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Figure 1: Huntingtin interacts with PARylated proteins
A. Degree of overlap between huntingtin-interacting proteins puri�ed from 
STHdh cells and a compiled list of PARylated proteins from three independently 
generated databases (Gagne et al, 2008; Zhang et al, 2013; Jungmichel et al, 
2013).
B. RPE1 cells were treated with 400 uM H2O2 for 10 min and proteins crosslinked 
with 1% PFA. Huntingtin was immunoprecipitated with EPR5526 and associ-
ated proteins separated by SDS-PAGE and immunoblotted with the indicated 
antibodies (MABE1016: PAR detection reagent).

BACKGROUND
 

• DNA repair pathways affect HD age at onset (GeM-HD Consortium, 2015)

• Huntingtin acts as a scaffold for DNA repair proteins (Maiuri et al, 2017)

• Poly ADP ribose (PAR) is a post-translational modi�cation generated  
 in response to DNA damage
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Figure 2: 
Huntingtin PAR-
binding motifs
A. Huntingtin se-
quence analysis 
revealed �ve motifs 
matching the PAR-
binding concensus. 
B. PBM-1, 2, and 3 
map to the surface of 
the huntingtin struc-

ture (Guo et al, 2018), while PBM-4 is not exposed. 
PBM-5 is exposed on the C-terminal domain.
C. Dot blot PAR overlay assay with full length puri-
�ed huntingtin (Harding et al, 2019) (top), hunting-

tin fragment 78-426 (middle), and PBM peptides (bottom). Puri�ed proteins were dotted onto 
nitrocellulose then overlaid with 0.2 uM PAR (Trevigen). After washing, anti-PAR western was per-
formed with PAR detection reagent MABE1016.
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Figure 3: 
Huntingtin co-localizes with PAR
RPE1 cells were treated with 10 uM PARG 
inhibitor for 15 min followed by 100 mM 
KBrO3 for 30 min. Soluble proteins were ex-
tracted with 0.2% Triton X-100 for 2 min on 
ice followed by �xation and staining with the 
indicated antibodies. Cells were imaged by 
super-resolution microscopy (SR-SIM).

A. PAR co-localizes with SC35-positive nuclear 
speckles.

B. Huntingtin co-localizes with PAR at speckles and redistributes to sites of PAR production upon oxidative stress.
C. Co-localization of nuclear signals measured by Pearson correlation. n=1, 10 cells per condition.
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Figure 4: Huntingtin interacts with Poly ADP ribose polymerase
A. RPE1 cells were treated with 400 uM H2O2 for 10 min and proteins crosslinked with 1% PFA. Huntingtin 
was immunoprecipitated with EPR5526 (Abcam) and associated proteins separated by SDS-PAGE and im-
munoblotted with anti-PARP (BD Biosciences) and anti-huntingtin (MAB2166, Millipore).
B. Puri�ed huntingtin (Harding et al, 2019) and PARP (Trevigen) were incubated in the presence of acti-
vated DNA and NAD+. PARP was immunoprecipitated with anti-PARP antibody (BD Biosciences). Reactions 
were separated by SDS-PAGE and immunoblotted as in A.

BACKGROUND
 

• Levels of DNA damage are elevated in HD cells and tissues (Maiuri et al, 2017; Askeland et al, 2018; Castaldo et al, 2019)

• Unrepaired DNA damage leads to prolonged activation of PARPs and overproduction of PAR
• Unrelenting PAR production causes ATP depletion, mitochondrial failure and energy crisis
• PAR acts as a mediator of cell death through parthanatos

IS PARP INHIBITION A VIABLE THERAPEUTIC STRATEGY?

Figure 5: Elevated PAR levels in HD patient �broblasts
TruHD immortalized HD patient and control �broblasts (Hung et al, 2018) were pre-treated with 10 
μM PARG inhibitor for 15 min followed by 100 mM KBrO3 for 30 min. Soluble proteins were ex-
tracted with 0.2% Triton X-100 for 2 min on ice, followed by �xation and staining with MABE1016 
PAR detection reagent. Nuclei were identified as primary objects in CellProfiler (Carpenter et al, 
2006) using Hoechst staining, then pixel intensity of the PAR staining within nuclei was calculated 
and the mean intensity recorded for each image. Ten images per well were captured, representing 
750-1000 cells per experiment. The experiment was repeated 3 times for TruHD-Q43Q17 and 
TruHD-Q40Q50 cells, and four times for TruHD-Q21Q18 cells. P-values were calculated using Tukey’s 
test (****p<0.0001).

MORE PRECLINICAL DATA NEEDED

• PARP inhibition is beneficial in HD mouse   
 model (Cardinale et al, 2015; Paldino et al, 2017)

• High PAR levels in HD patient fibroblasts (Fig 5)

• Are PAR levels high in CSF from HD patients?
• Does PARP inhibition rescue phenotypes in  
 clinically relevant models?

REPURPOSING PARP INHIBITOR DRUGS 

• Veliparib, niraparib cross the blood brain   
 barrier
• Risk of genotoxicity, however PARP inhibitors  
 are generally protective in postmitotic cells  
 (Berger et al, 2018)
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