed for TENG construction
should (ideally) be low cost, yield rapidly self-forming
films, be processable without the need for cumbersome
micro-/nano-processing, and (if possible) be readily
available.
In this work, we propose a novel concept of a powder

TENG that uses powder particulates (for example,
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cosmetic fixing powder) as triboelectric materials for
fabricating a triboelectric nanogenerator (CFP-TENG).
This fabrication, which is realized without the use of
surface micro-/nano-texturing techniques that rely on
expensive equipment and complex technology, may drive
the large-scale application of TENGs in multidisciplinary
fields. In our work, this powder and Teflon tape were used
as the triboelectric pair. The CFP-TENG can, through
finger pressing, produce approximate open-circuit vol-
tage, short-circuit current, and power density values of
1141 V, 521 µA, and 570.96 μW/cm2, respectively. Thirty-
seven commercial blue LEDs, which were assembled into
the word “ZJU”, could be lit up by the CFP-TENG. In
addition, this TENG, which was designed as a novel pal-
ette structure to harvest mechanical energy from bicycle
motion, serves as a self-powered speed sensor. In addition,
the cosmetic fixing powder can be used as an effective
material to enhance the triboelectric property of skin,
which is significant for the development of a human-
based TENG.

Results
The design and fabrication process of the CFP-TENG

device is schematically presented in Fig. 1. First, a sheet of
paper was cut into two pieces of paper substrate (size:
3 cm × 3 cm), as shown in Fig. 1a. A piece of copper tape
(3 cm × 3 cm) was then pasted onto the paper surface (see
Fig. 1b). Subsequently, Teflon tape was pasted onto the
surface of the copper tape, thereby forming the top sec-
tion of the TENG, as shown in Fig. 1c. Another paper
substrate was obtained by pasting the double-sided tape
onto the paper substrate surface, as shown in Fig. 1d, and
then attaching the copper to the surface of the tape.
Afterward, the cosmetic fixing powder was applied onto
the glue side of the copper tape. Excess powder was then

removed by air blowing, thereby forming the bottom
section of the TENG (see Fig. 1e, f). A piece of Poly-
ethylene terephthalate (PET) film served as the supporting
structure for assembly of the TENG, as illustrated in
Fig. 1g.
Figure 2a, b shows photographs of the CFP-TENG (one

unit) and the stacked CFP-TENG. Representative scan-
ning electron microscopy images showing the surface of
the Teflon tape and cosmetic fixing powder layer are
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presented in Fig. 2c, d. A mechanical vibrator was used to
activate the CFP-TENG. The top and bottom of the
TENG were affixed to the pressing surface of the vibrator
and a flat panel, respectively. The respective electrical
output signals were then measured with a digital
oscilloscope.
The working principle of the CFP-TENG is schemati-

cally illustrated in Fig. 3. When Teflon tape is in contact
with cosmetic fixing powder, electron transfer from the
powder layer to the tape (Fig. 3a). A latent electrical dif-
ference is expected with separation of the tape from the
powder. This type of latent difference drives the electron
flow via the external loads from the top Cu foil to the
bottom Cu foil. This flow screens the positive triboelectric

charges available on the paper, thereby producing an
output current signal (Fig. 3b). A new electrical equili-
brium is expected at the largest separation in a complete
contact–separation cycle (Fig. 3c). Subsequent to this
equilibrium, contact between the Teflon tape and the
cosmetic fixing powder layer is re-established, leading to
an imbalance between the stimulated charges on the Cu
electrodes. This imbalance results in electron flow back to
the top Cu foil, thereby producing a reversed output
current signal (Fig. 3d). When full contact between the
tape and paper is re-established, the CFP-TENG reverts to
its initial position, as shown in Fig. 3a. To understand this
mechanism, the latent distribution is simulated with
COMSOL multiphysics software. An open-circuit
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Fig. 3 Schematic and modeling analysis of the device. a–dWorking principle of the CFP-TENG. e Numerical calculations (as assessed with the help
of COMSOL) of the potential distribution across TENG electrodes, at each step (i–iii), subjected to open-circuit conditions (the voltage unit is volts)
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scenario is considered for the three positions of the one-
unit CFP-TENG (see Fig. 3e).
An adjustable resistor (100 kΩ to 1 GΩ) was used as the

external load of the fabricated TENGs, and the electronic
voltage on the resistor was measured. The output current
can be derived from the measured voltage and the total
resistance. The voltage (under a 1 GΩ load) and current
(under a 100 kΩ load) of the fabricated CFP-TENG are
498 V and 30.8 μA, respectively (see Fig. 4a, b), when
triggered by a mechanical vibrator (amplitude: ∼5 cm,
frequency: 5 Hz). For the reverse connection of the
oscilloscope to the CFP-TENG, the output voltage and
current signals are inverted (as shown in Fig. 4d, e), which
indicates that the signals were generated by the CFP-
TENG. Considering the 200MΩ probe of the oscillo-
scope, the total resistance can be calculated by Rt=
R ×200MΩ/(R+ 200MΩ), and the corresponding output
performance of CFP-TENG is further investigated by
evaluating the output power associated with the voltage
and current occurring at equivalent total resistances
ranging from 99.95 kΩ to 166.67MΩ (see Fig. 4c). With
increasing total resistance, the current amplitude
decreases owing to a loss of resistance, whereas the vol-
tage increases. In addition, an approximate maximum
power density value of 369.17 μW/cm2 corresponding to a
total resistance of ∼26MΩ (see Fig. 4f) is obtained. In
addition, the output performances with and without
cosmetic fixing powder are compared in the Supporting
Information.
The electronic output performance of the CFP-TENG,

based on contact separation, exhibits a high dependence on

the contact frequency, separation distance, and device size.
Figure 5a, b shows the dependence of the VOC and ISC
values of CFP-TENG on contact frequency for a given
device size and separation distance of 3 cm× 3 cm and
5mm, respectively. Moreover, the output voltage increases
from 325 to 515 V when the contact frequency increases
from 2 to 7Hz. Nonetheless, the ISC increases continuously
from 19.5 to 32.8 μA when the contact frequency increases
from 2 to 7Hz. The increase in the ISC and VOC values is
attributed to the rapid induction and charge transfer
resulting from the elevated frequency contact. Figure 5c, d
shows the VOC and the ISC values of the (3 cm× 3 cm) CFP-
TENG as a function of the separation distance. Further-
more, with increasing separation distance, the VOC increa-
ses slowly and then saturates, while the ISC increases
continuously. The VOC and ISC values corresponding to a
contact frequency and separation distance of 5Hz and
5mm, respectively, of TENGs with varied sizes are shown
in Fig. 5e, f. As the figure shows, VOC and ISC increase with
increasing device size. The substantial enhancement in the
output is attributed to the augmented contact region.
Detailed discussions of the impact of the separation dis-
placement and frequency on the electrical performance are
provided in the Supporting Information.
Furthermore, a stacked CFP-TENG is designed and

manufactured to improve the output efficiency. The ISC
values of the stacked CFP-TENGs with 2, 3, and 4 units
are 51, 72, and 98 μA, respectively (see Fig. 5g). The
results revealed that the output current increases with
increasing number of units. Similarly, the stability of the
CFP-TENG is evaluated from the findings presented in
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Fig. 5h. In accordance with the experimental results, a
stable output voltage from the CFP-TENG is realized
even after a 3000-cycle external force test.
According to a previous study43, the human body pro-

duces hundreds of watts through body movements.

Therefore, harvesting low-frequency power generated
by human physical movements is considered a potential
means of realizing self-powered wearable electronics. In
this work, we demonstrate that a CFP-TENG (5 cm ×
5 cm) can be activated via finger pressing (see Fig. 6f). As
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shown in Fig. 6a, b, ISC and VOC reach approximate
values of 521 μA and 1141 V, respectively. When a
match load of 30 MΩ (equivalent total resistance:
26.09 MΩ) is connected to the CFP-TENG, the max-
imum output power, corresponding to an output voltage
of 610 V and current of 23.4 μA, is reached (see Fig. 6c,
d). The corresponding maximum output power
(12.383 mW) and power density (570.96 μW/cm2) are
adequate for various low-energy-consumption micro-
electronic gadgets. We also performed tests aimed at
determining the charging potential of the fabricated
CFP-TENG connected to a 1 nF capacitor by means of a
full-wave rectifier bridge. The results revealed that
∼85 nC of charge is transferred in one cycle.

Discussion
To demonstrate the potential of the CFP-TENG as an

energy source, a 3 cm × 3 cm CFP-TENG was linked to 37
commercial blue LEDs in series (as presented in Fig.
7a–c). The results revealed that the assembly of these
LEDs forming the word “ZJU” could be easily lit up by the
TENG.
In addition, we propose a novel palette structure for

harvesting the mechanical power associated with bicycle
movement (see Fig. 8a). Moreover, the proposed structure
can also monitor the bicycle speed. The corresponding
output voltage of the device (under a 1 GΩ load) can
reach 13.1, 15.7, and 32.5 V for 50, 100, and 350 r.p.m.,
respectively, as shown in Fig. 8b–d. In addition, the
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output voltages subjected to different speeds are shown in
Fig. 8e. It is observed that the output voltage is approxi-
mately linear to the speed.
Furthermore, we proposed a new application of a powder-

enhanced skin-based TENG. In detail, when the skin is
made as the triboelectric layer, the output voltage can reach

137 V, as shown in Fig. 9a. When the skin is modified by
cosmetic fixing powder, the output voltage can reach 274 V,
as shown in Fig. 9b. According to the results, the cosmetic
fixing powder can be used as an effective material to
enhance the triboelectric property of skin, which is sig-
nificant for the development of a human-based TENG.

a b

c

Fig. 7 Driving capability of the device. a A CFP-TENG connected in series with 37 commercial blue LEDs (the inset shows a 3 cm × 3 cm TENG); b, c
37 commercial blue LEDs powered by finger pressing of the CFP-TENG
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Conclusions
A novel concept of powder electronics that use powder

particulates (a cosmetic fixing powder) as triboelectric
materials for fabricating a TENG is proposed in this work.
The loose powder and Teflon tape are used as the tribo-
electric pair. The CFP-TENG can generate approximate
VOC, ISC, and maximum power density values of 1141 V,
521 µA, and 570.96 μW/cm2, respectively. Stable output
voltage from the CFP-TENG is realized after a 3000-cycle
external force test. In addition, this TENG, which was
designed as a novel palette structure for harvesting
mechanical energy from bicycle motion, serves as a self-
powered speed sensor. Furthermore, the cosmetic fixing
powder can be used as an effective material to enhance
the triboelectric property of skin. This work represents a
significant step towards the large-scale production
of TENGs.

Materials and methods
All materials are commercially available and used

without further processing.
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