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Abstract: Until recently, stream temperature processes controlled by aquatic macrophyte shading
(i.e., the riverine canopy) was an unrecognized phenomenon. This study aims to address the
question of the temporal and spatial scale of monitoring and modeling that is needed to accurately
simulate canopy-controlled thermal processes. We do this by using unmanned aerial vehicle (UAV)
imagery to quantify the temporal and spatial variability of the riverine canopy and subsequently
develop a relationship between its growth and time. Then we apply an existing hydrodynamic and
water temperature model to test various time steps of canopy growth interpolation and explore the
balance between monitoring and computational efficiencies versus model performance and utility
for management decisions. The results show that riverine canopies modeled at a monthly timescale
are sufficient to represent water temperature processes at a resolution necessary for reach-scale
water management decisions, but not local-scale. As growth patterns were more frequently updated,
negligible changes were produced by the model. Spatial configurations of the riverine canopy vary
interannually; new data may need to be gathered for each growth season. However, the risks of
inclement field conditions during the early growth period are a challenge for monitoring via UAVs at
sites with access constraints.

Keywords: water temperature; thermal regime; UAV; riverine canopy; management; model;
aquatic vegetation

1. Introduction

Stream temperature is a widely-studied feature of freshwater aquatic ecosystems [1,2].
Stream temperature regulates organisms’ metabolism, growth, phenology, survival, food webs,
and community structure [1–3]. Water temperature changes profoundly affect stream ecology,
including nutrient processing capacity and food webs [4,5]. In addition, macroinvertebrates and
other ectothermic organisms will move in both space and time as their preferred thermal regimes
shift to increasingly constrained habitats [6,7]. Because stream temperature is more closely correlated
with air temperature than with discharge, streams are generally expected to warm with climate
change. However, buffering sources are expected to moderate stream temperature into the foreseeable
future [3,8].

While the significance of stream temperature and changes to thermal regimes are widely
appreciated, the processes underlying unregulated thermal regimes are less well-defined [2,9]. Thermal
regime is a phrase used to describe patterns of magnitude, timing, duration, and frequency of change
in a stream’s water temperature patterns [2]. Thermal landscapes are the spatial distribution of thermal
regimes and are a product of the unique interactions between geography, hydrology, meteorology,
climate, and myriad characteristics of the stream itself and its surrounding features [2].
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The past few decades have seen an increase in empirical studies about the complex interactions
that fundamentally control thermal regimes [2,3]. Though monitoring methods have rapidly advanced,
water temperature data quality ranges widely, making it hard to determine the underlying processes
controlling thermal regimes [3,9,10].

Shade is considered a major “second-order” control—behind first-order climate and hydrologic
processes—on large-scale thermal regimes [9]. The distinction between shade and cover is important,
as each refers to different elements in thermal regimes. In this paper, shade refers to the amount of
solar radiation reduction that results from cover over an area. Canopy refers to the amount of physical
cover over an area. For example, while a quadrat of a stream’s water surface might be 20% covered by
riparian or riverine canopies, the light reduction in those covered areas (i.e., shade) might be 80%.

Stream temperature dynamics associated with shade have been long-recognized,
though predominately in the context of riparian shading and the effects of forestry practices [11], and,
to a lesser extent, snow and ice [12]. Canopy cover has been associated with net cooling [13,14] and
reduced sensible and latent heat exchange [14,15]. In addition to cooling via riparian canopies [8],
riverine canopies that result from emergent aquatic vegetation have shown comparable solar radiation
reductions to those achieved by riparian canopies [16,17]. Canopies that result in ≥70% shade is the
objective for temperature control [14,18].

Predictive (also called deterministic) water temperature models can provide useful insights to
thermal processes [2,9]. Early modeling studies emphasized the seasonal relevance of riparian shade to
water temperature dynamics. In particular, the leaf-out and leaf-drop transitions in the riparian zone
were simulated using coarse assumptions as an early example of process-based water temperature
modeling [19]. Predictive models also possess several advantages over more simplified statistical
modeling. Statistical models can be useful to explore questions with limited data [20,21]. However,
statistical models that cover broad spatial scopes overcome data limitations by relying on underlying
process assumptions. Often, these process assumptions assume a close correlation between air and
stream temperature [8,20]—a sometimes erroneous assumption and unreliable simplification when
studying streams affected by human activities [2,3]. Statistical models have limited abilities to identify
specific mechanisms in the temperature process and can be unreliable as surrogates for streams that
differ in either space or time [9].

Predictive models also have significant disadvantages. Such models tend to be data-intensive,
restricting their application to larger spatial scales [9]. When simulating riparian (or riverine)
vegetation, the data provided to the model must be of a resolution equal to or better than the
representation provided in the model. Historically, this has resulted in either coarse representations of
canopy cover [16], time-intensive manual mapping [22], or expensive data collection methods such as
light detection and ranging (LiDAR) [23]. Finally, predictive stream modeling methods are not widely
adopted by managers, suggesting that currently available methods need improvement to become more
widely accessible [24].

Because stream temperature is more closely correlated with air temperature than with
discharge [25], streams are generally expected to warm with climate change [26–29]. However,
buffering sources are expected to moderate stream temperature into the foreseeable future [3,8];
shade is predicted to be a potentially significant buffer [14,22,25]. Though temperatures in cold streams
are projected to increase less than warm streams, streams with small temperature changes may see
a large biological response if they are located near warm-edge or cold-edge boundaries of thermal
niches [8]. Cold-water ecosystems in California, such as the Shasta watershed, are considered the
lower boundary for species such as salmon [30]. Given the more frequent extreme thermal conditions
expected with climate change and their subsequent effects on temperate species [31], understanding
the mechanisms with which to mitigate those events is critical to the viability of cold-water ecosystems.

Extensive temperature modelling and analysis has occurred in the lower Shasta watershed to
explore past and current stream conditions as they relate to salmon [16,32–34]. Big Springs Creek is a
spring-fed tributary to the Shasta River that influences the quality and extent of cold water habitat
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for tens of kilometers downstream of its confluence [34]. Strategic investments in habitat restoration
have partially offset warming due to previous land and water use decisions [16,32] and may further
mitigate expected warming due to climate change [8]. The primary objective of these investments has
been to improve oversummering habitat quality and extent for federally and state-listed threatened
coho salmon (Oncorhynchus kisutch). The result of these investments has been the fundamental shift of
factors that control the thermal regime from meteorological conditions [34] to a reach-scale riverine
canopy created by aquatic plants [16]. However, as the stream is located in an area where rangeland
is the predominant land use [32], additional questions remain regarding how stream flows may be
managed to enhance desirable instream water temperature conditions.

The objective of this study is to explore the temporal and spatial scale of monitoring and modeling
that is needed to accurately simulate thermal processes controlled by the riverine canopy and support
management decisions. We do this by using unmanned aerial vehicle (UAV) imagery to quantify
the temporal and spatial variability of the riverine canopy, and subsequently develop a relationship
between its growth and time. Then we apply an existing hydrodynamic and water temperature model
using the refined canopy data and explore the results for changes in accuracy. The results of this
study will help identify the balance between monitoring and computational efficiencies versus model
performance and utility that are needed to support management decisions in streams where shade
plays a major role in water temperature processes.

2. Materials and Methods

2.1. Study Site and Period

The study site included the 3.7 km reach of Big Springs Creek from the outlet of Big Springs Dam
to the confluence with the Shasta River (Figure 1). The study period occurred between 1 April 2017
and 30 September 2017, during which the growing season coincided with the irrigation season on the
ranches surrounding the creek. In addition, data were used from a previous flight in August 2015 to
assess the spatial variability of interannual riverine canopy growth. Site access to the reach upstream
from Site 2 (river kilometer (rkm) 2.7) extending to Site 1 (rkm 3.7) was limited to 1 day per month,
with access dates negotiated with the landowner at least 6 weeks prior to the proposed sampling dates.
Once agreed upon, access dates could not be rescheduled.
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2.2. Riverine Canopy Surveys

Riverine canopy surveys were completed using a 3DR Solo Quadcopter, which was modified
to attach a Canon Powershot S100 digital camera. A flight path of 84 north–south oriented transects
covering 22.5 linear kilometers were flown from an altitude of 104 m, with a flight speed of 16 km per
hour to achieve an approximate image side and end overlap of 70%. Control points were established
at 36 locations by monumenting 13 cm2 bolts upside-down in concrete, then surveying the top of
the bolt using a Topcon Hiper V Real Time Kinematic GPS unit with 5 mm horizontal and 10 mm
vertical accuracy. Control point targets were created using 0.6 m2 wood boards that were painted
white, then marked with 5 cm black lines across the diagonals, and finally had a 1.3 cm hole drilled
in the center of the board. The targets were then mounted on the monumented bolts (targets were
held in place using a washer and nut both above and below the board) to help visual identification of
the control points in the UAV imagery. The camera was programmed to take images at a 5-s interval.
Images were reviewed and adjusted for brightness, then stitched together using Agisoft Photoscan
Professional (v 1.2.6, St. Petersburg, Russia). Completed Photoscan models were georeferenced by
identifying the control point targets in the individual photos. Orthomosaic and digital elevation model
(DEM) layers, each with a 0.05 m resolution, were then created and exported as georeferenced tiff files.

The spatial and temporal variability of riverine canopy growth was analyzed using supervised
image classification and analysis of the tiff files in ArcMap 10.5 (Redlands, CA, USA). First,
the orthomosaic image was clipped to include only the wetted channel. Also, polygons of a willow
stand were made to mask the area from analysis of canopy extent due to aquatic macrophytes. Then,
training samples of 40–50 merged polygons were created for each of two classes: open water and
emergent aquatic vegetation. These training samples were then used to classify the clipped orthomosaic
image of Big Springs Creek and to estimate the percent area covered by emergent aquatic vegetation.
Misclassification was determined by extracting the classified image raster pixels in the training samples.
Temporal changes were explored by comparing the percent area covered from one survey to the next
during the 2017 monitoring period. Spatial changes were explored by comparing August surveys from
2015 and 2017, and analyzed to identify cover class areas that remained consistent.

2.3. Water Temperature Modeling

Once the temporal and spatial trends were analyzed, an existing hydrodynamic and water
temperature model of Big Springs Creek [16] was used to simulate water temperature conditions given
various frequencies of canopy growth interpolation. RMA-11 is a Fortran-based, proprietary model
that has been applied in various water temperature studies [9,16,35]. Riverine canopy surveys were
used to develop element classes in the unstructured grid that represented various amounts of canopy
cover using numerical representations of shade and roughness; no other changes to the grid were
made so as to test model performance due solely to refined aquatic vegetation data.

The cover in each element was determined by extracting the classified image raster pixels of each
class (open and cover) for the area covered by the element and calculating the percent cover for each
element at each of the four survey dates. Weekly changes in percent cover for each model element
were determined using a linear interpolation between survey points. To simplify the computational
requirements of the numerical water temperature model, element cover types were binned into classes
representing no cover (0–10% covered areas in the classified images), 20% cover (10–30%), 40% cover
(30–50%), 60% cover (50–70%), 80% cover (70–90%), and full cover (90–100% cover). A histogram of
element classes was developed to review the trend of cover classes through the simulation period.
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Shade for each element class was calculated by assigning the empirically observed solar radiation
for covered areas (i.e., 12% of solar radiation was measured in covered areas [16]) to the proportion of
the element that represented its cover class, plus full solar radiation to the remaining area Equation (1).

element shade = (percent cover × 0.12) + (percent open × 1) (1)

Roughness for each element class was similarly calculated, using empirically-based values for
this site [16] Equation (2):

element roughness = (percent cover × 0.31) + (percent open × 0.07) (2)

The water temperature model was run for a continuous period between 1 June and 15 August to
simulate three different time-step adjustments to the riverine canopy: weekly, bi-weekly and monthly.
Shade and roughness values were updated to reflect new values at the start of each step, with no
smoothing applied. Results of each simulation were analyzed at four locations (Figure 1) using mean
bias, mean absolute error (MAE) and root mean square error (RMSE), keeping with performance
criteria developed for management decision-making applications [16,32]. RMSE was particularly
useful as it remains unbiased by seasonal cycles [9]; given the expected seasonal dynamics of canopy
growth, controlling for seasonally-derived bias is a critical feature of this study.

3. Results

3.1. Riverine Canopy Surveys

Due to the long lead time necessary for scheduling access to the study site, field conditions were
not always conducive to UAV flights. Inclement weather or wind speeds greater than 16 km per hour
prevented riverine canopy surveys for the months of April and September. During the remaining
visits, UAV flights of the entire reach were completed over 2 days (Table 1).
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Figure 2. An example of the (a) orthoimagery; (b) results of the supervised classification, using data
gathered during Survey 2 in June 2017.
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Table 1. A summary of the survey dates and percent cover of Big Springs Creek.

Survey Flight Dates Canopy Cover (%) Canopy Cover (m2)

Survey 1 22–23 May 2017 38 61,668
Survey 2 19–20 June 2017 53 87,776
Survey 3 23–24 July 2017 71 117,348
Survey 4 15–16 August 2017 74 121,583

The supervised classification was able to distinguish between open channel and emergent plants
(i.e., canopy) for all orthomosaic images produced via UAV monitoring (Figure 2). An analysis of
misclassified pixels showed that the training samples were sufficient to classify cover type with 1.3%
and 4.0% misclassification for open channel and emergent plant classes, respectively.

Canopy cover changed both temporally and spatially in Big Springs Creek. Temporally,
cover increased from 38% in May 2017 to 74% in August 2017 (36% increase), with the largest change
occurring between June and July (18% increase) and the smallest change occurring between July and
August (4% increase) (Table 1). For the spatial analysis, differences in the flight path used in 2015
resulted in poor image resolution or lack of coverage at the margins of the orthomosaic. Thus, of the
total area surveyed in 2017, 16% (25,989 m2) could not be compared to data from the 2015 flight. Of the
remaining area, the cover remained consistent over 66% (108,352 m2) of the stream from August 2015
to August 2017, while 16% (26,765 m2) shifted from the canopy to open channel and 2% (3197 m2)
shifted from the open channel to canopy (Table 2).

Table 2. A summary of the percent area that shifted cover classes from August 2015 to August 2017.

Class Change Area (m2) Area (%)

Canopy to open channel 25,989 16
Open channel to canopy 3197 2

No change 108,352 66
Area not analyzed 26,765 16

3.2. Water Temperature Modeling

The histogram of the element classes shows that during the beginning of the simulation period,
element classes were dominated by areas with cover ≤40% (Figure 3). As the simulation period
progressed, classes were dominated by areas with cover ≥60%. While most classes showed steady
trends either increasing or decreasing their frequency, the element class that represented 60% cover
initially occurred more frequently, then declined. From its peak frequency, the 60% coverage class saw
a net 30% transition to greater coverage classes. The highest and lowest cover classes also showed
indications of a plateau at the end of the modeled period, while areas in the 60% and 80% covered
classes showed steady decreasing and increasing trends, respectfully.

Regardless of the frequency with which canopy growth was simulated, the water temperature
model produced results that met the performance criteria (Table 3). Simulated water temperatures
were generally warmer than observed water temperatures, as shown by the positive mean bias across
all simulations. For all simulations, mean bias increased through location 3, then decreased towards
the mouth, Site 4. This gradual increase in mean bias, then decline, suggests that better representation
of local features such as groundwater inflow volumes may be necessary to apply the model for more
refined management objectives. Mean absolute error (MAE) remained consistent at each site (with the
expected exception of the boundary condition), showing no substantial changes in accuracy as the
model progressed through the study area. Root mean squared error (RSME) also remained well within
the 1.5*MAE threshold for all sites and simulations, indicating no anomalous, large errors.
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Table 3. A summary of performance results for each simulation of water temperatures given various
frequencies of interpolated canopy growth. All performance metrics are measured in ◦C.

Site River
Kilometer Weekly Growth Biweekly Growth Monthly Growth

(rkm) Mean Bias MAE b RMSE c Mean Bias MAE RMSE Mean Bias MAE RMSE

1 a 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 2.6 0.3 0.9 1.2 0.3 0.9 1.1 0.4 0.9 1.2
3 1.7 0.6 0.8 1.0 0.7 0.8 1.0 0.7 0.9 1.1
4 0.0 0.3 0.7 0.9 0.4 0.7 0.8 0.5 0.7 0.9

a Boundary condition; b Mean absolute error; c Root mean square error.
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A closer review of the modeled water temperatures compared to observed water temperatures
show where the likely sources of error occurred. Given the comparable performance of each simulation,
only plots for the weekly growth simulation are presented and discussed. Additional plots of the
biweekly and monthly growth simulations are presented in Appendix A.

Though the performance metrics show a mean bias of up to 0.6 ◦C, the plots of modeled
to observed water temperatures show that daily maximum water temperatures are generally
overestimated while daily minimum water temperatures are well replicated (Figure 4). Site 1 represents
a boundary condition of the model and is defined by the observed data at that site. At Sites 2
and 3, maximum water temperatures are generally over-estimated—a trend that remains consistent
throughout the simulation period. At Site 2, observed water temperatures from 5 June to 13 June
appear anomalous when compared to the other sites, suggesting that the observed data may not be
an accurate record, contributing to the larger error at that site. By Site 4, the modeled diurnal water
temperatures better match the observed record, with better agreement of both daily maximum and
minimum water temperatures. However, agreement of modeled to observed daily maximum water
temperatures declines towards the end of the simulation.

Sites 2–4 also show periodic underestimates of daily minimum water temperatures that occur
coincidently with the shift in coverage represented in the model. Similar results are shown in the
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bi-weekly (Figure A1) and monthly (Figure A2) results. While the more frequent updates to canopy
growth introduce more frequent errors for several hours after the new cover is introduced, results for
the diurnal extremes (i.e., daily maximums and minimums) appear to be better simulated.
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4. Discussion

As recently as the 1990s, local human activities were widely viewed as the dominant influence
on thermal regimes in streams across the globe, rather than large-scale climate change [11]. By the
early aughts, though, climate change was rapidly identified as a major driver of stream temperature
changes [3]. While many management strategies focus on water quantity, the relationship between
riparian canopies and climate change have long been recognized as issues of greater consequence to
thermal regimes [11]. Results from this and previous studies suggest that riverine canopies may play a
similarly influential relationship in mitigating the predicted effects of climate change [25]. The findings
from this study have broader implications for three facets of water temperature management for
cold-water ecosystems: extending canopy monitoring methodology, as shown by combining UAV and
digital photography technology; the important role of riverine canopies in thermal regimes; and water
temperature modeling for large-scale versus local management objectives.

4.1. UAV Survey Methods

The results of this study show that UAV survey methods provide an efficient approach (both in
terms of equipment cost and person-time) to gather near-census data quantifying cover over a
mid-sized stream. Prior to the use of UAVs for canopy cover monitoring, methods were limited
by the spatial extent that could be covered due to most survey elevations, as well as the cost and time
needed to perform the surveys. As recently as 2017, imagery taken from a height of 2–5 m above a
stream’s water surface was considered aerial imagery [36,37]. Those survey altitude limits further
constrained the size of stream that could be surveyed; at the upper bound of those aerial surveys,
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study sites were limited to streams up to 10 m wide [36]. This study shows how utilizing the flight
ability of UAVs greatly expands the area that can be surveyed: in 2 days, full surveys of Big Springs
Creek were completed, which covered 3.7 km and included stream reaches as wide as 300 m [34].

In addition, this study shows how digital photography methods used for low-elevation surveys
can be extended by combining digital photography with UAV technology. Alternative methods
that have been developed to assess cover, such as riparian surveys using canopy densitometers [38],
are impractical for riverine canopies, where emergent plants grow through and remain near the water
surface. Digital photography provides a cost-effective approach that has been previously utilized
for aquatic plant mapping at lower elevations [36]; this study illustrates how similar methods are
successful at higher survey elevations, extending this method to a wide range of stream sizes. Despite
its classification as “low-spectral resolution,” the three-band (red-green-blue) survey was sufficient
for classification accuracy, which makes this method a cost-effective alternative to others that use
multi-spectral imaging.

Some limitations of this study can be overcome by standardizing the flight paths and survey
extent of UAVs. A comparison of 2015 to 2017 data illustrated the need for wide spatial margins
for survey areas, as well as the value in establishing repeatable flight paths to ensure reproducible
and comparable survey areas. In addition, access limitations also highlighted how sites with more
access flexibility are better suited to UAV monitoring, which requires dependable field conditions
that typically are only well-forecast several days in advance. Finally, this method may benefit from
additional ground truthing by manually surveying randomly selected in-stream areas using an RTK or
other comparable methods.

4.2. Riverine Canopy Growth

Understanding the thermal regime processes that will buffer against predicted climate change
is critical to conserving and managing cold-water ecosystems. The results of this study show that
riverine canopy processes can be well-characterized using monthly datasets and how its influence
in the thermal regime becomes stronger as the canopy more fully develops throughout the growing
season. Early in the growing season, the riverine canopy is dominated by relatively low-coverage areas:
This period coincides with previous observations of annual maximum water temperatures in thermal
regimes controlled by riverine canopies [16], when fish like juvenile coho may be more vulnerable to
elevated water temperatures [39]. Improving resolution around early season growth may be critical,
as previous work has shown that water in and above submerged vegetation may be more sensitive
to solar radiation than open-channel flow [40,41]. As such, additional management actions may be
necessary to mediate annual maximum water temperatures during those early growth periods.

As the growing season progresses, there’s a transition across mid-coverage element areas as
low-coverage areas become high coverage areas. Interestingly, lack of plateau in the 60% and 80%
cover classes suggest that additional growth may be occurring and that the surveys completed in
mid-August did not catch the transition from growth to senescence. Previous studies show that
biomass continued to increase into September [16]. Extending the surveys later in the year would help
quantify the peak coverage provided by the riverine canopy, as well as the timing of when the canopy
begins to senesce. As well as extending the data describing the seasonal trends of canopy growth,
additional data to quantify the shade provided by the canopy would further improve understanding
of those thermal regimes. As warm temperatures and dry conditions extend later into the year [42],
understanding the full potential of the riverine canopy to act as a buffer against these conditions is
critical to understanding the potential management challenges for thermally-sensitive ecosystems.

Once the riverine canopy transitions into predominately fuller coverage, its advantages over
riparian shade as a solar radiation buffer are clear. Riparian shade needs both longer time frames
and spatial scales to achieve similar effectiveness to riverine canopies [16,17]. Tree height and shape,
channel width and shape (i.e., straight or meandering), and channel orientation are all factors that
limit the effectiveness of riparian shade [14,25]; riverine canopies have no limitations analogous to
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these riparian features. Despite these drawbacks of riparian canopies, research into the relationship
between riparian cover and stream temperatures suggests useful considerations for future work.
Microclimate changes due to extensive cover may shift energy fluxes in the heat budget and fluxes that
are generally negligible in less densely covered reaches may become more influential in the overall
thermal regime [14,43]. Examining the effects of canopy-controlled thermal regimes should include an
analysis of daily extreme (i.e., maximum and minimum) water temperatures to ensure that sufficient
minimum temperature conditions are maintained in streams targeted for salmonid or other cold-water
species recovery. Also, the ability of aquatic plants to colonize 70% of the channel is consistent with the
findings of other riparian studies for the cover extent needed to affect both temperature control [14,18]
and macroinvertebrate recovery [18]. Those findings are confirmed by the results of this and previous
studies, which show that seasonal water temperatures in Big Springs Creek begin to cool in late
June/early July [16], when the riverine canopy covers nearly 70% of the stream surface.

Given the larger stream-orders that may be affected by riverine canopies, vs. riparian, it would
be useful to determine the geographic extent of these types of streams, as restoration of the riverine
canopy process could influence water temperatures on the reach-scale [34,44] and mitigate for climate
change [25]. On a reach-scale, regression equations have been used to identify predictor variables
for water temperature, such as riparian vegetation [15], and could be useful tools to explore whether
the riverine canopy-controlled thermal regime is representative of a class of rivers. Such findings
could have important implications for mitigating the effects of climate change, as canopy-controlled
thermal regimes may result in cooler stream temperatures than currently observed in spite of predicted
climate warming [14,25]. In addition, while this study focuses on the relationship between riverine
canopies and thermal regimes, other studies have shown strong relationships between aquatic plants
and channel hydraulics [45–47]. However, because aquatic plants senesce each year, the role of riverine
canopies and their seasonal effects on physical salmonid habitat, and, by extension, salmonid life
history strategies, may show an interesting contrast to studies that focus on large woody debris and
other semi-permanent features for cover and velocity utilization by juvenile coho [48,49].

4.3. Water Temperature Modeling

Finally, water temperature modeling is used to transform improved monitoring using UAV
technology and the improved understanding of the role riverine canopies play in the thermal regime
into a potential management tool. While model results show that monthly interpolated canopy growth
is sufficient to model water temperatures, the performance metrics and comparative plots suggest
that there is additional room for improvement. The negligible improvement that followed more
refined temporal resolution of canopy growth suggests that further improvement is more likely to
result from better representation of other processes in the thermal regime. Such processes include
better representation of substantial groundwater inflows to the creek, both in the overall quantity and
distribution of flows among discrete groundwater sources. Due to the dominant role that groundwater
plays in spring-fed stream thermal regimes [50,51], additional work is recommended to improve the
understanding of the conductive and advective heat flux through the stream bed. Such work would
also help clarify the issue of potential shifts in dominant heat flux processes given the microclimate
effects of canopy cover. Also, the model showed some short-term (e.g., over a period of hours)
sensitivity to the periodic update of canopy cover, and could benefit from additional refinement
such as transitional smoothing between cover configurations. As such, the model is better suited for
large-scale management objectives (e.g., managing water temperature conditions that are exported to
the reach-scale habitat in the downstream Shasta River), but requires refinement before it could be
confidently applied to managing the local habitat within Big Springs Creek.

Additional work that explores model performance in response to more refined grid structures
would help illustrate the balance between computational efficiency and the data required to accurately
simulate the heat exchange processes dictated by the riverine canopy. Models developed at fine spatial
scales can be particularly useful for understanding the relationship between ecosystem dynamics and
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water temperature processes [9]. Also, while the decision to use a proprietary model was influenced
by considerable investments made in previous stages of this research, publicly available models
would allow for more transparency. Future stages, particularly those with the objective of evaluating
management decisions, should weigh the benefit of using currently available models against the
desirability for more transparent, and potentially transferable, modeling methods.

Water resource and fisheries managers need to make decisions based on the thermal regime of a
stream [19], which may be controlled by factors other than stream flow or air temperature. In these
cases, deterministic modeling may be necessary when longer-term datasets are unavailable, particularly
where novel thermal processes have been identified. Future studies may want to explore statistical
relationships between riverine cover and stream temperature to develop management tools that are
less data-intensive than deterministic models.
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