
APPLICATIONS

Visual Interactive Simulation for
Distance Education
Juan de Lara

Manuel Alfonseca

Department Ingeniería Informática

Universidad Autónoma de Madrid

Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

Juan.Lara@ii.uam.es

The authors discuss the necessity of multiple flexible output forms in an educational Web simulation
environment. Ideally, such an environment should allow the creation of visual, interactive simulations
and their integration in the pages of theWeb document being constructed. As a suitable candidate for
this, the authors propose their system to generate documents for theWeb that consists of three layers:
continuous simulation language OOCSMP and its associated language layers SODA-1L and SODA-
2L. OOCSMP and SODA are compiled into Java applets and HTML/VRML pages by a compiler called
C-OOL. Different output forms can be combined to solve and show the results of a simulation problem.
The authors propose a procedure to guide the construction of educational courses on technical or
scientific subjects with their tools. This procedure is used to enhance an existing educational Web
course with a new page showing the simulation of a robot arm Unimation PUMA260.

Keywords: Object-oriented continuous simulation, Web-based simulation, visual interactive simula-
tion, virtual reality, tools for distance education, Web engineering

1. Introduction

The growing acceptance of the Internet in the present so-
ciety makes it an ideal framework for distance education.
The new technologies and techniques offered by this en-
vironment, as well as the possibility of reaching a huge
audience, is forcing a large number of disciplines, such as
computer simulation and educational sciences, to rethink
their traditional philosophies and techniques [1]. One of
the advantages of using the Internet as a means for distance
education is that it offers common communication proto-
cols and standards. This allows people access to informa-
tion from heterogeneous platforms using a Web browser,
which can have installed extensions to interact in a richer
way with the HTML pages. These extensions are called
plug-ins. Some of the plug-ins that we use to make avail-
able interactive simulations in the Internet are the Java Vir-
tual Machine (http://java.sun.com) and VRML browsers
(http://www.web3d.org/Specifications/VRML97).

Virtual reality (VR) immerses the users in a 3-D en-
vironment, where they can actively interact with vir-
tual objects and explore the virtual world. Its advan-
tages, such as new possibilities of interaction and more
realistic and pleasant learning, are turning VR into a
valuable tool for distance education [1, 2] (see also

|
|
|
|
|

SIMULATION, Vol. 79, Issue 1, January 2003 19-34
©2003 The Society for Modeling and Simulation International

DOI: 10.1177/0037549703253455

http://www.hitl.washington.edu/projects/knowledge_base/
education.html). In the case of simulation, it reduces the
semantic gap between the real system being simulated
and the output obtained from the simulation, providing
realistic visualization and richer interaction possibilities.
Sometimes virtual reality simulations are embedded in
games in which the students have to cooperate for the
completion of complex tasks, such as in Scholz-Reiter et
al. [4]. Without such realistic visualization and using only
tables and graphics, it is sometimes difficult to relate the
data obtained in a simulation with the behavior of the real
system. For example, in the case of the simulation of a
robot arm, it may not be easy to relate the angle values of
the different joints to the real configuration of the robot.
Visualizing the movement of the robot arm in a realistic
way can improve understanding of the simulation model.

If the simulation environment makes it possible to see
different output forms at a time, then one can combine the
VR output—to visualize the behavior of the system—with
other outputs such as tables or 2-D graphics for a more ac-
curate visualization of the quantities of interest. Nowadays,
the use ofVR is not restricted to high-performance systems
[5]; even personal computers are able to run browsers for
a (limited) VR language called VRML. This language al-
lows describing interactive 3-D objects andworlds andwas
designed to be used on the Internet. The VRML97 stan-
dard defines an external Application Programming Inter-
face (API) that makes it possible to control VRML objects
from external programs, thus facilitating the integration of
VRML panels with other output forms written in Java.

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

Some educational environments facilitate learning by
making the user interact with simulations dealing with the
subject of study [6]. The use of simulations in education
presents positive aspects [7] if the student cannot access
the real system or if experiments with the real system are
expensive (such as in the case of the robot arm), difficult,
or just impossible (such as if we try to simulate the move-
ments of the planets of the solar system; see Section 4). The
simulation of the main characteristics of the system inside
educational environments, especially if these environments
are provided with multimedia [8] and VR elements, can be
a good complement to laboratory experimentation.

There is a need for tools to help in the construction of
educational interactive simulations that integrate different
views of the simulation results with other explanations,
possibly in the form of multimedia elements. Usually one
would like to organize several of these simulations in a
logical way to form educational materials such as courses.
Thus, an authoring tool to assist in the construction of these
materials should help in the tasks of building simulations,
arranging and synchronizing the (multiple) output forms,
embedding them in HTML pages, arranging the pages to
form a course, and so forth. Moreover, very often the con-
structor of such documents is not an expert programmer in
Java, VRML, HTML, and relatedWeb technologies. Thus,
it is desirable to hide these technical details from the course
designer. In addition, the use of a high-level description for
simulations, pages, and documents can reduce notably the
time needed to build these materials, augment their main-
tainability, and reduce the time spent in testing [9].

Our aim is to provide such an environment to buildWeb
documents containing interactive,multimedia simulations.
Although there has been recent interest in the special needs
of constructing applications for the Web (Web engineer-
ing), very little can be found in the current literature about
the engineering of Web applications with a strong compo-
nent of simulation. In this paper, we give a unifying view of
our previousworkwith aWeb-engineering perspective.We
also present some extensions of our environment that al-
low the easy integration of (Java-based) simulation applets
with (VRML-based) virtual reality worlds and multimedia
elements, as well as the integration of all these elements in
documents accessible from theWeb. The description of the
simulation and the output forms ismade using a declarative
high-level simulation language (designed by our group)
called OOCSMP. Other language layers (SODA-1L and
SODA-2L) allow including simulations in document pages
and arranging the pages to form educational courses, inter-
active articles, and presentations. We also show a proce-
dure that can be used when building Web documents with
our tools, and we illustrate the use of this procedure and
the proposed tools by enhancing an existing educational
course.

This paper is organized as follows: Section 2 presents
the problems and alternatives found inWeb-based continu-
ous simulation, together with the motivations of this work;
Section 3 presents the basic architecture of our system; and

Section 4 shows the extensions introduced to handle vir-
tual reality. In Section 5, we provide a procedure to follow
whenbuildingdocumentswith our tools. Section 6presents
an example of the use of these extensions (the simulation
of the PUMA270 robot arm) together with the inclusion
of this model in an existing course, following the proce-
dure presented in the previous section; Section 7 describes
related research; and Section 8 gives the conclusions and
future work.

2. Web-Based Simulation: Problems,
Alternatives, and Motivations

There are several ways of accessing simulations through
the Internet [10]. The first one is known as the thick server
approach. In this case, the simulation programs execute
at the server and are programmed in any language ac-
cessible through the Common Gateway Interface (CGI).
This is not a good approach with interactive simulations,
in which the user experiments during the simulation ex-
ecution, trying to answer “what if” questions. In these
experiments, the user is supposed to stop the simulation,
change some parameters, and resume the simulation. In
the thick server approach, these interactions may lead to
long delays and inconsistencies due to Internet latencies:
the user may try to interrupt the simulation long before
the server receives the signal to stop. However, for nonin-
teractive simulations, this can be a suitable approach (see,
e.g., the GPSSWeb simulator of the University of Magde-
burg at http://www.cs.mcgill.ca/∼hv/classes/MS/GPSSH/
webgpssh.html).

In opposition to thick servers, the thick client approach
servers donot run the simulations: they are downloaded and
executed locally. This approach has the danger of client in-
compatibility or virus transmission and is not appropriate
if the simulations are to be integrated with other services
offered through theWeb, such as cooperative learning sup-
port, learning guidance, and so forth. To solve these diffi-
culties, in the pure navigation approach, the Web browser
becomes the common access point to all the simulations.
These are executed in the client machines as Java applets,
possibly using other plug-ins. Java has many interesting
properties (e.g., “write once, run everywhere”) that pro-
vide client independence. This is our approach.

Other ways to integrate simulation and Web services
[11] are distributed execution [12] and distributed mod-
eling [13, 14]. In the distributed execution of continuous
simulation models in the Internet, one cannot use tradi-
tional ways of fine-grain parallelization (such as solving
a set of equations in parallel by assigning one or a few
elements of the resulting equation matrix to each node
in the network). A coarse-grain parallelism should be ex-
ploited due to Internet latencies. One approach is to express
the model as a collection of objects that interact, group
the objects that interact more frequently, and place them
in the same machine. Objects in different machines will
interchange messages through the network, possibly using

20 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

remote method invocation techniques [12]. This approach
is similar to that taken by the High-Level Architecture
(HLA) (see http://www.dmso.mil) for the parallel execu-
tion of discrete simulation models. On the other hand, for
distributed modeling, when a group of designers collabo-
rate in the modeling phase, current approaches take ideas
from the Computer-Supported CooperativeWork (CSCW)
community.

To reduce the effort required to build the simulation
models in Java, one has two alternatives [15]. On one hand,
a library can be provided containing predefined classes,
which may be used by the programmer to build the model.
In this case, the model builder programs directly in Java
[16]. On the other hand, a special-purpose simulation lan-
guage can be used, together with a compiler to translate
the models into Java code. Some simulation languages are
provided with compilers and environments able to trans-
late models into Java—among them, GPSS, DEVS, and
OOCSMP. This is our approach and has the advantage
of simplifying the modeling process because simulation
languages are higher level than regular programming lan-
guages, provide more powerful constructs, and are easy
to use for nonprogrammers. These simulation languages
are well known in the simulation community, and one may
have access to a great number of models and libraries.
A general-purpose language such as Java is more flexible
but requires a higher level of expertise. Something similar
happenswith the increasingly popular system for graphical
design, Flash (http://www.macromedia.com). This system
is extremely powerful for graphics and animation, but one
would have to code the simulation numerical solvers by
hand.

As stated in the introduction, it is often desir-
able to integrate several simulations in a Web doc-
ument. Again, one has two alternatives: doing it by
hand (creating the HTML pages and embedding the ap-
plets inside the pages manually; for examples, see [17]
and a virtual enginnering/science laboratory course at
http://www.jhu.edu/virtlab/virtlab.html) or using an inte-
grated environment for the creation of the simulations and
the document pages. The second alternative is our ap-
proach. Creating the document pages by hand usually re-
quires skill and expertise in HTML programming. More-
over, if the simulations make use of VRML plug-ins, ar-
ranging them in the HTML page may not be straightfor-
ward. In addition, it could be useful to show some sim-
ulation data (such as initial variable values) in the Web
page outside the applets. Using the first approach means
that if one changes the simulation, the Web pages must be
changed too.

Three kinds of Web documents could be enhanced
by interactive simulations [9]. The first kind, educational
courses on technical or scientific topics, consists of a num-
ber of HTML pages containing simulations, possibly en-
riched with multimedia elements. It may be desirable to
control the degree of interaction of the studentwith the sim-

ulations by adding interaction capabilities in a progressive
way [18].

Scientific interactive articles also offer the possibility of
taking advantage of visual, interactive simulations: when
a simulation model is described, a real executable model
may be added with which the reader can experiment. The
simulation can incorporate further explanations of the re-
sults by the author of the article, synchronized with the
simulation execution. It must be noted that nowadays, al-
most all scientific journals haveWeb servers throughwhich
electronic versions of the papers are made available.

Presentations describing simulation models and their
execution are also good candidates for Web-based simula-
tion techniques. In these documents, the slides should be
HTML pages. When a simulation model is described, a
Java applet may be added, so that the audience can see the
execution. These presentations can also be published in the
Web and seen by the readers using a Web browser. Typical
presentation systems, such as PowerPoint, are not platform
compatible and do not allow the execution of interactive
simulations inside the slides.

Our approach is unique in the sense that it provides an
integrated environment for the construction of the three
types of documents. Simulations are specified in a high-
level language called OOCSMP andmay use different out-
put formats, including VRML panels and multimedia el-
ements (images, videos, or text) that can be synchronized
with the simulation by means of language primitives. The
pages in which these simulations are placed are specified
using another language layer (SODA-1L), which can ac-
cess information in the OOCSMP models, thus solving
the problem of maintaining separate simulations and doc-
ument pages. Controlling the way in which the pages are
arranged to form articles, presentations, or courses is done
in another, higher language layer called SODA-2L. Our
systemhas been designed for reusability (not only ofOOC-
SMP models but also of SODA pages), maintainability
(in Section 6, we show how to extend an existing educa-
tional course), easy testing, standardization of the user in-
terfaces, and so forth. The use of higher level languages in-
creases notably the productivity of the document designer
and avoids the need to know lower level languages such
as Java, HTML, or VRML. To our knowledge, no other
available tool can be used to build educational materials
for the Web with a strong component of visual interac-
tive simulations with these characteristics. On one hand,
some of the existing tools are very good for graphics but
lack powerful constructs for simulation (this is the case for
Flash and Authorware). On the other hand, none of the ex-
isting simulation tools allows the seamless integration of
simulations in educational materials for the Web.

3. The Integrated Simulation System: OOCSMP,
SODA-1L, and SODA-2L

The lower layer of our integrated system is OOCSMP
(http://www.ii.uam.es/∼jlara/investigacion), an object-

Volume 79, Number 1 SIMULATION 21

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

oriented extension of the continuous simulation language
CSMP [19], which we began to develop in 1997 [20]. This
language is very suitable for models that can be expressed
as similar interacting components and has extensions to
solve partial differential equations (using finite elements or
finite differences methods and structured or unstructured
meshing techniques), manage discrete events, produce dis-
tributed simulations, and perform agent-based simulation
[21]. A compiler called C-OOL (Compiler for the OOC-
SMP Language) has been developed for the language. C-
OOL is able to generate Java programs or applets, plain
C++, or C++ programs that use the Amulet library [22].

To make this approach useful for education, different
output forms can be combined in the simulations. The C-
OOL compiler provides a user interface that allows the
student to answer “what if” questions and to interact with
the simulation. The simulation results are presented as they
are being calculated. The user interface can be configured
bymeans of compiler options to adapt to the characteristics
of the user by restricting or enhancing the possibilities of
interaction, such as allowing the user to create new simula-
tion objects at runtime [23] or preventing the modification
of some parameters.

A typical Java user interface generated by our compiler
consists of a main panel and several additional windows.
The panel has a maximum capacity of nine output forms,
in a 3 × 3 grid, but if not all locations are used, the grid
automatically becomes as compact as possible. The panel
also contains several scroll-like objects to adjust the sim-
ulation final time, the time step, and the current time, plus
several buttons to view/modify the values of the parame-
ters and state variables of the simulation objects and the
global variables. Another nine windows can be displayed
with different graphical representations. A scheme of the
user interface is shown in Figure 1.

Each graphical output form can be placed in one ormore
of the nine panel positions or in a separate window. The
types of graphical outputs available in OOCSMP include
animated 2-D graphics (for 1-D functions and vectors);
3-D plots for matrices; iconic plots, which represent with
icons the time-dependent values of variables (the number
of visible icons in the same class is proportional to the
value of the variable they represent); graphical representa-
tions of the equations in themodel; outputs for agent-based
simulation [21]; plots of the grid used to solve a partial
differential equation; maps of isosurfaces; and a listing of
variable values. Some of them are also input forms, such
as the MGEN tool, which allows the user to interactively
define a partial differential equations problem, including
the domain, mesh, conditions, and the equations [18]. An
example of all these outputs can be found at the OOCSMP
homepage (http://www.ii.uam.es/∼jlara/investigacion).

The other two layers of the system address the integra-
tion of the simulation applets with the HTML pages of the
Web documents [9]. They are called SODA-1L (Simula-
tion Course Description Language–1st Level) and SODA-

2L (Simulation Course Description Language–2nd Level).
The SODA-1L level provides a set of instructions that de-
scribe document pages containing hypermedia elements
not available in plain HTML, such as simulations, 2-D
graphics for functions, 3-D graphics, and maps of isosur-
faces. SODA-1L is at a higher language abstraction level
than OOCSMP because the models defined in OOCSMP
can be treated as hypermedia elements from the SODA-
1L viewpoint. SODA-1L deals mainly with the contents of
the pages.Details about their appearance (which aremostly
common to all the document pages) are left to SODA-2L.
At this level, one can group several of the SODA-1L pages
to form an educational course, a presentation, or an arti-
cle. SODA-2L provides primitives to add navigation links,
headers, and footnotes; create and place indexes; and so
on. They can be embedded in the resulting HTML pages
or added as frames. At this level, one usually adds interface
details common to all the pages, which makes the SODA-
1L pages easy to reuse. Figure 2 shows the organization of
all the language layers.

The system has been used for educational pur-
poses: several courses containing simulations on ecol-
ogy, gravitation, partial differential equations, and elec-
tronics [24] can be accessed at the OOCSMP homepage
(http://www.ii.uam.es/∼jlara/investigacion). The system
has greatly improvedour productivity in creating andmain-
taining these courses, as we do not need to program the nu-
merical methods, the simulation user interfaces, the graph-
ical outputs, or the HTML of the documents: all these ele-
ments are provided or generated by the system and can be
accessed using declarative, high-level constructs.

4. Adding VRML Panels to the Simulation System

As stated in the introduction, the use of VRML panels in
simulations reduces the gap between the presentation of
the results and the real behavior of the system, making the
simulations much more realistic and pleasant to the stu-
dent. In OOCSMP, it is possible to combine VRML panels
with the other output forms or with multimedia elements.
The VRML panels in our system also permit a richer in-
teraction with the model during the simulation execution.
For example, one can set hyperlinks in the VRML objects,
which can be used to explain the role of the object in the
simulation or to show additional data when the user clicks
on them. We have used these possibilities in a simulation
of the solar system in such a way that when the user clicks
on one of the planets, its name, mass, radius, and other data
are shown. VRMLbrowsers also have controls to rotate the
world, move away or nearer, change the viewpoint, and so
forth. This permits the user to choose the most appropriate
view of the simulation.

The OOCSMP VR extensions make it easy to assign a
VRML node to each OOCSMP object. In the case of the
simulation of the solar system, we can model each planet
as an OOCSMP object of class Planet and assign to it

22 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

Figure 1. The scheme of a typical user interface for experimentation

Figure 2. The three language layers used to generate simulation-based documents

a VRML node with its 3-D appearance. Another instruc-
tion (VRMLworld) assigns OOCSMP objects as dynamic
components of a virtual world. Attributes of the OOCSMP
object control properties of the VRML object (displace-
ment, rotation, center of rotation, size, or color) in such a
way that when the attribute changes, the visual appearance
of the VRML world also changes. This instruction can be
used in three ways, depending on where it is placed. At
the end of a class or a model, the simulation engine will
modify the property of the corresponding VRML object at

every time step. For example, in the case of the simula-
tion of the solar system, the VRMLworld instruction inside
the OOCSMP Planet objects links the displacement of the
VRML node with the position of the planet calculated by
the simulation.

If the instruction is placed at the end of the main model,
it can have a VRML file as a parameter. The contents of
this file will be added to the virtual world generated by
the simulation but will not be controlled by the simulation
engine (they will be static elements of the virtual world).

Volume 79, Number 1 SIMULATION 23

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

In the case of the solar system, this feature can be used to
make theSun appear in theVRMLworld, assuming that the
position of the Sun is not computed by the simulation and
is placed by default at (0, 0). If the instruction is placed
in a discrete event handler, when that event occurs, the
corresponding property will be modified.

When compiling the model with C-OOL, one Java file
and oneVRMLfile are generated. TheVRMLfile contains
all the VRML objects declared in the model. The compiler
assembles the VRML instructions associated with every
OOCSMP object and also the static VRML elements de-
clared outside OOCSMP classes. The Java applet contains
the simulation logic, the simulation controls, and the other
graphical output forms, if any has been selected. The Java
applet allows the user to start and stop the simulation,
change the model parameters, and so forth and commu-
nicates with the virtual world by means of the External
Authoring Interface (EAI). Proprietary technologies such
as Netscape’s LiveConnect [25] are widely used [2, 26],
but we think our solution is more appropriate because ad-
ditional libraries are not needed: our solution is compat-
ible with Internet Explorer, and communication between
the Java applet and the virtual world is done directly from
the program, rather than indirectly through JavaScript.

Figure 3 shows the working scheme of all these com-
ponents, including a graphical Web browser, a VRML97-
compliant plug-in such as CosmoPlayer, and a Java Vir-
tual Machine plug-in that understands at least Java 1.1
code. The generated Java programs use a graphical and
numerical Java library placed in the server (for develop-
ing purposes, it can be placed in the client). When the
user accesses the simulation page, the VRML code, the
Java applets, and the necessary Java classes are down-
loaded from the server and executed locally. The simu-
lation engine, embedded in the Java applet executed in
the client, keeps the Java-based outputs and the VRML
outputs synchronized. For that purpose, it has to obtain a
handler to the VRML plug-in through the EAI and explic-
itly perform the updating of the VRML nodes, depend-
ing on how the simulation variables influence each VRML
node (through displacement, rotation, etc.). Figure 3 also
shows a simulation of the inner solar system, using a
2-D (Java-based) output form and a VR panel (based on
VRML). This simulation can be found on the Internet at
http://www.ii.uam.es/∼jlara/investigacion/ecomm/solar3.
html.

An alternative to using VRML would be to implement
the VR panels directly in Java, using technologies such
as Java3D (http://java.sun.com/products/java-media/3D)
or Shout 3D (http://www.shout3d.com). The advantage of
using VRML is that it is an Internet standard faster than
Java, and it is easier to find libraries of VRML objects
to use in the simulations (see the Web3D Repository at
http://www.web3d.org/vrml/vrml.htm). The advantage of
using Java for 3-D modeling is that only the Java Virtual
Machine is needed to run the models (without any VRML
plug-in), and it can be better fitted with the simulation en-

gine (Java applets) generated by our compiler. We deem
the advantages of using VRML greater.

5. Procedure to Generate Web Documents

To carry out a certain activity—such as creating documents
for the Web based on visual interactive simulations—one
not only has to provide the tools to perform it but also has
to propose a procedure showing the best way to do it (i.e.,
a sequence of activities, their relationships, and their in-
puts and outputs). Figure 4 shows the procedure we follow
when we construct a Web document with our system. This
procedure is an improvement to the one presented in de
Lara and Alfonseca [9].

1. The first step is a manual activity, in which we plan
the organization of our documents, deciding how
many pages the document will have and whichmod-
els are going to be placed in each page. The output
of this step is a plan or a scheme for the Web doc-
ument, containing descriptions of the models to be
included in the pages. The next steps are performed
using our tools.

2. In the second step, we make high-level represen-
tations of the systems under study, using nota-
tions such as Forrester system dynamics, statecharts,
block diagrams, UML class diagrams, and so forth.
The notation and the degree of formality in this phase
depend on the nature and complexity of the system to
be simulated. This step is also necessary in software
engineering for the same reason as in modeling and
simulation: one needs high-level representations of
the systems to better understand them and to tackle
their complexity. If the model is simple, it will be
written on a sheet of paper and translated by hand
into OOCSMP code in the next step. In harder cases,
an automatic tool such as AToM3 [27] can be used.
This is a meta-modeling tool that accepts a descrip-
tion (meta-model) of the formalism one is going to
use and automatically generates a tool to process
models in the described formalism. It is also pos-
sible to define model manipulations, such as code
generation, for other tools. In this way, we have de-
fined transformations of some modeling formalisms
into OOCSMP, such as causal block diagrams [28]
and statecharts. The input to this activity is the plan
of the Web document and, in particular, the descrip-
tion of the models in each page. The outputs of this
activity are the models, expressed in an appropriate
high-level modeling formalism.

3. In the third step, we code the models in our object-
oriented continuous simulation language, OOC-
SMP. The models should be coded as OOCSMP
classes in such away that they can be reused through-
out the Web document. Sometimes, the OOCSMP

24 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

Figure 3. Using a virtual reality (VR) panel from a simulation: Inner solar system example

code can be generated automatically from higher
level models by using AToM3 or other customizable
modeling tools (most tools supporting UML classes
allow one to define templates for code generation).
If this is the case, the generated code may have to
be completed or modified by hand. The inputs to
this activity are the models, described in a high-level
formalism. The outputs of this activity are the OOC-
SMP files.

4. In the fourth step, and for each page in the document,
we build the models to be included in the page. Usu-
ally, this means instantiating some of the classes,
creating objects, and connecting them. The input to
this activity is one of the OOCSMP files generated
in the preceding step, and its output is a modified
OOCSMPmodel adapted to the particularities of the
page.

5. In the fifth step, the model is validated. The inter-
face generated automatically by our compiler makes
this testing process easier. For this step, we usu-
ally choose a simple output form, such as a listing
of variable values, or 2-D graphics of some vari-
ables against time. If the model is not correct, we
go back to the preceding steps (Step 2 or 3) to cor-
rect the model. The input to this activity is the OOC-

SMPmodel, and its output is the validatedOOCSMP
model.

6. Once the model has been validated, we select the
output forms to be displayed. As we saw in previous
sections, several output forms can be combined in a
single model and placed in different positions in the
user interface. The input to this step is an OOCSMP
model, and the output is the model extended with
appropriate output forms.

7. The next step is an optional activity to include and
synchronize multimedia elements (if any) in the
model. The inclusion of multimedia elements in
the simulations makes the learning process more
pleasant to the students. Explanations may be made
richer than those that can be provided with simple
static HTML text. The learning process is further
improved if the explanations are synchronized with
what is happening in the simulation.

OOCSMP provides the possibility to include mul-
timedia elements in the simulation, combined with
other output forms. The multimedia elements avail-
able are image panels, dynamic text panels, video
panels, and audio sequences. These multimedia ele-
ments can be synchronized with the simulation ex-
ecution. In this way, appropriate explanations are

Volume 79, Number 1 SIMULATION 25

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

Figure 4. Our process to construct simulation-based Web documents

given to the student in the appropriate moment.
Synchronization is done by specifying conditions
in the simulations that trigger the execution of a
given multimedia element. These conditions can be
any valid OOCSMP expression. The multimedia el-
ement stops its execution when the associated con-
dition is no longer true. If several conditions are true
for the same panel, the last specified element is pre-
sented in the panel.

The input to this step is an OOCSMP model, and
its output is the model extended with multimedia
elements.

8. The next step tests the suitability of the output forms
and the correct synchronization of themultimedia el-
ements. The input to this step is an OOCSMPmodel
provided with graphical outputs and/or multimedia
elements, and its output is a validated OOCSMP
model. If there are more models to be included in

the current document page, the process goes back to
Step 3 for each of the other models. Otherwise, we
go to Step 9.

9. Step 9 uses the SODA-1L layer to describe the con-
tents of the page and call the OOCSMP simulations
produced in the preceding steps. SODA-1L makes
it possible to include in the pages some elements
not directly available in plain HTML, such as 2-D
or 3-D graphics, maps of isosurfaces, and so forth.
The inputs to this step are the models to be included
in the page and the scheme of the page created in
Step 1. The output of this step is one of the pages
in the document. If there are more pages in the doc-
ument, the process goes back to Step 3; otherwise,
we continue with the final step.

10. This step is performed using the SODA-2L lan-
guage. Here we have to create a script indicating the
type of document (educational course, presentation,

26 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

or article) and define common appearance elements,
such as backgrounds, font types, headers, footnotes,
frames, and so forth.We can also indicate if we want
to generate an index and how the references (if any)
should be tracked. One important issue is that we
can also specify the navigation throughout the doc-
ument, so that, if we later decide to change the order
of the pages, the SODA-1L pages remain unchanged
and only the SODA-2L script has to be modified.

6. An Example: Enhancing an Existing Course
with the Simulation of a Robot Arm Using VR

As an example of using the procedure and tools presented
earlier, in this section we enhance an existing educational
course with new pages. This will also show that our tools
allow for the easy maintenance of the documents: when a
new page is included, all the navigation links, indexes, and
so on in the course are regenerated automatically. We will
enhance the course with a page containing a simulation of
the robot arm Unimation PUMA260 [29]. Robotic simu-
lations can be interesting in the sense that industrial robots
are so expensive that sometimes a university department
cannot afford to buy one, and experiments with VR simu-
lation may be a valid alternative. If the simulation can be
accessed from the Internet, the student can also experiment
at home. To build this page, we will follow the procedure
in Figure 4, assuming that Step 1 (planning the course) has
been performed before.

6.1 Step 2: Modeling Phase

In this step, we can make (several) models of the system
using an appropriate formalism. The objective is to under-
stand the dynamics of the system and, in our case, to plan
the implementation. In this case, we use some of the UML
diagrams described in Booch, Rumbaugh, and Jacobson
[30]. To model physical systems, the UML diagrams can
be complemented by simulation formalisms, such as partial
differential equations (PDEs), ordinary differential equa-
tions (ODEs), and so forth. In robotic and mechatronic
simulations, it is useful to use UML notations and map the
models into an object-oriented simulation language such as
OOCSMP. Figure 5 shows two of the UML diagrams that
we have used for our problem (a class and a collaboration
diagram).

The diagram to the left is a structural diagram used to
describe the system architecture. Basically, we have a class
named PUMA260 (which represents the robot) containing
four joints, the last one with a manipulator able to rotate
through two different axes. Some of the robot attributes
are its position (PX, PY , and PZ), the rotation degrees
performed by each Joint (G1 . . . G4), and three rotation
matrices (ROTX,ROTY, and ROTZ). In the methods sec-
tion, the public interface allows rotating one of the joints a
number of degrees (methodsROTATE1 . . .ROTATE4). The

first argument of these methods gives the order in which
each rotation has to be performed. The other public meth-
ods are GETANGLE1 . . .GETANGLE4, which return the
angle value of each joint.

The Joint object is assigned a VRMLObject (a VRML
file with the Joint graphical appearance) whose initial po-
sition is given by (X0, Y0, and Z0). The public interface
defines the INITIAL method, which performs initial calcu-
lations, and the ROTATE method, which performs a rota-
tion of the joint, given a rotation matrix. All the joints in
the robot are connected to the next joint, except the manip-
ulator, which is last. By encapsulating joints in objects, we
can use them not only to describe PUMA robots but any
other kind of robot.

The diagram to the right is a behavioral model, used to
understand the flow of method invocations in the system.
One could have an arbitrary number of these diagrams,
with each one modeling a different situation. In our case,
we show the behavior of the system when the main simu-
lation invokes a rotation on the robot (method labeled 1).
In particular, in the example shown, we wish to rotate the
second joint by π/2 degrees. When a PUMA260 object
receives this message, it checks if the order parameter is
appropriate—that is, if the number of rotations performed
is equal to parameter ORDER minus 1. If this is the case,
it invokes on itself method ROT2, which in turn invokes
method ROTATE on the appropriate joint, using the appro-
priate rotation matrix (each joint is able to rotate through
a different axis). When the Joint object receives this mes-
sage, it performs the necessary operations and passes the
message to the next joint connected to it until the manip-
ulator is reached. This is repeated at each time step until
the joints reach the desired rotation angle and then the next
rotation can be executed.

6.2 Step 3: Coding the Model

In this step, we have tomap themodel produced by the pre-
vious step into the OOCSMP code. Using automatic tools,
it is possible to automatically generate part of the OOC-
SMP code from the UML class diagram. The diagrammay
be completed with the OOCSMP code for the methods in
the form of notes. As an example, Figure 6 shows a scheme
of the OOCSMP code for the Joint class. TINVERSE is an
OOCSMP function to invert a transformationmatrix, using
a well-known and more efficient algorithm than the usual
inversion [31]. Details about the algorithms used to handle
transformation matrices can also be found in Foley et al.
[32].

6.3 Step 4: Adapting the Model to the Page

In this step, we create the main simulation models using
the classes built in the previous step. This usually means
creating instances of the classes, parametrizing the objects,
and calling the appropriate methods inside the main simu-
lation loop. Figure 7 shows the model for this page. It is a

Volume 79, Number 1 SIMULATION 27

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

Figure 5. Modeling the robot arm using UML: (a) class diagram and (b) collaboration diagram

CLASS Joint
{
Joint connected * Pointer to the next Joint of the

robot

VRMLobject ob := ‘‘artic1.wrl’’ * VRML file containing the physical

shape

DATA X0 := 0, Y0 := 0, Z0 := 0 * Initial displacement of the joint

DATA M[4;4], M[;] := 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 * Initialization of local coordinate

matrix

DATA INVM[4;4], X[4;4], XINV[4;4] * Auxiliary matrixes

INITIAL * Initial section

M[0;3] := X0
M[1;3] := Y0 * Initialize M with displacements

M[2;3] := Z0
TINVERSE(INVM, M) * Calculate inverse

2VRML * Convert matrix notation to fixed

angles notation

Tx := M[0;3] * Obtain displacements

Ty := M[1;3]
Tz := M[2;3]
GRY:= ATAN2(-M[2;0],SQRT(M[0;0]*M[0;0]+M[1;0]*M [1;0]) * Obtain angle around y axis

GRZ:= ATAN2(M[1;0]/COS(GRY), M[0;0]/COS(GRY)) * Obtain angle around z axis

GRX:= ATAN2(M[2;1]/COS(GRY), M[2;2]/COS(GRY)) * Obtain angle around x axis

INSW(1, , VRMLworld MOVE, Tx, Ty, Tz) * Displace in VR world

INSWW(1, , VRMLworld ROTATE, 1, 0, 0, GRX) * Rotate around x in vrml world

INSW(1, , VRMLworld ROTATE, 0, 1, 0, GRY) * Rotate around y in vrml world

INSW(1, , VRMLworld ROTATE, 0, 0, 1, GRZ) * Rotate around z in vrml world

ROTATE R[;] * Apply a transformation matrix

INSW(connected, , X := connected.M**INVM) * Propagate the transformation

INSW(connected, , TINVERSE (XINV, X))
INSW(connected, , connected.ROTATE ((X**R)**XINV))
M := R**M * Apply the transformation

INSW(connected, , TINVERSE (INVM, M)) * Calculate the inverse, if necessary

2VRML
}

Figure 6. Declaring joints as OOCSMP objects

28 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

very simple model that creates the robot and, in the main
simulation loop (DYNAMIC section), makes it perform ro-
tations on its second and third joints.

Note how, although both rotations are included in the
main simulation loop, they are not performed by the robot
at the same time. The order in which they should be per-
formed is given by the first parameter of the method to
rotate. As we explained in Figure 5b, before performing
a certain rotation, the robot must check if all the previous
ones (with lower order numbers) have been completed.

6.4 Step 5: Validating the Model

In this step, we check that the previous model is correct by
compiling it and observing the output. When we compile
Figure 7, C-OOL generates a VRML file containing the
PUMA robot, which includes the code for the four joints.
This file is the result of assembling the VRML files that
contain the description of each Joint object. The compiler
also produces three Java files, one for the Joint object,
one for the PUMA260 object, and another for the main
simulation model. The validation is an iterative process in
which we try rotations for each Joint object.

6.5 Step 6: Deciding Type and Position of the Output
Forms

In this step, we complete and add output forms to present
the user with richer information. In our example, we add
a static VRML object to the VR panel (described in file
“tool.wrl,” the cone in Figure 9) and add a 2-D plot to the
right of the 3-D panel to show the angles of the joints.
The modifications to Figure 7 are shown in Figure 8 (the
first six lines remain unchanged). It can be observed that
some methods of the PUMA260 object (GETANGLE1 to
GETANGLE4) are invoked to get the angles of the joints,
which are plotted in the 2-D graphic (line 12).

A picture of amoment of the simulation is shown in Fig-
ure 9. The top window to the right (it pops up by clicking
on the p button in the main panel) can be used to change
some parameters of the robot, such as joint angles, veloc-
ity, position, and so on. Notice that the VRML panel has
controls that permit the user to explore different viewpoints
of the simulation visualization.

The simulation and the visualization processes are ex-
ecuted in different threads, as each output form creates its
own thread. The synchronization of the simulation engine
with the Java-based output forms is straightforward as the
simulation engine only has to send update messages to the
output forms at each communication interval. This is set
in the simulation model (variable PLdelta; see line 13 in
Figure 8) as sometimes we are not interested in updating
the output forms at each time step, or it would be too costly.
In the example in Figure 8, we update the output forms at
each time step—that is, variables delta and PLdelta have
the same value.

6.6 Step 7: Adding Multimedia Elements

In this step, we can include multimedia elements in the
model. The multimedia elements available in OOCSMP
are image panels, dynamic text panels, video panels, and
audio sequences. In this example, we add a text panel de-
scribing to the student themovements the robot is perform-
ing. We synchronize different texts with the robot move-
ments in the simulation. Figure 10 shows themodifications
to be done to Figure 8. Line 12 now locates the plot of the
joint angles at the center of the main panel of the user
interface. Line 13 adds the dynamic text panel below the
plot panel. The first explanation is shown when the angle
of the second joint is smaller than π/2 and is stored in a
text file named “explain_2nd_joint.txt.” The second expla-
nation appears when the first condition is not met and is
expressed using the DEFAULT keyword.

6.7 Step 8: Testing Outputs and Multimedia

In this step, we check if the outputs and multimedia ele-
ments synchronize as planned. If this is not the case, we go
back to Step 6 (if it is a problem with the output that does
not affect the multimedia elements) or to Step 7 (if it is a
problem with a multimedia element).

6.8 Step 9: Describing the Course Page with
SODA-1L

In this step, we describe the course page in which the sim-
ulation is going to be embedded using the higher level
language layer SODA-1L. Figure 11 shows an excerpt of
the necessary SODA-1L code to describe this page. The
listing shows how to use SODA-1L to define the page ti-
tle (line 7), some textual explanations (lines 8-10), a table
with a caption and images (lines 12-15), and how to in-
voke the previously definedOOCSMPmodel (line 18). The
MODEL instruction has some parameters to customize the
user interface that C-OOL generates for the simulation. In
the example, we are only setting the height andwidth of the
simulation applet (400 × 400). General options to control
the appearance of the user interface of all the simulations in
a document can be provided in the SODA-2L script (which
may be overwritten for particular models, such as in this
case). The last line in Figure 11 is a macro (defined in file
“macros.csm,” included in line 5) that creates some text
and a link to the OOCSMP and SODA source files needed
for the page.

6.9 Step 10: Including the Page in the Course

Once we have described the page with SODA-1L, we can
insert it in the course. For this purpose, the only thing we
have to do is to modify the previous SODA-2L script by
adding a reference to the page and recompiling the script.
The recompilation updates the pages affected by the inser-
tion and generates the necessary applets for the OOCSMP

Volume 79, Number 1 SIMULATION 29

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

[1] INCLUDE ‘‘Puma260.csm’’
[2] TITLE PUMA260 robot simulation
[3] PUMA260 p()
[4] DYNAMIC

[5] p.ROTATE2 (1, PI/2.0)
[6] p.ROTATE3 (2, -PI/2.0)
[7] TIMER FINTIM:= 60, delta := 0.1, PLdelta := 0.1

Figure 7. Using a PUMA robot

[7] a1 := p.GETANGLE1
[8] a2 := p.GETANGLE2
[9] a3 := p.GETANGLE3
[10] a4 := p.GETANGLE4
[11] VRMLworld ‘‘tool.wrl’’
[12] PLOT a1, a2, a3, a4, TIME
[13] TIMER FINTIM := 60, delta := 0.1, PLdelta := 0.1

Figure 8. Adding outputs to Figure 7

Figure 9. A moment in the execution of the previous model

30 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

[12] PLOT [C], a1, a2, a3, a4, TIME
[13] TEXTPANEL [S], a2 <= PI/2.0, ‘‘explain_2nd_joint.txt’’,
[14] DEFAULT, ‘‘explain_3rd_joint.txt’’
[15] TIMER FINTIM := 60, delta := 0.1, PLdelta := 0.1

Figure 10. Adding dynamic textual explanations to the models

[1] * 1st page of the robotics subsection of the applications page
[2] * AUTHOR Juan de Lara
[3] * EMAIL Juan.Lara@ii.uam.es
[4] * DATE 7/6/2002
[5] INCLUDE ‘‘macros.csm’’
[6] INCLUDE ‘‘styles.csm’’
[7] TITLE An introduction to robotics
[8] DESCRIPTION The word robot comes from the czech word robota which
[9] DESCRIPTION means work. The Webster dictionary defines a robot as ‘‘an automatic

[10] DESCRIPTION device which performs functions usually assigned to human beings’’.

[11] ...
[12] TABLE [1;2], [C,80],
[13] ‘‘\IMAGE ‘robot22.jpg’’’,
[14] ‘‘\IMAGE ‘arm1.jpg’’’,
[15] ‘‘A PUMA-560 robot, courtesy of MONASH University and Georgia Institute of technology’’
[16] DESCRIPTION A robot is usually composed by a chain of rigid elements connected by joints.
[17] ...
[18] MODEL [400;400], [C], ‘‘puma.csm’’
[19] SHOWSODA

Figure 11. A scheme of the SODA-1L code for the page

models, thus making the maintenance process easy. An
excerpt of the modified SODA-2L script is shown in Fig-
ure 12. In this script, we specify the authors’ data (lines
2-4), declare that we are building an educational course in
opposition to presentations and articles (line 7), select the
default options for the compilation of the simulation mod-
els (line 8), and give a list of the pages in the course. In this
script, we can define some variables (such as AUTHOR,
EMAIL, etc.) that can be used in the pages described with
SODA-1L.

When this script is compiled by C-OOL, it generates
HTML files for each page of the document using the ap-
propriate formatting styles and compiles the simulations,
generating the Java and the VRML files. This recompila-
tion implies that if a new page has been inserted into a
course or a presentation, the links in the other pages are
updated automatically.

7. Related Research

Hopkins and Fishwick’s rube [33] is a similar approach to
the ideas presented here. The idea of the system is to pro-
mote personalization in dynamic model structural repre-
sentation and bridge the gap between arts and computer sci-
ence. The authors can provide 3-D metaphors onto which
simulations can be mapped. These metaphors are specified

in VRML. Rube is based in the multimodeling tool OOPM
[34], which describes a model by connecting components,
and each one of them can be described in a different for-
malism. In OOCSMP, we are currently working on higher
modeling layers whereby one can create models described
in different formalisms (by using AToM3 [27]), which can
then bemapped onto OOCSMP.With respect to the visual-
ization, our tools also allow a very easy interaction between
2-D and 3-D Java outputs,multimedia, andVRMLoutputs.

Most current approaches for building educational, in-
teractive materials for the Internet are based on a di-
rect programming in HTML, Java, and VRML. This
low-level programming is precisely what we wanted to
avoid with the work presented in this paper. As ex-
plained in Section 2, the use of an integrated environ-
ment for the design of these documents (both simula-
tions and pages) offers many advantages: courses are
easier to create, modify, reuse, test, and so on. For ex-
ample, Roccetti, Salomoni, and Bonfigli [17] proposed
an educational environment that can combine simula-
tions written directly in Java and VRML. In a virtual
engineering/science laboratory course at Johns Hopkins
University (see http://www.jhu.edu/virtlab/virtlab.html),
we find a similar approach: some small courses in different
subjects are presented. The courses pages contain simula-
tions written directly in Java and HTML, respectively. By

Volume 79, Number 1 SIMULATION 31

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

[1] * SODA-2L script for the course on Robotics
[2] AUTHOR Juan de Lara, Manuel Alfonseca
[3] EMAIL Juan.Lara@ii.uam.es, Manuel.Alfonseca@ii.uam.es
[4] WEBADDRESS http://www.ii.uam.es/∼jlara, http://www.ii.uam.es/∼alfonsec
[5] INCLUDE ‘‘macros.csm’’
[6] INCLUDE ‘‘styles.csm’’
[7] COURSE ‘‘A course on Robotics’’ BACKGROUND =‘‘WHITE’’
[8] SIMULATIONS --noFrame --noScaleWindow --noLeyenda --WIDTH= 500 --HEIGHT= 400
[9] PAGE ‘‘index.csm’’
[10] PAGE ‘‘intro.csm’’
[11] ...
[12] PAGE ‘‘puma_page1.csm’’
[13] ...

Figure 12. An excerpt of the SODA-2L script

coding the simulations directly in Java, onemay use output
forms more adapted to the problem than by using a prede-
fined output form provided by a high-level language. The
disadvantage is that coding the simulation and the output
forms directly in Java requires more effort.

Other approaches rely on the use of proprietary
technologies to describe and execute the simulations.
In Budhu [35], a course on civil engineering con-
taining interactive multimedia simulations is presented.
The course is based on Authorware and Flash (see
http://www.macromedia.com). These are very powerful
tools for graphical design, in which the user can design
films and animate objects using the ActionScript language
(a language in the style of Java). Our aim is not to compete
with these well-established tools in which the focus is on
general graphical design. In our system, the focus is on pro-
viding powerful constructs for simulation (blocks to solve
PDEs,ODEs, etc.) and to complement thesewith visualiza-
tion and multimedia facilities. The graphical capabilities
of Authorware and Flash are much higher, but if one tries
to build an advanced simulation course with these tools,
all the numerical methods to solve PDEs (finite element
methods, finite difference methods, mesh generation tech-
niques, etc.) and ODEs (Runge-Kutta, Adams, Simpson,
etc.) would have to be coded by hand using ActionScript.
We provide these libraries, which can be accessed using
OOCSMP constructs in a declarative way. Moreover, if
the user really needs efficiency in the simulations (rather
than building an educational course), the C-OOL compiler
can be used to generate C++ code (instead of Java) as we
provide a C++ version of all the numerical libraries.

In Schmid [2], in the context of the DynaMit
project (http://dynamit.esr.ruhr-uni-bochum.de), a Web-
based learning framework was built that allows building
tutorials, exercises, and virtual experiments. The system
relies on plug-ins such asMATLAB/SIMULINK/MAPLE,
VRML, Graphics, and the ToolBook Neuron. Our aim was
to develop a system in which models are easily integrated
with the document pages, allowing for the easy mainte-
nance of the documents and the reuse of models and pages.
A side effect of using a compiler able to generate Java code

for the simulations is that the simulation user does not have
to download and install a plethora of different plug-ins to
execute the simulations.

With respect to the robotic applications, the Depart-
ment of Electrical Engineering and Information Technol-
ogy of the University of Hagen has developed several
(very impressive) VRML simulations of robots and has in-
cluded them in a course on robotics (see http://prt.fernuni-
hagen.de/pro/richodl/richodl.html and http://www.geo-
cities.com/ResearchTriangle/Lab/8585/robot/robot.html).
These simulations have been coded directly in VRML and
Java. We provide a high-level simulation language, com-
bined with other layers, to describe the course pages, with
no need to program in Java and HTML. By building these
simulations directly in Java and VRML, the level of cus-
tomization is greater, but the effort required is bigger.

8. Conclusions and Future Work

In this paper, we have presented a simulation system that,
starting from a high-level description of the models, is able
to generate programs executable from the Internet. The
programs can combine different output forms, including
multimedia elements, VRML panels, and other Java-based
outputs. The system makes easy the integration of such
simulations in Web documents such as courses, articles,
or presentations. It has been used mainly for educational
purposes. Some simulations generated with it have been
used in a university course that is being taught through
the Internet. OOCSMP is also being used as a modeling
and simulation tool in a predoctoral course on simulation
taught at the Universidad Autónoma de Madrid.

As an example of the use of VRML panels, the simu-
lation of a PUMA260 robot has been presented. The use
of VRML makes the simulations more realistic, being a
good complement to the laboratory classes. In fact, some-
times it can be the only possible alternative because ex-
periments with the real system would be expensive (such
as in the case of the robot) or impossible (such as in the
case of the solar system). A procedure to build documents
for the Web containing simulations has been followed to

32 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

VISUAL INTERACTIVE SIMULATION FOR DISTANCE EDUCATION

embed the PUMA260 simulation in an existing educational
course. The system and the procedure improve productiv-
ity and emphasize important points in Web engineering,
such as maintainability, easy testing, and standardization
of the user interface. By using the system, the course de-
signer avoids having to program in low-level languages
such as Java, HTML, or VRML, thus reducing drastically
the developing time and the effort to integrate the applets
with the VRML models.

We are currently working on an OOCSMP interpreter
[18] that would allow the student to change dynamically
the simulation model during execution. In our example,
this means that the student would be able to plan the robot
actions. In the future,wewant towork on a planning system
for the robot, which would be able to generate OOCSMP
code. The simulation could also be improved by adding
sensors to the robot to detect and manipulate physical ob-
jects or to make it more realistic, bearing in mind forces,
accelerations, and so forth.

Currently, it is possible to add new objects during the
simulation execution [23]. For example, in the case of the
simulation of the inner solar system, it would be possible
to add a new planet at runtime. But this is not possible if we
are using a VRML panel. The system could be extended to
allow this (the EAI interface permits creating new VRML
nodes from strings, for example). It would also be interest-
ing to extend OOCSMP to define actions to happen when
the user manipulates the simulation objects in the VRML
world. This would require linking the simulation variables
from the VRMLworld to the simulation engine. Currently,
they are linked in one direction only, from the simulation
engine to the VRML world.

A further stepwould be the extension of our tool to build
virtual laboratories in which the students can make ex-
periments and appear as avatars. Ideally, this environment
should permit interaction and communication between stu-
dents in a way similar to cooperative learning environ-
ments. Among other things, this would require immersing
all the simulation controls inside the VRML world, even
those at present in the Java panels. In this direction, we
are currently working on integrating our system with the
FACT framework [36], which allows the construction of
collaborative applications, analysis of the learning process,
and collaborative tutoring.

Together with theModeling Simulation andDesign Lab
at McGill University, we are working on a graphical envi-
ronment (called AToM3) for the construction of the simu-
lations andWeb documents. The approach we are taking is
using meta-modeling [27] to define the formalisms we are
interested in and, from this meta-information, generating
a tool to process that formalism. We are also planning to
incorporate the possibility of designing VRML worlds or
at least allow an easy interaction with some VRML devel-
opment tool. Additional examples and courses generated
with our system can be found at the OOSMP homepage
(http://www.ii.uam.es/∼jlara/investigacion).

9. Acknowledgment

We thank all the anonymous referees and Jean-Sebastien
Bolduc for their accurate and constructive comments that
greatly improved the paper. This work has been spon-
sored by the Spanish Ministry of Science and Technology
(MCYT), project number TIC2002-01948.

10. References

[1] Page, E. H., A. Buss, P. A. Fishwick, K. Healy, R. E. Nance, and
R. J. Paul. 2000. “Web-based simulation:Revolution or evolution?
ACMTransactions onModeling and Computer Simulation 10 (1):
3-17.

[2] Schmid, Ch. 1999. A remote laboratory using virtual reality on the
Web. SIMULATION 73:13-21.

[3] de Lara, J., and M. Alfonseca. 2000. Using simulation and virtual
reality for distance education. SIIE’2000, November, Puertollano,
Spain.

[4] Scholz-Reiter, B., W. Echelmeyer, T. Hamann, and J. Hoheisel. 2002.
Games for engineering education. Proceedings of 16th European

SimulationMulticonference ESM’2002, Darmstadt, Germany, pp.
391-4.

[5] Bryson, S. 1996. Virtual reality in scientific visualization. Communi-

cations of the ACM 39 (5): 62-71.
[6] Bredeweg, B., and R. Winkels. 1998. Qualitative models in interac-

tive learning environments: An introduction. Interactive Learning
Environments 5:1-18.

[7] de Jong,T., ed. 1991.Computer simulations in an instructional context
[Special issue]. Education and Computing, Vol. 6. Amsterdam:
Elsevier Science.

[8] Schank, R. C., and C. Cleary. 1995. Engines for education. Hillsdale,
NJ: Lawrence Erlbaum.

[9] de Lara, J., and M. Alfonseca. 2001. Constructing simulation-based
Web documents. IEEE Multimedia, January-March, 42-9.

[10] Lorenz, P., H. Dorwarth, K. C. Ritter, and T. J. Schriber. 1997. To-
wards a Web-based simulation Environment. Proceedings of the

1997 Winter Simulation Conference, Society for Computer Simu-

lation, pp. 1338-44.
[11] Fishwick, P. A. 1996. Web-based simulation: Some personal obser-

vations. Proceedings of the 1996 Winter Simulation Conference,
Coronado, CA, pp. 772-9.

[12] Alfonseca, M., J. de Lara, and H. Vangheluwe. 2001. Web-based
simulation of systems described by partial differential equations.
Proceedings of the Winter Simulation Conference, Arlington, VA,
pp. 629-36.

[13] Bajaj, C., and S. Cutchin. 1997. Web based collaboration aware
synthetic environments. Proceedings of the TeamCAD Gvu/Nist

Workshop on Collaborative Design, pp. 143-50. See also SHAS-
TRA Web page at http://www.ticam.utexas.edu/CCV/projects/
shastra

[14] Bidarra, R., E. Van Den Berg, and W. F. Bronsvoort.
2001. Interactive facilities for collaborative feature model-
ing on the Web. Proceedings of the 10th Portuguese Con-

ference on Computer Graphics, Lisbon, Portugal. See also
http://www.cg.its.tudelft.nl/∼eelco/publications.html

[15] Kuljis, J., and R. J. Paul. 2001. An appraisal of Web-based simula-
tion: Whither we wander? Simulation Practice and Theory 9:37-
54.

[16] Healy, K. J., and R. A. Kilgore. 1997. Silk: A Java-based process
simulation language. Proceedings of the 1997 Winter Simulation

Conference, Atlanta, GA, pp. 475-82.
[17] Roccetti, M., P. Salomoni, and M. E. Bonfigli. 2001. A design for

a simulation-based multimedia learning environment. SIMULA-

TION 76 (4): 214-21.
[18] Alfonseca, M., J. de Lara, and G. Montoro. 2002. Teaching

partial-differential equations through the Internet: An interactive

Volume 79, Number 1 SIMULATION 33

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

de Lara and Alfonseca

approach. Proceedings of the 16th European Simulation Multiconfer-

ence, ESM’2002, Darmstadt, Germany, pp. 395-9.
[19] IBMCorp. 1972.Continuous SystemModelling Program III (CSMP

III) and Graphic Feature (CSMP III Graphic Feature) general in-

formation manual. Ontario, Canada: IBM.
[20] Alfonseca, M., E. Pulido, R. Orosco, and J. de Lara. 1997. OOC-

SMP: An object-oriented simulation language. ESS’97, Passau,
pp. 44-8.

[21] Alfonseca, M., and J. de Lara. 2002. Simulating evolutionary agent
colonies with OOCSMP. Proceedings of the 17th ACM Sympo-

sium on Applied Computing (SAC’2002), AI and Computational

Logic, March, Madrid, Spain, pp. 11-5.
[22] Myers, B. A., E. Borison, A. Ferrency, R.McDaniel, R. C.Miller, A.

Faulring, B. D. Kyle, P. Doane, A. Mickish, and A. Klimovitski.
1997. The Amulet v3.0 reference manual. Technical Report No.
CMU-CS-95-166-R2 and Human Computer Interaction Institute
Technical Report No. CMU-HCII-95-102-R2, Carnegie Mellon
University School of Computer Science.

[23] Alfonseca, M., J. de Lara, and E. Pulido. 1999. Dynamical object
generation during the execution of continuous simulation mod-
els. Argentine Symposium on Object Orientation 1999 (ASOO

99), September, Buenos Aires, Argentina.
[24] Alfonseca, M., J. de Lara, and E. Pulido. 1999. Semiautomatic gen-

eration ofWeb courses by means of an object-oriented simulation
language. SIMULATION 73:5-12.

[25] Leonardo, L. 1997. Using Netscape LiveConnect: Special edition.
Indianapolis, IN: Que Corporation. See also Netscape ftp site:
ftp.netscape.com in pub/sdk/plugin/windows/oct_21_97

[26] Hartman, J., and J.Wernecke. 1996.TheVRML2.0 handbook:Build-

ing moving worlds on the Web. Reading, MA: Addison-Wesley.

[27] de Lara, J., and H. Vangheluwe. 2002. AToM3: A tool for multi-
formalism modelling and meta-modelling. Lecture Notes in

Computer Science 2306:174-88. See the AToM3 homepage:
http://atom3.cs.mcgill.ca/

[28] de Lara, J., H. Vangheluwe, and M. Alfonseca. 2002. Using meta-
modelling and graph grammars to createmodelling environments.
Electronic Notes in Theoretical Computer Science 72 (3). Also
presented in the Graph Transformations and Visual Modelling
Techniques (GT-VMT) workshop at the 1st International Con-
ference on Graph Transformations, October, Barcelona, Spain.
Available: http://www.elsevier .nl/locate/entcs/volume72.html

[29] Fu, K. S., R. C. Gonzalez, and C. S. G. Lee. 1987.Robotics: Control,

sensing, vision, and intelligence. New York: McGraw-Hill.
[30] Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The unified mod-

elling language user guide. Reading, MA: Addison-Wesley. See
also the UML homepage at http://www.uml.org

[31] Craig, J. J. 1989. Introduction to robotics. 2d ed. Reading, MA:
Addison-Wesley.

[32] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. 1993.
Computer graphics principles and practice. 2d ed. Reading, MA:
Addison-Wesley.

[33] Hopkins, J. F., and P. Fishwick. 2002. The rubeTM methodology
for 3-D software engineering. Lecture Notes in Computer Science

2269:368-80.
[34] Lee, K., and P. Fishwick. 1999. OOPM/RT: A multimodeling

methodology for real-time simulation. ACM Transactions on

Modeling and Computer Simulation 9 (2): 141-70.
[35] Budhu, M. 2001. Enhancing instructions using interactive multime-

dia simulations. SIMULATION 76 (4): 222-31.
[36] Mora, M. A., and R. Moriyón. 2001. Collaborative analysis and

tutoring: The FACT framework. Proceedings of the IEEE In-

ternational Conference on Advanced Learning Technologies

(ICALT’01), Madison, WI, pp. 82-5.

Juan de Lara is an assistant professor in the Computer Science

Department of the Escuela Politécnica Superior (Higher Poly-

technical School) at theUniversidadAutónoma deMadrid, where

he teaches software engineering. He received his PhD in com-

puter science from this university in 2000 with a thesis on Web-

based simulation, which received a special award for the best

thesis presented at the school. He also holds a technical engi-

neering degree in computer science (1994, top of the class award)

and an engineering degree in computer science (1996). He has

published more than 50 technical papers in areas such as Web-

based simulation, agent-based simulation, software verification,

and multiparadigm modelling. In the latter area, he collaborates

with the Modelling Simulation and Design Lab (headed by Pro-

fessor Hans Vangheluwe) at McGill University, where he spent

one year doing postdoctoral research.

Manuel Alfonseca holds a doctorate in electronics engineering

(1972) and computer science (1976), with both degrees obtained

from the Universidad Politécnica ofMadrid. He teaches and does

research at the Department of Computer Science of the Univer-

sidad Autónoma of Madrid, where he is director of the Higher

Polytechnical School. Previously, he was a senior technical staff

member at the IBM Madrid Scientific Center, where he worked

from 1972 to 1994. He is a member of the SCS, the New York

Academy of Sciences, the IEEE Computer Society, the ACM, the

British APL Association, the IBM TEC, and the Spanish Associa-

tion of Scientific Journalism. He has published papers and books

on computer languages, simulation, complex systems, graphics,

artificial intelligence, object orientation, and theoretical com-

puter science, as well as popular science and juvenile literature.

34 SIMULATION Volume 79, Number 1

 at Universidad Autonom de Madrid on August 14, 2009 http://sim.sagepub.comDownloaded from

