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Abstract

In this paper we extensively describe new software available as a R package that

allows for the extraction of phenological information from time-lapse digital pho-

tography of vegetation cover. The phenopix R package includes all steps in data

processing. It enables the user to: draw a region of interest (ROI) on an image;

extract red green and blue digital numbers (DN) from a seasonal series of im-

ages; depict greenness index trajectories; fit a curve to the seasonal trajectories;

extract relevant phenological thresholds (phenophases); extract phenophase un-

certainties.

The software capabilities are illustrated by analyzing one year of data from a se-

lection of seven sites belonging to the PhenoCam network (phenocam.sr.unh.edu/),

including an unmanaged subalpine grassland, a tropical grassland, a deciduous

needle-leaf forest, three deciduous broad-leaf temperate forests and an evergreen

needle-leaf forest. One of the novelties introduced by the package is the spa-

tially explicit, pixel-based analysis, which potentially allows to extract within-

ecosystem or within-individual variability of phenology. We examine the rela-
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tionship between phenophases extracted by the traditional ROI-averaged and

the novel pixel-based approaches, and further illustrate potential applications

of pixel-based image analysis available in the phenopix R package.

Keywords: image analysis, community ecology, pixel-based analysis,

phenology

1. Introduction

Traditional monitoring of plant phenology relies on direct human observa-

tions of discrete phenological events, or phenophases, such as bud-burst, flow-

ering, autumn decoloring, and leaf-fall (e.g. Lechowicz, 1984; Richardson et al.,

2006; Galvagno et al., 2013; Migliavacca et al., 2008; Filippa et al., 2015). Such5

observations are typically made on a limited number of individual organisms,

across a limited geographic area (i.e., often at a specific research site). On the

other hand, satellite remote sensing allows observing land surface phenology

on regional to global scales but has a limited representativeness for phenolog-

ical changes at ecosystem or species-level (White and Nemani, 2006; Delbart10

et al., 2005; Busetto et al., 2010; Hufkens et al., 2012; Forkel et al., 2015). At an

intermediate scale, near-surface remote sensing of phenology makes use of radio-

metric instruments or imaging sensors. Near-surface remote sensing quantifies,

at high temporal resolution, and with a flexible degree of spatial integration

(i.e., the potential to look across the canopy as a whole, but at the same time15

focus on individual organisms), seasonal changes in the optical properties of veg-

etated surfaces (e.g Jenkins et al., 2007; Richardson et al., 2007; Soudani et al.,

2012). Recent studies have demonstrated the soundness of digital cameras as

multi-channel imaging sensors (Richardson et al., 2009; Klosterman et al., 2014;

Wingate et al., 2015; Migliavacca et al., 2011).20

In the recent literature, different approaches have been used to process dig-

ital images of the vegetation canopy. Several researchers have exhaustively

addressed the issues of data quality and data filtering in order to reduce noise

in the seasonal trajectories of greenness (e.g. Sonnentag et al., 2012; Julitta
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et al., 2014; Migliavacca et al., 2011). Other authors focused on curve fit-25

ting/smoothing methods for extracting dates from phenological time-series (i.e.

phenophases, see e.g. Zhang et al. 2003; Beck et al. 2006; Gu et al. 2009; Elmore

et al. 2012; Klosterman et al. 2014 and the greenbrown R package). The full

exploitation of the existing plethora of methods and approaches would benefit

from a comprehensive framework in which to compare them across ecosystem30

types and climate conditions.

Phenological networks based on the analysis of digital images are growing world-

wide. In the US, PhenoCam network includes over 200 sites that use a standard

camera and follow a standard protocol (phenocam.sr.unh.edu/webcam/). In

Europe, the EUROPHEN network consists of about 60 flux sites equipped with35

digital cameras (Wingate et al., 2015). Similar networks are also present in Aus-

tralia (www.aceas.org.au, Brown et al. in preparation) and Asia (Nasahara and

Nagai, 2015). The increasing use of repeated digital photography for phenologi-

cal research highlights the need of easy-to-use, open source and flexible software

tools for the processing of the images. Additionally, the existing networks are40

poorly coordinated in terms of camera types, settings and sampling protocols,

thus presenting a big challenge to build a flexible tool capable of facing the large

diversity of ecosystems, image quality and setups.

In this paper we present a collection of functions packed in a software available as

a R package (R Core Team, 2015), called phenopix (r-forge.r-project.org/projects/phenopix/).45

We will first show the main features of the package and then illustrate its ap-

plication on a selection of sites belonging to the PhenoCam dataset. Lastly, a

section focused on pixel-based analysis will: 1) examine the relationship between

phenological thresholds (phenophases) extracted from the average seasonal tra-

jectory of greenness over a region of interest (ROI-averaged approach) and from50

each pixel of such region (pixel-based approach); 2) illustrate potential appli-

cations of pixel-based image analysis to discriminate between subtly different

phenological seasonal trajectories within the same image scene.
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2. PhenoCam sites

The study sites used to illustrate the functionality of the phenopix pack-55

age belong to the PhenoCam network (phenocam.sr.unh.edu/webcam/) and are

illustrated in table 1 and fig.1.

Table 1: Main characteristics of the selected PhenoCam sites. PFT: plant functional type,

GRA: grassland, DBF: deciduous broadleaf forest, DNF: deciduous needle-leaf forest, ENF:

evergreen needle-leaf forest

Site ID Coords (deg) Elev (m) PFT Camera type Dominant species

torgnon-ND 45.8N 7.6E 2160 GRA Nikon D5000 Nardus stricta

kamuela 20.0N -155.7E 850 GRA Stardot C3/C4 grasses

bartlett 44.1N -71.3E 268 DBF Axis 211 Acer rubrum; Fagus grandifolia

harvard 42.5N -72.1E 340 DBF Stardot Quercus rubra; Acer rubrum

mammothcave 37.2N -86.1E 226 DBF Stardot Quercus sp.; Carya sp.

torgnon-LD 45.8N 7.6E 2091 DNF Nikon D5000 Larix decidua

harvardhemlock 42.5N -72.2E 345 ENF Stardot Tsuga canadensis

3. Main functions

The typical work-flow of the phenopix package is summarized in the flowchart

shown in fig. 2. First, one (or more) region(s) of interest (ROI) is (are) cho-60

sen, then digital color numbers are extracted from the ROI of each image, and

processed to obtain a seasonal time series. After filtering the time series, data

are fitted with either a double logistic equation or a smoothing curve, on which

phenological thresholds (phenophases) are extracted. Finally, uncertainty of the

fit and of phenophases can be computed.65

3.1. Regions of interest (ROIs)

The scene of the picture rarely includes only the targeted vegetation canopy,

thus the user will want to choose a particular region within the scene for analysis.

Even more often, more than one region may be of interest, for example in a
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mixed forest one might independently analyze different deciduous species and70

evergreen trees (e.g. Ahrends et al., 2008). The function DrawROI() allows the

user to draw one or more regions of interest on-screen, using the mouse cursor

on a chosen reference picture.

3.2. Extract vegetation indices

From the digital color values of each image the green chromatic coordinate75

(GCC) is computed. GCC is a vegetation index derived from photographic image

and quantifies the greenness relative to the total brightness. GCC is computed

as follows:

GCC =
GDN

RDN + GDN + BDN
(1)

where GDN , RDN , BDN are the green, red and blue digital numbers, re-

spectively (Gillespie et al., 1987). Similarly, chromatic coordinates of red and80

blue (RCC and BCC) are also computed. Several indices based on RGB colors

have been developed in the last years, including for example the green excess

index (GEI) (Woebbecke et al., 1995; Mizunuma et al., 2013). Some authors

also used a combination of GCC and RCC to extract autumn phenophases (e.g.

Klosterman et al., 2014). For simplicity, all subsequent analyses will be focused85

on GCC but phenopix allows the analysis of the whole variety of color indices,

including the computation of new ones.

The function extractVIs() extracts raw red, green and blue digital numbers

from each pixel in the ROI, and computes color chromatic coordinates as in

eq.1. Vegetation indices can be computed on ROIs with 2 approaches (fig. 2):90

1) the ROI-averaged approach: color chromatic coordinates are computed for

each pixel and then averaged over the whole ROI, and (2) the pixel-based ap-

proach, where each pixel belonging to the ROI is analyzed separately (section

5). The procedure is repeated for each image in the archive. A time-stamp is

retrieved from the file name of the image and a time series of the computed95

indices is returned. Specific rules must be followed in naming the image files,
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and the reader is referred to the package help pages for more details.

3.3. Data filtering

Data retrieved from images often need robust methods for filtering the time100

series. Bad weather conditions, low illumination and dirty lenses are among

the most common issues that determine noise in the time series of vegetation

indices. Previous studies (e.g. Sonnentag et al., 2012; Julitta et al., 2014; Migli-

avacca et al., 2011; Papale et al., 2006) provide the background upon which

the filtering techniques implemented in phenopix were chosen. We designed a105

function autoFilter() based on 5 different approaches.

(1) A filter called night which removes GCC records lower than a certain thresh-

old, by default 0.2. This filters removes night data or images with very scarce

illumination (e.g. early morning or sunset images, cloudy days, etc.).

(2) A filter called blue, based on blue chromatic coordinate (BCC) (Julitta et al.,110

2014). First, hourly BCC data is aggregated at a daily resolution and daily

means and standard deviations are computed. A quantile (by default the 5th

percentile) is then calculated on standard deviations. This threshold is then

added and subtracted from the daily mean BCC to generate a seasonal enve-

lope. Raw data falling outside this envelope are discarded. The blue filter was115

designed to remove images with dominant clouds and/or snow on the canopy,

because the blue chromatic coordinate was found to be very sensitive to such

conditions.

(3) A filter called mad, following the method of Papale et al. (2006), an outlier

detection based on the double-differenced time series, using the median of ab-120

solute deviation about the median (MAD) that is a robust outlier estimator.

(4) A filter called spline, following the method of Migliavacca et al. (2011), based

on recursive spline smoothing and residual computation followed by removal of

outliers falling outside a given residual envelope.

(5) A filter called max, following the method of Sonnentag et al. (2012), based125

on the identification of the 90th percentile values in three-days moving windows.
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Filters can be applied alone or in sequence so that the user can choose the best

combination of filters that suits the image archive to be processed. Addition-

ally, each filter has its own discarding criteria that may be tuned by the user

according to the quality of the input GCC time series. The default behavior of130

the filtering function is to use a sequence of night, spline and max filters. In

general, this sequence will be effective enough to properly filter the GCC time

series. The user is advised to apply the max filter to effectively minimize the

impact of changes in scene illumination (Sonnentag et al., 2012).

3.4. Fit a curve to the GCC seasonal course and extract phenophases135

The extraction of phenophases is done in two steps (following the approach

of Forkel et al. 2015; Klosterman et al. 2014). First, a curve is fitted to the GCC

seasonal curve to reduce the influence of single observation and to better capture

the seasonal behaviour. In a second step different extraction methods can be

used to retrieve phenophase metrics from the fitted seasonal curve. We selected140

four different double logistic equations to be included in the package (table 2).

The equations differ in the number of parameters to be optimized and hence in

the flexibility of the fitting curves. For a thorough examination of the fittings

and explanation of curve parameters, see the correspondent publications. In

addition to the double logistic equations, an approach based on a smoothed145

cubic spline is also available. There are cases, e.g. with very noisy time series

or weak signal (low seasonal amplitude in greenness) where the double logistic

fits fail. In such cases, the spline method is the only possibility to extract a

seasonal trajectory.

Table 2: Double logistic model options available in phenopix, along with their option names as

implemented in the package. The first two methods were first implemented in the greenbrown

R package and described in Forkel et al. (2015)
Equation Reference Option name

f(t) = mn + (mx - mn)·( 1

1+e(−rsp∗(t−sos))
+ 1

1+e(rau∗(t−eos))
) Beck et al. (2006) ’beck’

f(t) = m1 + (m2 −m7t) · ( 1

1+e
(m′3−t)/m′4

− 1

1+e
(m′5−t)/m′6

) Elmore et al. (2012) ’elmore’

f(t) = (a1t + b1) + (a2t2 + b2t + c) · ( 1

[1+q1e−h1(t−n1)]v1

− 1

[1+q2e−h2(t−n2)]v2

) Klosterman et al. (2014) ’klosterman’

f(t) = y0 +
a1

[1+e−(t−t01)/b1 ]c1

− a2

[1+e−(t−t02)/b2 ]c2

Gu et al. (2009) ’gu’
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After curve fitting, a suite of different approaches is available to extract150

phenophases, as summarized in table 3, and illustrated in figure 3. The phenophase

extraction methods lead to the definition of dates that may have markedly dif-

ferent ecological meanings and be useful for several applications in the field of

environmental sciences. However the discussion of such meanings is beyond the

objectives of this presentation paper, and the reader is referred to the publica-155

tions listed in table 2 for further information. Here it is important to point out

that the availability of very simple methods (e.g. trs) and more sophisticated

ones (e.g. Klosterman method) allow the user to choose the extraction method

better suited to the phenological trajectory of the investigated ecosystem and/or

based on the quality of the input data.160

Table 3: Methods for phenophase extraction available in phenopix. sos: start of season,

eos: end of season, los: length of season, pop: peak of season position, peak : maximum

seasonal GCC , mgs: mean growing season GCC , msp: mean spring GCC , mau: mean autumn

GCC , rsp: rate of spring greenup, rau: rate of autumn senescence, UD : upturn date, SD :

stabilization date, DD : downturn date, RD : recession date, prr : peak recovery rate, psr : peak

senescence rate

Name Phenophases Description

trs sos, eos, los,

pop, mgs, peak,

msp, mau

Based on a user-defined thresh-

old of seasonal development of

GCC

derivatives as TRS plus rsp

and rau

Based on local extremes in the

first derivative

klosterman Greenup, Matu-

rity, Senescence,

Dormancy

Based on local extremes in the

rate of change of curvature k

(Kline, 1998)

gu UD, SD, DD,

RD, prr, psr

Based on a combination of lo-

cal maxima in the first derivative

(Gu et al., 2009)

The combination of four fitting methods plus the cubic spline smoothing
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with the four phenophase extraction methods produces 20 different available

combinations in output from a single yearly GCC time series. A specific function

(greenExplore()) is designed to give an overview of all fittings and phases for a

given dataset (fig. 4). The RMSE for each fit is also shown, so that the user can165

use it as a criterion for fit selection. Once the fit is chosen, by examining the plot

along a row the user can evaluate which phenophase method is more suitable to

the GCC time series. The possibility to combine different fitting and phenophase

methods to a GCC time series provides a framework in which to compare in

detail the different methods currently in use. This need was highlighted by170

Keenan et al. (2014) in a recent attempt to link forest phenology as described

by time-lapse photography and physiology as described by traditional plant trait

measurements.

In addition to the above described methods, phenopix also implements a

phenophase extraction method (function PhenoBP()) based on linear piecewise175

regression and correspondent break points in the time series (Wingate et al.,

2015). This method was designed to accommodate multiple greening peaks

during the same season, which is typical, for example, of water limited ecosys-

tems such as Kamuela (fig 5) or managed grasslands and croplands.

4. Estimation of the uncertainty180

Traditionally, the analysis of digital images for phenology has rarely included

the estimation of uncertainty on phenophase extraction, despite its paramount

importance (e.g. for the evaluation of method robustness and as input data for

the optimization of process-based or land surface models, where phenology is

currently poorly represented (Richardson et al., 2013)).185

The phenopix package provides two approaches for the estimation of uncer-

tainty, one for the fitted double logistic equations and one for the smoothing

spline method. For the fitted equations the residuals between the model fit

and the observed data are used to generate random noise and fitting is ap-

plied recursively to randomly-noised original data. This procedure results in190
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an ensemble of curves and curve parameters on which phenophase extraction

is performed, thus providing an uncertainty estimate of phenophases. For the

spline smoothing method, the uncertainty is estimated by combining a random

noise as for the fitted equations with multiple changes in the spline’s degrees of

freedom, to account for the arbitrariness in their choice. In particular, spline195

degrees of freedom are set at 5% of the time series length and then let vary re-

cursively between 1% and 5% of the time series length to generate the ensamble

of smoothing curves on which the uncertainty is estimated. In addition to the

residuals method, for the fitted equations only, we are also developing a method

based on the hessian matrix of the curve parameters.200

Figure 6 shows the uncertainty analysis for Harvard deciduous 2013 GCC sea-

sonal trajectory, with 500 replicates. The fitting method applied in this case was

Klosterman. By default, the confidence interval is represented by the 10th and

90th percentile of the distribution of all extracted phenophases, but other op-

tions are available. In any case, the user can access the uncertainty data tables205

of (1) curve equation parameters and (2) extracted phenophases to customize

the computation of the uncertainty envelope.

5. Phenopix application: spatial analysis

Based on an analysis run on all sites included in this paper except for Ka-

muela (i.e. six year-sites), we present in this paragraph the application of the210

pixel based analysis to investigate the spatial variability of phenology within a

ROI (pixel-based approach).

To date, few studies have explored the possibility of analyzing a set of images

pixel by pixel rather than averaging color values on the overall region of interest

(Julitta et al., 2014; Ide and Oguma, 2013). Therefore, an emergent question215

is how the ROI-averaged analysis is representative of all ROI pixels in terms of

extracted phenophases? And, is this relationship consistent across fitting meth-

ods and ecosystem types? The phenopix package allows the user to perform

pixel based image analysis and provides a number of functions to display and
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analyze the results. It must be noted that pixel-by-pixel analysis is computa-220

tionally intense. We report in table 4 the computation times required to analyze

a ROI containing 10000 pixels on a seasonal time series of 5000 images with all

fits available in phenopix for 3 different computers, using one single processor.

Computation time may be as high as 70 hours, with very low values for spline

smoothing and higher for data filtering and fitted equations. However, parallel225

computation available in the spatial functions of phenopix enable considerably

reduced computation times compared to those reported in table 4.

Table 4: Estimated computation time (hours) required to complete different steps of the pixel-

based analysis processing 10000 pixels from a seasonal time series of 5000 images using one

single processor on three different computers

step 3.07 GHz 2.60 GHz 2.13 GHz

filtering 28 49 52

spline 0.02 0.02 0.04

beck 36 63 69

elmore 0.7 0.8 1.5

klosterman 10 16 19

gu 22 37 42

We evaluate the relationship between approaches (i.e. ROI-average vs pixel-

based) and fitting/phenophase methods across sites in fig. 7. Two different

fitting methods (namely Klosterman and spline) applied to each pixel of the230

ROIs and then averaged are in good agreement with each other (fig. 7, first

above diagonal panel), with a slightly higher correlation for spring than for au-

tumn phases. The error bars for this relationship suggest a higher variability

for autumn than for spring phenophases (first below diagonal panel). When

comparing the ROI-averaged and the pixel-based approach, the best relation-235

ship is found with the Klosterman fitting method applied to both approaches,

with correlation coefficients of 0.97 and 0.75 for spring and autumn phenology,

respectively. However, the relationship between spline fit applied pixel-by-pixel
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and Klosterman fit applied to the average ROI also shows very good agreement.

In contrast, the spline method applied to the average ROI (last column in fig.240

7) has a consistently weaker relationship with all other methods, resulting in

earlier autumn phases and a much higher variability.

Across phenophase methods (different symbols in fig. 7), there is no evidence of

a systematic bias between the two approaches for any particular phase extraction

method. Across ecosystem types, needle-leaf forest (ENF, i.e. harvardhemlock245

site) shows a consistent departure from the 1:1 line even in the best relation-

ships (third panel from left in the first row of fig. 7), probably due to the lower

signal to noise ratio in the seasonal trajectory of evergreen trees. However, the

most striking difference is the consistently lower correlation for autumn than for

spring phases, suggesting that in the same ecosystem and possibly also within250

a single species autumn phases are more variable than spring phases.

In summary, the faster spline smoothing applied pixel-by-pixel leads to the iden-

tification of phenophases in substantial agreement with the more computationally-

intense Klosterman fit. Additionally, being more flexible, the spline fitting leads

to a much lower number of unfitted pixels compared to the Klosterman fit.255

Hence, from this analysis, spline smoothing is preferred over curve fitting for

pixel-by-pixel analysis. For the ROI-averaged approach, it is strongly prefer-

able to perform curve fitting over spline smoothing, provided that the GCC

seasonal trajectory does not show multiple peaks, related to e.g. water stress

or management practices.260

One interesting application of the pixel-based analysis stems from the ex-

amination of the frequency distribution of a given phenophase across all pixels.

When a phenophase shows a bi- (or multi-) modality and a consistent spatial

distribution, pixels may be grouped according to the values of one (or more)

phenophase(s) and separate seasonal trajectories can be obtained (fig. 8). By265

applying this procedure to the torgnon-ND grassland site we were able to iden-

tify a bimodal distribution in maturity phase (i.e. the end of spring growth), as

extracted after Klosterman curve fitting. We then selected pixels with maturity

onset dates falling around the two modes (i.e. DOY 180±3 and DOY 205±3)
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and computed an average trajectory for these two groups. This was possible270

because in the pixel-based approach each pixel has associated curve parameters

to reconstruct the seasonal trajectory. The resulting average trajectories are

markedly distinct around the seasonal peak, and reflect the different ecology of

forbs and grasses occurring over very short distances (<20 cm) at this grassland

site (Julitta et al., 2014). Further interpretation of this behavior is beyond the275

objective of this paper, but this preliminary analysis highlights the potential

use of spatially explicit image processing to identify different phenology related

to different plant functional types.

More sophisticated clustering methods can be applied to pixel values in order to

distinguish different phenological patterns. For example, at the Bartlett site (a280

mixed deciduous forest) we might expect a different phenology in early or late

flushing species (fig. 9a). With a cluster analysis (Hartigan and Wong, 1979)

using phenophases extracted with all available methods as an input matrix, we

were able to clearly distinguish two portions of the canopy (fig. 9b). In this

example the cluster analysis was used to define two sub-ROIs, that reentered the285

processing chain (ROI-averaged approach, fig. 2) and led to the identification

of two markedly different seasonal trajectories (fig. 9c,d). Beech-dominated

portions of the canopy (cluster 2) show a later yellowing/browning compared to

maple, prevailing in cluster 1 (Richardson et al., 2009).

290

6. Summary and outlook

We presented a new R package called phenopix that collects the most up-

to-date processing techniques for repeated digital photography of vegetation

canopy in the context of phenological and ecological research. Together with the

basic and well established processing steps, the package implements several new295

features, including the possibility to combine different fitting and phenophase

methods, to compute uncertainty on extracted phenophases, and to conduct

pixel-by-pixel analysis. Phenophase maps obtained by the pixel-based approach
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may represent a promising tool for a variety of ecological analyses, including

for example: 1) the study of species-specific phenology; 2) the examination of300

spatial variability of apparently homogeneous ecosystems such as grasslands; 3)

the potential to discriminate between overstory and understory or age-related

differences in phenological patterns of open canopy forests.

One major future step in the evolution of phenopix package includes the com-

putation of the so called camera-NDVI, in the formulation proposed by Petach305

et al. (2014).

The phenopix R package offers a suite of standardized and reproducible process-

ing code that may be adopted, deployed and further developed by the existing

phenocameras networks worldwide.
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Figure 1: A sample image from all PhenoCam sites included in this study masked on the

chosen region of interest (ROI), along with the seasonal trajectories of filtered GCC in year

2013. Ecosystem type abbreviations are as in table 1.
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Figure 2: The work-flow of the processing chain in the phenopix R package. Red and blue

objects denote specific features of pixel-based and ROI-averaged approaches, respectively.

Pixel-based approach produces a phenophase map (left), whereas ROI-averaged approach

results in a GCC seasonal trajectory and a certain number of phenophases, depending on the

method chosen (right). The example is from torgnon-ND grassland site in year 2013.
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Figure 3: Illustration of the methods used to extract phenological thresholds (phenophases)

in a seasonal GCC trajectory (f(t)). a) trs method : Phenophases are defined as the day of

year (DOY) when the 50% GCC is reached either during greenup (sos) and autumn (eos),

the DOY of maximum GCC is called pop; b) derivatives method : Phenophases are defined

as the DOY when f’(t) shows the absolute maximum and minimum; c) Klosterman method :

Phenophases are defined as the two local maxima (greenup) and two local minima (autumn)

in the rate of change in curvature k’ (Kline, 1998; Klosterman et al., 2014) and are named

after Zhang et al. (2003); d) Gu method : Maximum and minimum of f’(t) are used to define

slopes of recovery and senescence lines tangent to the curves (green and brown lines). The

intersection between these lines and baseline and maxline define the four phenophases in the

original formulation (Gu et al., 2009). To account for the mid season decrease in GCC we

have further defined a plateau line as a linear fit to GCC values between SD and DD, in order

to adjust the definition of phenophase DD. For phenophase abbreviations and details see table

3.
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Figure 4: All fitting and phenophase methods applied to Harvard deciduous forest GCC

seasonal trajectory in year 2013. This plot is the output from the functions greenExplore()

and plotExplore(). Plots in the same row share the same fitting method, whereas those in

the same column share the same phenophase extraction method. The RMSE for each fitting

is also annotated in the first column.
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Figure 5: Phenophases as determined by the break point analysis (PhenoBP() function) applied

to Kamuela grassland GCC seasonal trajectory in year 2013. The thickness of the vertical

dashed lines is proportional to the uncertainty of the extracted break points (same scale as

the x-axis). Uncertainty is estimated using the function confint() as the 95% confidence

interval.
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Figure 6: The uncertainty analysis applied to Harvard deciduous forest GCC seasonal trajec-

tory in year 2013. The grey lines represent the 500 simulated curves on which phenophases

are extracted. Shaded areas on phenophases represent 10th and 90th percentiles of the 500

replications. Data are fitted using the Klosterman method. Phenophases are extracted with

a) the trs method; b) the derivatives method, c) klosterman method, d) gu method.
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Figure 7: Scatterplot matrix showing: a) above the diagonal, the relationship between

phenophases extracted with two different approaches (pixel-based and ROI-averaged) and

two different fitting methods (spline smoothing and Klosterman fit), and b) below the diag-

onal, errors associated. Error bars for pixel approach represent the mean absolute deviation

of all pixels, whereas error bars for ROI-averaged approach represent the uncertainty as de-

scribed in section 4. Note that the scale for error bars is provided in the first below-diagonal

panel. Different symbols denote different phenophase extraction methods. Close symbols are

for spring phenology and open symbols for autumn phenology. Different colors represent dif-

ferent PFTs (abbreviations for PFTs are as in table 1). Data from all sites except for Kamuela

were used in this analysis.
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Figure 8: Results of the spatial analysis conducted on torgnon-ND grassland site. a) Map

of the spatial distribution of maturity (Klosterman fitting method, Klosterman phenophases

method), with darker colors indicating earlier occurrence of the phase (in DOYs). b) Aver-

age seasonal trajectory of pixels clustered according to the bimodal distribution of maturity.

Patches with forbs dominating show an earlier maturity compared to grasses (dashed lines).

In the inset, density distribution of Maturity phase across all pixels. Shaded areas denote

the maturity intervals used to subset ROI pixels. The resulting subsets were in turn used to

extract the seasonal trajectories of forbs- and grass-dominated portions of the ROI.
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Figure 9: Results of the cluster analysis run on Bartlett pixel-based phenophases. a) Sample

image from DOY 275, b) Distribution of clusters in the ROI, c) Density distribution of Greenup

and Dormancy phases across all pixels, and d) Averaged seasonal trajectories for the two

clusters. All extracted phases (from the four methods presented in section 3) were used in

input to clustering. 29




