New Reflection Transformation Imaging Methods for Rock Art and Multiple-Viewpoint Display

Cultural Heritage Imaging A California Nonprofit Corporation

* Hewlett Packard Labs

Mark Mudge Tom Malzbender * Carla Schroer Marlin Lum

VAST/CIPA 2006, Nicosia Cyprus November 4, 2006

Topics

- What is RTI?
- How RTI works
- Fundamental Understandings
- Existing RTI Capture Systems
- New Method, Highlight RTI
- Multi-view RTI
- Future Work

Reflection Transformation Imaging (RTI)

- Term coined by our coauthor Tom Malzbender and Dan Gelb of HP Labs, inventers of Polynomial Texture Mapping (PTMs)
- Stores surface reflection information for each image pixel
- 2D images with true 3D information
- Information is image based, not requiring geometry in Cartesian space
- No data loss from shadows and specular highlights
- Mathematical explanation available at: hpl.hp.com/research/ptm

RTI Basics

- Fixed camera position
- Multiple images illuminated from different known light positions
- Images synthesized into a single RTI image
- RTI captures "real world" reflectance characteristics of subject
- Reflectance information generates perception of shape
- Enhancement discloses additional information

Ceramic Stamping

Cultural Heritage Imaging

Archaeologial Research Collection University of Southern California

How RTIs work Arrows represent surface normal direction. surface cross section

How RTIs work light path surface cross section

Fundamental Understandings

- Digital technology for CH must be:
 - Adapted to the cultural heritage (CH) community
 - Adopted by the CH community
 - The result of early and on-going collaboration and evaluation with CH professionals
 - Freely available to the CH community

Fundamental Understandings

- Based on digital photography because those skills are already widespread
- Compatible with existing skill sets and working cultures
- Possible to automatically process the photos
- No need for help from digital imaging experts during empirical data capture

Fundamental Understandings

- New Standards of Best Practice through:
 - New tools and methods
 - Worldwide communication
 - Pilot projects and demonstrations
 - Automatic "Empirical Provenance"

Empirical Provenance

- Access to process history and raw data
- When included with digital representations of cultural heritage materials:
 - Permits the qualitative evaluation of digital information
 - Increases the acceptance of online information by scholars, educators, and the public
 - promotes collaborative, distributed scholarship
- •Now being mapped to the CIDOC/CRM

Known Light Position RTI Capture Techniques

HP's RTI Capture Systems

Photo: courtesy HP Labs

Photo: courtesy HP Labs

CHI's Manual, Low Cost, Template System

CHI's Automatic RTI Capture Dome

Cultural Heritage Imaging

 \bigcirc

ISTI/CNR PISA Quality Assessment

Cultural Heritage Imaging

New Method: Highlight RTI

Cultural Heritage Imaging

No prior knowledge of light position needed

Highlight RTI in the Field

Cultural Heritage Imaging

Rocha 2 da Ribeira de Piscos Parque Arqueologico Vale do Coa 5 June 2006

Highlight RTI in the Laboratory

Instituto Portugues de Arqueologica Centro Nacional de Arte Rupestre 7 June 2006

Equipment Required

- SLR digital camera
- Light reducing neutral density filters
- Tripods
- Black ball on length and angle adjustable boom
- Measuring tape
- Retractable surveyors plumb-bob string (bob removed)
- Light source
 - 1 to 1/32 power adjustable 320 watt second (minimum) flash with battery pack and radio flash triggers

OR

- intensity adjustable continuous light generator or indoors
- Laptop Computer
 - remote camera control software
 - image viewing software (Photoshop, Irfanview, etc.)
 - black cloth

chi

Cultural Heritage Imaging

Field Considerations

- Ambient light
 - Use neutral density filters to block daylight
- Light radius management
 - Illumination intensity central to accurate normal calculation
 - Low dynamic range in digital cameras
 - All the available histogram range used by incident light angle range

Estimating Lighting Direction From Highlight Location

- V is the view vector pointing to the camera
- N is the surface normal
- L is the unknown, normalized light vector we solve for

Prior use of spheres to collect lighting direction: Masseulus '02, Einarsson '04

Results: Goat Petroglyph

68cm by 46cm area Normal every 166 microns or 36 samples per sq. mm

Cultural Heritage Imaging

Results: Portable Rock Art

'Portable Art' - Magdalenian period (14,000 – 12,000 BP) Stone is 18 cm wide Normal captured every 65.7 microns or 231 per sq. mm Inset petroglyph is only 3.1cm in length

Multi-View RTI

- Multiple RTIs are captured from different viewpoints around the subject
- These viewpoints are integrated in an interactive viewer
- Image based 3D representation of objects from multiple viewing angles without 3D geometric models

First Multi-view RTI:

Bronze Age Torque – 1600-2000 BCE

Collection Archéologie du Musée de l'Hospice du Grand St. Bernard

Highlight RTI Future work

- Automatically detect highlights on the ball
- Make capture process
 more efficient
- Explore stereo camera setup
- Use 2 black spheres for precise light Positions
- Explore nonphotorealistic rendering

Legend Rock, Wyoming Petroglyph Site August, 2006

Multi-View RTI Future Work:

- Recent CHI funding from the U.S. Institute of Museum and Library Services (IMLS) National Leadership Grant will:
 - Create easy to use and cost effective Multi-View RTI capture techniques
 - Require only object placement and digital photography skill sets
 - Provide an automatic RTI processing pipeline
 - Compatible with existing professional cultures
 - Automatic generation of empirical provenance

Cultural Heritage Imaging

3D Range Geometry Future work:

 New research suggests possible automatic extraction of full 3D geometry from multi-view RTI image sequences

Geometry extraction enables:

- Viewing from any direction
- Measurement
- Re-lighting from any direction or source
- Reduction in the number of required RTI capture angles
- Physical reconstruction, animation, and analysis of the subject

Cultural Heritage Imaging

Acknowledgements

Thanks to:

- Parque Arqueologico do Vale do Coa (PAVC)
- Centro Nacional de Arte Rupestre (CNART)
- Universidade do Minho
- The Congregation of the Grand St. Bernard
- Szymon Rusinkiewicz Princeton
- James Davis UC Santa Cruz
- U. S. Bureau of Land Management Denver Technology Center, Archaeologist Mike Bies
- CHI supporters and the CHI Board of Directors

Contact

mark@c-h-i.org carla@c-h-i.org www.c-h-i.org

Copyright Cultural Heritage Imaging All Rights Reserved