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Abstract: This work focuses on the crystal size dependence of photoactive materials and light
absorption enhancement of the addition of carbon dots (CDs). mac-FTO (macroporous fluorine-doped
tin oxide) films with an inverse opal structure are exploited to supply enhanced load sites and
to induce morphology control for the embedded photoactive materials. The Bi2WO6@mac-FTO
photoelectrode is prepared directly inside a mac-FTO film using a simple in situ synthesis method,
and the application of CDs to the Bi2WO6@mac-FTO is achieved through an impregnation assembly
for the manipulation of light absorption. The surface morphology, chemical composition, light
absorption characteristics and photocurrent density of the photoelectrode are analyzed in detail
by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction
(XRD), UV–vis diffuse reflectance spectra (DRS), Energy dispersive X-ray analysis (EDX) and linear
sweep voltammetry (LSV).
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1. Introduction

The energy crisis is one of the major social problems that various countries will encounter in
the 21st century [1,2]. Semiconductor photocatalysis is regarded as a potential green technology
for mitigating the energy crisis [3–5]. Fujishima and Honda used TiO2 as a photocatalyst to split
water to produce oxygen and hydrogen under ultraviolet light radiation [6]. Photocatalytic water
splitting is a good strategy for converting solar energy to chemical energy. As a device for solar energy,
the performance of photoanodes is reliant on their light absorption, charge carrier separation and
catalysis/electrolyte diffusion [7].

Many efforts have been made to improve photoelectrochemical (PEC) water splitting efficiency
using various modifications such as ion doping [2], heterostructure [6] and loading co-catalysts [8],
assemblies which have proved to be beneficial in suppressing the charge carrier recombination
in photocatalytic materials. For instance, composites including Pt/TiO2 [8,9], BiOBr/Bi2WO6 [10],
g-C3N4/KTaO3 [11], Pt/ZnO [12], CdS/ZnS [13] and Ag/CdS [14] have been synthesized and have
exhibited enhanced photocatalytic activity. Photoactive materials with nanostructures, including
nanofibers [15], nanosheets [16] and nanotubes [17,18], have also been developed to improve
photocatalytic activity.
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Among the photoactive materials, transition metal sulfides (such as CdS [19,20], Znln2S4 [21,22]
and iron group elements like Fe-, Ni- and Co-based sulfides [23–27]) with a relatively narrow bandgap
are sensitive to most of the visible wavelength region. However, the photogenerated holes tend
to oxidize the catalyst itself, rather than water, in the absence of sacrificial reagent, resulting in
photocorrosion. On the other hand, metal oxide semiconductors typically have high chemical stability,
while the bandgap energies of metal oxides are commonly higher than those of sulfides because the
O (2p) orbital exhibits a lower energy than the S (2p) orbital. Among the metal oxides, Bi2WO6 has
received extensive attention due to its moderate bandgap (2.7–2.8 eV) (Figure S3), chemical stability
and non-toxicity [28–31]. However, Bi2WO6 suffers from an unsatisfactory photo-response range and
rapid recombination of the photogenerated carriers. The photocatalytic activity and surface reaction of
semiconductor photocatalysts are highly dependent on the band structures, light photoresponse range
and the specific surface area of the catalysts [32–34]. Sensitizing photocatalysts with dyes or good light
absorbers is one of the strategies employed to enhance the utilization of solar energy [3,35–40]. To this
end, carbon materials including carbon dots [41], carbon nanotubes [42] and grapheme [43,44] were
exploited in order to extend the absorption range or to optimize the charge separation.

Recently, carbon dots (CDs) have been employed in photocatalysis systems due to their excellent
photophysical and chemical properties, such as ease of synthesis, non-toxicity and low cost [45–47].
In addition, CDs can serve as co-catalysts to enhance the light harvesting capacity and accumulate
charge separation [48,49] in photocatalytic systems. In this work, Bi2WO6 is directly synthesized
into macroporous fluorine-doped tin oxide (mac-FTO) films (Bi2WO6@mac-FTO) and the CDs
are subsequently decorated on Bi2WO6@mac-FTO photoanodes. The optical, morphological and
photocatalytic properties of these samples are investigated to evaluate the impact of CDs on a
mac-FTO-based photoanode.

2. Experimental

2.1. Reagents and Materials

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, 99%), ethylenediamine (C2H8N2, 99%), ethanol
(CH3CH2OH, 99.7%), nitric acid (HNO3, 68%), sodium sulfate decahydrate (Na2SO4·10H2O, 99%),
sodium sulfite anhydrous (Na2SO3, 98%), citric acid monohydrate (C6H8O7·H2O, 99.8%), sodium
tungstate dihydrate (Na2WO4·2H2O, 99.5%), hydrogen peroxide (H2O2, 30 v%), sulfuric acid (H2SO4,
≥95%), crimp headspace vials (c2183-01-100EA), planar FTO glass (p-FTO) (11 Ω/sq) and monodispersed
polystyrene spheres (d = 450 nm, 2.5 wt%) were purchased from Aladdin industrial Co., Ltd. (Shanghai,
China) and used as received. The deionized water used throughout all experiments was purified
through a Millipore system (Millipore, Billerica, MA, USA).

2.2. Synthesis of the Polystyrene Film Template

The polystyrene film template was prepared by a simple evaporation method. The conductive
surface of clean p-FTO glass was coated with polystyrene monodisperse pellets by the surface tension of
the solution. The p-FTO slide (2 × 10 × 15 mm) was first immersed in a piranha solution (H2SO4:H2O2

= 3:1, volume ratio) for 2 h, then washed with deionized water and dried under N2. The clean p-FTO
glass was placed vertically in a crimp headspace vial (10 mL) containing a suspension of polystyrene
monodisperse spheres (PS:ethanol = 3:80, volume ratio) dispersed in 100% ethanol. The suspension
was just higher than the top of the p-FTO slide. The obtained glass vials were then transferred to
a muffle furnace and kept at 58 ◦C for 15 h until the volatiles were completely evaporated. Finally,
the electrode was removed and a polystyrene film template was obtained.

2.3. Fabrication of the Mac-FTO Electrode

The macroporous fluorine-doped tin oxide (mac-FTO) film with 3D porous space structures was
synthesized using a facile thermal polymerization method. First, 1.4 g of SnCl4·5H2O (4 mmol) was
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dissolved in 20 mL of ethanol before being sonicated for 2 min. Then, to obtain the mac-FTO precursor
solution, 0.24 mL of saturated NH4F solution (2 mmol) was added dropwise into the above solution
and the mixture was sonicated for 10 min. The PS film template was pre-soaked in ethanol for 0.5 h
and then transferred and soaked in the mac-FTO precursor solution for 1 h. The PS film template was
then removed and placed in a crucible and sintered in the air atmosphere at 450 ◦C for 2 h at 1 ◦C/min,
and was finally left to naturally cool to room temperature. The resulting mac-FTO film provided more
attachment sites for Bi2WO6 catalysts.

2.4. Synthesis of the Bi2WO6@mac-FTO Photoelectrode

The Bi2WO6@mac-FTO photoelectrode was prepared using an in situ synthesis method.
Bi(NO3)3·5H2O (1 mmol) was dissolved in 30 mL of diluted HNO3 (pH = 3) and Na2WO4·2H2O
(0.5 mmol) was dissolved in 20 mL of deionized water. Both solutions were vigorously stirred until clear.
The mac-FTO slides were immersed in a Bi(NO3)3 solution for 1 min then transferred and immersed
in Na2WO4 solution for 1 min. The mac-FTO slides were immersed alternately in the Bi(NO3)3 and
Na2WO4 solutions with 20, 60 or 100 times to obtain photoelectrode with different thicknesses. The
electrodes were then calcined in an air atmosphere at 600 ◦C for 2 h at 3 ◦C·min−1, and finally left to
naturally cool to room temperature. The obtained Bi2WO6@mac-FTO electrodes were heat-treated at
720 ◦C for 2 min.

2.5. Synthesis of the Bi2WO6@mac-FTO Photoelectrode Decorated with CDs

CDs were synthesized via a hydrothermal method. First, 1.47 g of C6H8O7·H2O was dissolved in
14 mL of deionized water, and 0.47 mL of C2H8N2 was added dropwise into the above solution. The
mixture was then sonicated for 10 min. The obtained solution was then transferred to an autoclave
and kept at 200 ◦C for 5 h in a muffle furnace, before finally being allowed to naturally cool to room
temperature. To obtain the CD solution, the solution obtained from this reaction was subjected to
dialysis using a dialysis bag under vigorous magnetic stirring, which the molecular weight cutoff

(MWCO) of the dialysis bag is 1000 dalton. The Bi2WO6@mac-FTO photoelectrode was then immersed
in CD solution for 2 h. Finally, the Bi2WO6@mac-FTO photoelectrode was removed from the CD
solution and dried in a vacuum oven at 60 ◦C for 24 h to obtain the photoelectrode, which the CDs
decorated on the Bi2WO6@mac-FTO photoelectrode (CDs/Bi2WO6@mac-FTO).

3. Sample Characterization

The morphology and structure of the as-prepared samples were investigated using a Hitachi
SU8220 field emission scanning electron microscope (Hitachi High Co., Ltd., Japan at different
amplifications and an accelerating voltage of 15 kV. Low-resolution transmission electron microscopy
images and high-resolution transmission electron microscopy images were obtained using an FEI
Talos F200S transmission electron microscope (FEI Co., Ltd., USA at an accelerating voltage of 200 KV,
and elemental mapping of the as-prepared electrodes was conducted. Powder from the as-prepared
electrodes was scraped off and dissolved in ethanol before characterization and the suspension was
dispersed by ultrasound. A drop of this suspension was added into a 3 mm diameter micro-grid
copper film. The TEM sample was obtained after the drying treatment. XRD patterns were recorded
using a Bruker D8 ADVANCE diffractometer (Bruker Co., Ltd., Germany. The crystal structure and
composition were measured with CuKa (λ = 0.15406 nm) radiation (40 KV, 30 mA). The datas of UV–vis
diffuse-reflectance spectra were collected on an ultraviolet–visible diffuse reflectance spectrometer and
a clean p-FTO glass was used as a reflectance standard.

Photoelectrochemical measurements were made using a standard three-electrode setup.
A platinum sheet (10 × 10 mm) was used as the counter electrode and the reference electrode
was Ag/AgCl (3 M KCl internal solution). Connection to the as-prepared samples working electrode
was achieved using copper tape and the bottom 10 mm of the electrode was immersed in the electrolyte
solution. The electrolyte was 0.5 M Na2SO4 (pH = 7). A xenon lamp was used as solar light simulator
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and the light intensity was adjusted to 100 mW·cm−2. Potentials were referenced to the reversible
hydrogen electrode standard using the following formula [50]:

ERHE = Evs.(Ag/AgCl) + Eref(Ag/AgCl) + 0.059PH (1)

where Eref(Ag/AgCl) = 0.209 V vs. NHE at 25 ◦C.
To study the electrochemical kinetics at the interface between the electrode and the electrolyte,

a three-electrode system was adopted for electrochemical impedance spectroscopy (EIS) (Ametek
Co., Ltd., Berwyn, PA, UK). The physical-electrochemical properties of the Bi2WO6@mac-FTO
photoelectrode with applied CDs, the Bi2WO6@mac-FTO photoelectrode and the unmodified
Bi2WO6@mac-FTO photoelectrode were examined in a 0.1 M NaSO4 electrolyte solution under
light and dark conditions. The real factor (Z’) and imaginary factor (Z”) of characteristic Nyquist
plots were used to calculate the charge transfer resistance (Rct) between the electrode and electrolyte
interfaces, solution resistance (Rs) and diffusion coefficient. A small range of an EIS semicircle
corresponds to a low Rct value and a higher electrical conductivity.

4. Results and Discussion

4.1. Structural Characterization

The XRD patterns of Bi2WO6, SnO2 and CDs can be identified as shown in Figure 1, in which
the diffraction patterns are consistent with JCPDS (joint committee on powder diffraction standards)
73-2020, 46-1088 and 50-0926, respectively. Direct evidence of Bi2WO6 can be confirmed from the
diffraction peaks obtained for the Bi2WO6@p-FTO. The diffraction peaks at 2θ = 26.57◦, 37.76◦,
51.77◦, 61.74◦ and 65.74◦ in the XRD pattern of the Bi2WO6@mac-FTO and CDs/Bi2WO6@mac-FTO
photoelectrodes correspond to the (110), (200), (211), (310) and (301) lattice planes of SnO2. No obvious
diffraction peaks from CDs could be detected after CDs were introduced, presumably due to their
low population on the surface of the CDs/Bi2WO6@mac-FTO photoelectrode. Figure 1b shows an
XRD image of CDs which has a broad peak centered at 22.76◦, indicating the presence of CDs [45].
An enlarged pattern of the diffraction peaks in the range of 2θ = 20–42◦ is shown in Figure 1b, which
suggests that with an increase in CD content on the surface of the Bi2WO6@mac-FTO photoelectrode,
the peak position is shifted slightly towards a lower 2θ value, indicating that CDs have been successfully
doped into the Bi2WO6 nanomaterial [51].
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Figure 1. (a) XRD in which �= JCPDS 73-2020 for Bi2WO6, �= JCPDS 46-1088 for SnO2; (b) enlargement
of (a) from 2θ = 20 to 42◦, insert image is the XRD pattern of carbon dots (CDs), JCPDS 50-0926. The low
and high labels indicate Bi2WO6@mac-FTOs decorated with low and high amounts of CDs, respectively.

The texture and structure and of the as-prepared samples were characterized by TEM. Figure 2a,b
show the LR-TEM images of the CDs/Bi2WO6@mac-FTO photoelectrodes. In Figure 2c, the HR-TEM
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image displays well-resolved lattice fringes with interplanar distances of 0.327 nm, 0.315 nm and
0.258 nm indexed to the (014), (113) and (022) lattice planes of Bi2WO6, respectively. The lattice fringe
with 0.335 nm spacing can be assigned to the (110) lattice plane of SnO2. As shown in Figure 2d,
the TEM image of the CDs suggests that the synthesized CDs are nearly spherical and have an average
size of approximately 2.5 nm (Figure 2e). The TEM images and corresponding elemental mapping
images (Figure 2f) of the CDs/Bi2WO6@mac-FTO photoelectrode indicate that the C, O, W, Sn and Bi
elements are distributed uniformly on the as-prepared sample. The above results further confirm that
the CDs were successfully decorated on surface of the Bi2WO6@mac-FTO photoelectrode.
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SEM was employed to investigate the texture, structure and morphology of the as-prepared
samples, and revealed that the mac-FTO film on the p-FTO substrate exhibits a long-range ordered
porous structure (Figure 3a), and SEM image of cross section of mac-SnO2 electrode (Figure S2). As a
control, the Bi2WO6 synthesized on p-FTO displays the typical stacked lamellar structure (ca. 6 µm) of
pure Bi2WO6 (Figure 3b). On the other hand, the as-prepared Bi2WO6@mac-FTO (Figure 3c–h) shows
a reduced size (ca. 100 nm) of Bi2WO6 due to the crystal size restraint effect from the sub-micro porous
substrate. This phenomenon has also been observed in an α-Fe2O3@mac-SnO2 system [7]. A reduced
size of photoactive material typically indicates a shorter pathway for charge migration, which allows
faster transfer of photogenerated carriers. In addition, as the cycle coefficient increases, the porous
structure of the mac-FTO film is blocked.

4.2. Optical Properties

UV–vis transmittance was employed to compare the light absorptivity of samples. As shown
in Figure 4, enhanced light absorbance was observed in the CDs/Bi2WO6@mac-FTO photoelectrode
under wavelengths shorter than 660 nm. This enhancement can be attributed to the addition of CDs
and suggests a more efficient utilization of solar energy. As shown in Figure S1, digital photographys
of CDs solution which exposed to visible light and 250 nm UV light, and the PL spectra of CDs under
different excitation wavelength.
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4.3. Photoelectrochemistry

Linear sweep voltammetry (LSV) experiments were conducted under chopped illumination to
estimate the photoelectrochemical performance of the as-prepared samples. The Bi2WO6@mac-FTO
photoelectrode exhibited significantly improved photoactivity in comparison to the Bi2WO6@p-FTO
photoelectrode and previous reports [52]. To be more specific, the CDs/Bi2WO6@mac-FTO,
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Bi2WO6@mac-FTO and Bi2WO6@p-FTO photoelectrodes had photocurrent densities of 0.202, 0.171
and 0.014 mA·cm−2, at 0 V vs. VAg/AgCl, respectively, (Figure 5a). This enhancement can be attributed
to the high surface area and good light absorption supplied by the mac-FTO substrate and CDs,
respectively. Furthermore, the attachment of CDs is pH- and ionic strength-dependent. The pH
dependence of the as-prepared samples was investigated (pH = 5 to 10) and the highest photocurrent
density (0.272 mA·cm−2) of the CDs/Bi2WO6@mac-FTO photoelectrode was obtained at pH = 9 (0 V
vs. VAg/AgCl) (Figure 5b). This can be attributed to the accumulation of charge migration by surface
hydroxyl groups [6]. In addition, the dependence of the photoactivity of the Bi2WO6@mac-FTO on the
amount of modified CDs is shown in Figure 5c, revealing that CDs/Bi2WO6@mac-FTO photoelectrodes
with 60 soaking cycles exhibited a significant photoresponse. The addition of CDs could indeed
optimize the light absorption both in the UV and visible regions, as has been seen previously in
CQDs/Bi5O7I [51], CQDs/TiO2, CQDs/Bi2O3 [53] and CQDs/TNTs (TiO2 nanotubs) [54] composites.
This could be because the photon absorption capability of CDs in the samples leads to more efficient
PEC/photocatalytic performance. However, the excessive loading of CDs will reduce the surface area
of Bi2WO6 exposure to electrolyte. Next, EIS was exploited to study the electrochemical kinetics at
the interfaces between the electrode and electrolyte. The range of the EIS semicircle of the electrodes
was smaller under illumination than under dark conditions. The diameter of the arc radius on the EIS
Nyquist plot of the Bi2WO6@mac-FTO photoelectrode with applied CDs was smallest, suggesting a
smaller interface resistance for the CDs/Bi2WO6@mac-FTO photoelectrode. The low resistance of the
CDs/Bi2WO6@mac-FTO photoelectrode could be attributed to the presence of CDs in the composite.
When CDs are immobilized on the Bi2WO6@mac-FTO photoelectrode, the electron transfer resistance
(Ret) decreased considerably because of the perfect electrical conductivity of CDs, and they are
responsible for the higher electrical conductivity. Photogenerated electrons could be transferred to
the surface of the electrode faster through the CDs. In consideration of the stability of CD-modified
Bi2WO6, although the addition of CDs can improve the photoelectrochemical performance, relatively
worse stability was observed in comparison to pristine Bi2WO6. As shown in Figure S4, we carried
out a 20 cycle PEC test (each cycle of the photoelectrodes lasted 5 min under illumination at 0 V vs.
VAg/AgCl). The CD-modified electrode had a larger current density, but the current decreased by about
22% after 20 cycles, as compared to a 13% reduction in the pristine Bi2WO6 photoelectrode. This
could be due to the detachment of CDs from Bi2WO6. Bi2WO6 exhibited a yellow color, and after the
application of CDs a dark brown sample was obtained. Subsequently, the dark brown sample turned
to light brown after 20 cycles, suggesting that the CDs had detached. However, the CD-modified
sample had a photocurrent density that was 20% greater than that of the control group. In addition,
it should be noted that, although the carboxylic group on CDs would improve the CDs anchoring
on the surface of metal oxides [55], the attachment is pH- and ionic strength-dependent. As shown
in Figure S5, we came up with a possible mechanism for the enhanced photocatalytic activity of the
CD/Bi2WO6@mac-FTO photoelectrode.
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VAg/AgCl (pH = 7). The improved photocurrent density generation of the CDs/Bi2WO6@mac-FTO 
photoelectrode can be attributed to the suitable morphology control from mac-FTO films and the 
application of CDs to the photoelectrode. The application of CDs enhances the light absorption 
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for similar solar energy conversion experiments.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. Digital 
photographs of CDs solution while exposed to visible light and 250 nm UV light, and the PL spectra of CDs 
under different excitation wavelengths; Figure S2. SEM image of the cross-section of a mac-SnO2 electrode; 
Figure S3. The image of the bandgap of pure Bi2WO6 photocatalyst; Figure S4. Linear sweep voltammogram of 
Bi2WO6@mac-FTO and CDs/Bi2WO6@mac-FTO photoelectrodes at 0 V vs. VAg/AgCl (pH = 7); Figure S5. 
Schematic illustration of the possible mechanism for the enhanced photocatalytic activity of the 
CDs/Bi2WO6@mac-FTO photoelectrode. 

Figure 5. (a,b) Linear sweep voltammetry (LSV) curves of the Bi2WO6@p-FTO photoelectrode,
Bi2WO6@mac-FTO photoelectrode and CDs/Bi2WO6@mac-FTO photoelectrode (the experiments
are conducted in electrolytic solutions with pH = 7 and pH = 9, respectively). (c) Linear sweep
voltammogram of the CDs/Bi2WO6@mac-FTO photoelectrodes, wherein the mac-SnO2 film was
immersed in precursor solution 20, 60 and 100 cycles (d) Electrochemical impedance spectroscopy (EIS)
Nyquist plots of the photoelectrodes. The labels of a, b and c indicate the CDs/Bi2WO6@mac-FTO,
Bi2WO6@mac-FTO and Bi2WO6@p-FTO photoelectrodes, respectively. The light and dark labels
indicate the conditions of the test.

5. Conclusions

Bi2WO6@mac-FTO photoelectrodes were successfully synthesized through an in situ synthesis
method and then decorated with CDs. The obtained photocurrent density of the CDs/Bi2WO6@mac-FTO
photoelectrode was higher than that of the initial Bi2WO6@p-FTO photoelectrode, substantiating the
superiority of the CDs/Bi2WO6@mac-FTO photoelectrode. This superiority was manifested in the
light absorption and large surface area. Mace-FTO film with a 3D porous structure was applied in
order to create a larger surface area and to control the growth of the Bi2WO6 catalyst. In contrast
to a p-FTO film, crystals of Bi2WO6 can have smaller particle sizes. In addition, the CDs applied to
the Bi2WO6@mac-FTO photoelectrode exhibited an optimized photocurrent density of up to 0.202
mA·cm−2 under light at 0 V vs. VAg/AgCl and 1 mA·cm−2 at 1 V vs. VAg/AgCl (pH = 7). The improved
photocurrent density generation of the CDs/Bi2WO6@mac-FTO photoelectrode can be attributed to the
suitable morphology control from mac-FTO films and the application of CDs to the photoelectrode.
The application of CDs enhances the light absorption intensity and expands the photoresponse under
visible light irradiation, which gives some insight for similar solar energy conversion experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/10/1713/s1,
Figure S1. Digital photographs of CDs solution while exposed to visible light and 250 nm UV light, and the
PL spectra of CDs under different excitation wavelengths; Figure S2. SEM image of the cross-section of a
mac-SnO2 electrode; Figure S3. The image of the bandgap of pure Bi2WO6 photocatalyst; Figure S4. Linear
sweep voltammogram of Bi2WO6@mac-FTO and CDs/Bi2WO6@mac-FTO photoelectrodes at 0 V vs. VAg/AgCl
(pH = 7); Figure S5. Schematic illustration of the possible mechanism for the enhanced photocatalytic activity of
the CDs/Bi2WO6@mac-FTO photoelectrode.
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