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M O D E R N  S Y M M E T R Y  

A. HILL 
Department of Mathematics, University College London, Gower Street, London WCIE 6BT, England 

Abstract--In previous studies [1, 2], the author--writing primarily as a geometric abstract artist--has 
attempted an approach to symmetry/asymmetry from a phenomenological point of view taking 
mathematics to be regarded as " . . .  the theoretical phenomenology of structure" [3]. 

The main ideas of  what is accepted as the mathematical treatment of  symmetry have an extremely 
long history. It is not even clear that the study originates with the ancient Greeks; suffice to say 
it can be loosely regarded as a part of  geometry and as such is therefore one of  the earliest forms 
of  "science" we can find. What we can say is that so far the earliest example of  a "system" remains 
the books of  Euclid, and it is generally accepted that the priority here was the methodology rather 
than the individual theorems. However, although research may change this, "Euclid" is a 
cornerstone in Western mathematics, and the "elements" include topics not restricted to quan- 
titative and "metrical" geometry. 

As a system or branch of  mathematics the part we call plane geometry is closed, there are no 
more theorems to be discovered therein. However, this is not true of  many topics we can regard 
as initiated by "Euclid" such as projective geometry and polytope theory. If  one is interested in 
symmetry, the implications of  the "classical concept", we find that mathematicians and also 
physical scientists--particularly chemists--were initiating a more abstract concept of  symmetry 
which nevertheless could be seen as the result of  contemplating fundamental features of  very simple 
"structures". It is tempting to call this concept topological symmetry, but the term has not gained 
any currency despite the fact that the argument, if naive, is neither illogical nor a solecism. The 
notion will suggest that what is called symmetry and asymmetry can exist as features of  a connected 
structure which remain invariant under certain simple deformations such that the feature then can 
be regarded as strictly qualitative and independent of  quantitative considerations, thus belonging 
to the elastic geometry--"elast ic lines" as in "rubber sheet" geometry, as topology is often 
described in the literature of  popularizing (science and mathematics). 

What are known as the five Platonic solids were generally conceived as literal "solids", the forms 
known as the tetrahedron, cube, octahedron, dodecahedron, icosahedron, most generally conceived 
as crystallographic or volumic "sculptural" forms. Essentially of  course they can be seen as another 
set of  forms, and perhaps the earliest well-known examples are the drawings of  Leonardo da Vinci 
in which they appear as "skeletal" forms. These representations were the step which led to the 
geometry of  the solids being represented "schematically" so that the prism-shaped "limbs" 
("edges") of  Leonardo's  "closed lattices" could be replaced by the lines ("wires" in the case of  a 
model) or the pencil lines on paper of the linear models. The final stage in this development had 
to wait for the spirit of  the modern/abstract way of  conceiving structures--we finally arrive at the 
Schlegel diagram in which the lengths of  the lines and the area of  the faces no longer carry over 
the "symmetry"  of  the figures represented. Finally it becomes immaterial whether the "lines" follow 
any regular feature, i.e. they need not be "straight", and in drawing them with "curves" these 
curved lines may in fact be uniquely different. We have "joined up" or connected a set of  points 
just as we please, and what is drawn can still be regarded as pertaining to some form of  physical 
structure; the wayward paths or "connectives" can be "seen" as elastic strings each of which seems 
to have undergone a unique deformation as if the "elasticity" of  each line were intrinsically different 
or unique. 

It is often pointed out as strange that the ancient Greeks did not notice the fundamental 
qualitative law which holds between the relation of the dimensional elements of  a polyhedral 
structure, now referred to as points (zero-dimensional)---"corners"; lines (one-dimensional)-- 
"edges"; and polygons (two-dimensional) or "faces". It seems Descartes was almost able to grasp 
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the notion but it was Euler by whose name the famous theorem is known, not surprisingly since 
Euler was a founding father of topology and with his theorem a vast edifice of  theorems having 
to do with connectivity was initiated. 

If  we look at the newer form of  geometry as the study of  structural features of "amorphous"  
or informal linear structures, schematic diagrams of  degrees of  connectivity, what we then say of 
the five Platonic structures is that each of  the respective sets of  elements is unidentifiable, 
interchangeable; we have a structure of  utmost regulari ty--and redundancy--belonging to the set 
of  regular coverings in two-dimensional space: plane tessellations either infinite--the three lattices 
made respectively from three-, four- and six-sided cells or polygons--or  closed, as in the five closed 
systems which exhaust the possibilities for a closed system. When we ask: what else is there? the 
answer is that we can exhibit structures all of  whose respective elements are distinguishable and 
permit no interchanging. Such structures are described as asymmetric. Finally we show that a 
structure may have some of  its respective elements interchangeable while some remain identifiable; 
we don' t  call these "both symmetric and asymmetric" but say that they are symmetric by virtue 
of  exhibiting some symmetries. 

It was only in the last century that the daunting task of  enumerating all possible polyhedral 
structures attracted the attention of  mathematicians. While much has been learnt between the first 
efforts and today, no-one is very confident that the problem is going to suddenly become easy and 
in due course solved. From the point of  view of  symmetry we discover that when we ask about 
the possibilities the answer is that polyhedra with any symmetry at all fade out of  the "catalogue" 
as the "size" gets greater, i.e. as the number of vertices (points or corners), edges (or lines) and 
faces increases. So, nearly all polyhedra are asymmetric! There are then three sets of  symmetric 
polyhedra: the famous Platonics, a mere five; the no less famous Aristotelian solids exhibiting an 
almost equally high degree of  symmetry, of  which there are 13, another set revered, and rightly 
so, by the ancient greeks; and lastly an infinite but diminishing set which struggle for existence, 
as one might put it, exhibiting various "degrees of symmetry". 

By contrast we can construct (or "exhibit") a family of  linear structures which, conversely, are 
linear all symmetric. This family did not "exist" until it was "invented" at the turn of  the century. 
The family or form is known as a tree and we can confidently add that it was there all the time 
but had not been looked at mathematically. 

A tree, like the Schlegel diagram and maps, is a topologically linear structure, one-dimensional 
since it consists of  lines and points, but so connected that there are no closed areas--loops,  
polygons, circuits, f aces . . .  The enumeration of  classes or families of  trees has been solved although 
the overall problem continued to look rather intractable until recently. Amongst symmetric trees 
there is one special family or species which can be defined such that, however large, they will always 
be symmetric. Such trees, while being quite simple structures, have as yet no simple short name 
and are known as homeomorphically irreducible. The instruction goes like this: your tree must not 
contain points of  degree two, which means that each point connects at least three lines or only 
one line, the latter being called the terminal points of  the tree. For  example, some capital letters 
of the Roman alphabet are trees of  this k ind--T,  Y, X, G, H, K--while  others are not, having 
points of  degree two--A,  E, F, L, M, N, V, W, Z. 

Let us look at the following question of  "pattern making"-- i t  can be looked upon as purely 
mathematical or as belonging to gestalt theory or even aesthetics: we wish to partition circles with 
homeomorphically irreducible trees--we will call them hitrees. If  we take each hitree in turn and 
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use it as a form of  partition we soon discover that we can obtain several distinguishable partititions 
from the same hitree. In mathematical terms we say that a tree may take a distinct number of  
embeddings and this is a feature of  its symmetry. Thus a tree may permit only one embedding, 
as shown in Fig. 1 (and here we keep to hitrees). While others will clearly allow more than one 
(see Fig. 2). 

If  we were to exhaust all such patterns or partitions, up to say hitrees with 20 lines, we would 
soon discover that an increasing number of  them would be asymmetric despite the fact that all of  
the hitrees employed and all that we may choose are symmetric. 

Now it should come as no surprise that each pattern (or partition) is in fact a representation 
of  a polyhedron, if we replace the circle by a polygon so that the terminal points of  the hitress 
are joined by straight lines or edges we have changed nothing but the new "diagram" or "figure" 
can be taken as a Schlegel diagram. Thus, there exists a species of  polyhedron generated in this 
manner: mathematically they would be described as having a homeomorphically irreducible spanning 
tree.  

Returning to our plane patterns or partitions (or maps) we could ask that the circle be replaced 
by a rectangle--for example a square; let us also specify that the lines of  the tree partitioning our 
square are to be parallel with its sides. Our pattern consists of  horizontal and vertical lines only, 
thus the cells or areas of  the partition will be "rectangles". In this special family of  partitions the 
recognizable (but not topologically) distinct partitions of  the circle with "orthogonally embedded" 
trees produces many more possibilities and these are of  course increased when the circle is replaced 
by the square (see Fig. 3). 

Whereas we can find only two for one of  our trees when the surround is a circle, as soon as the 
circle is replaced by the square it becomes obvious that the number is more than double and the 
reader can see that it is not hard to reproduce the other four. 

Elsewhere I have discussed the fact that these orthogonal partitions constitute the most 
characteristic compositional schemes of  the abstract paintings of  Pier Mondrian, certainly between 
the years 1918-44. The computer scientist Frieder Nake [4] and I were able to propose how to 
enumerate all possible "Mondr ians"  in the rectangular format. This can be extended to deal with 
the lozengical format which Mondrian frequently adopted, and this in turn comes up with some 
surprising results. 

The example on the right-hand side is in fact the scheme chosen for what must be one of  
Mondrian's most strikingly simple compositions as the painting consists of  just the two intersecting 
black lines (or in the hitree) on a white lozengical format. Of  course what the viewer is confronted 

Fig. 3 



712 A. HILL 

Fig. 4 

with contains many other features, the lozenge appears not to be a perfect square, the lines are 
not of exactly the same thickness, and when we examine the resulting polygons it is clear that even 
if the lines were of the same thickness the arrangement has no metrical symmetry, the two areas 
adjacent to the two sides of the triangular area are not of the same size, and it follows that the 
remaining area is not "symmetric". Bisecting the triangle and extending the "axis" helps one see 
this to be the case. One need hardly add that depending where the point of intersection of the lines 
(the four degree node of the tree) is placed the artist could choose a great number of possibilities 
by which he could in this manner partition the lozenge. 

Despite his importance for modem art as one of the most respected "geometric" abstract painters 
and a founder of abstract art, Mondrian took no interest or inspiration in any aspect of 
mathematics, not the time-honoured golden section nor any other formula; the idea of calculation 
was inimical to him; his works, although extremely rigorous and perfectionist, resemble more the 
free toccata than the canonical fugue. It is often stressed in art historical exegesis that he belonged 
to the mystical and spiritual stream; whatever truth there may be in that his essential importance 
is that of a radical plastician, perhaps the very last painter, a constructive painter no longer relating 
to La Belle Peinture and the continuous rhetoric of painting as it had been from Lascaux to Van 
Gogh. His ideas of space, time, surface, structure came out of cubism and took painting--as with 
other great innovators of the time--to the position of the tableau object, the autonomous plastic 
art work. For the initiated modem artist there is no turning back from this arrival point: it is the 
watershed. 

To the artists who followed in the wake of neo-plasticism (Mondrian and the group known as 
De Stijl)--pioneer constructivism, and the less messianic formalism inaugurated by Jakobson and 
his school, it is indeed the sciences and mathematics, although not exclusively, which provide a 
continuing inspiration and link with the scientific ethos as opposed to movements which seek for 
an identity in such areas a "automatism", the mystic, the unconscious, all somehow part of the 
modernist thrust along with the ubiquitous expressionism, not to mention the stereotypic 
"humanism" which is set to optimize the conventional image and icon which characterize the work 
of the work-a-day artist. 

Essentially modernism is not wholly identified with the formalist direction, it indeed recognizes 
its complement viz. the irrational, the subversive and anarchistic as best demonstrated by the 
iconoclastic dadaists and the montage pieces by the constructivists. It sees an end to the slothful 
conventions whereby art is to be equated with what is generally accepted as being such if only 
because it is done in artists' studios, old conventions jacked up by the inclusion of some modern 
terms of plastic grammar and syntax, the attempt to project a modern art in the terms of the 
old--all of this can safely be abandoned. The modem artist has within his grasp modern science, 
modem mathematics, modem concepts due to various other disciplines, and by relating to these 
things--although this ensures no guarantee--he continues, paradoxically if you like, the tradition 
whereby the artist while being an individual (perhaps even a solipsist) works in a context a large 
part of which parallels and reflects the thinking of the new age. No longer is he the servant of the 
Church, nor need he replace Church by State (Marxism), but equally no longer is he trapped in 
the labyrinth of egotistic romanticism which leads to excesses such as self-expressionism, nor of 
course need he mock the artists of the past by peddling an uncountable variety of "modernistic" 
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formulations of  the secular traditions in art; portraiture, "landscape", "still l ife"--all  destined to 
be a decadent charade which all too easily finds admirers. 

Some abstract artists have favoured symmetry and made great works which espouse the notion; 
one thinks of  Brancusi's Endless Column. Others, like Mondrian, have strenuously avoided 
symmetry. They may not have known of  the words of  the celebrated French biologist Claude 
Bernard which can be rendered as: "I t  is the asymmetric that creates life." 

The idea of  asymmetry has too often been relegated to the areas of  the non-important, the 
non-beautiful, even if it is understood that in nature perfect symmetry is never to be found, only 
some form of  approximation to the mathematical ideal. 

Clearly the artist is free to choose-- there is both symmetry and asymmetry. However, let us end 
by stating that in asymmetry the idea of  an approximation is rather meaningless. To put it 
technically, if a connected structure has an automorphism group characterized as being the identity 
class this means that it has the feature that all its elements are distinguishable; this is a special and 
most fundamental condition--certainly if regarded from the point of  view of  information theory, 
it represents an "absolute" as soon as this can be demonstrated. What is fascinating is that no 
algorithms exist for determining whether a given structure is asymmetric or not. In the case of  large 
structures it becomes necessary to painfully apply the procedures to determine the automorphism 
number. Significantly it is in chemistry that such information may prove crucial, and much effort 
has gone into the research, also undertaken by mathematicians. To that extent the problem remains 
one of  a series that have yet to be solved; the answer will have practical rewards and no less in 
mathematics a most profound step will also have been taken. 

Which subsumes which, the demonstrable metric concept of  symmetry/asymmetry or the 
"abstract"  concept of  the automorphism group? The latter is equally demonstrable and in order 
to furnish a proof  one is forced to state a piecemeal account of  the "neighbourhood situation" 
of  every point and this has to be done by a sequence of  simple observations; it is a giant piece 
of  "micro-checking", as one might put it, although one is not dealing in the real micro-world, just 
the zero-dimensional implications of  a strucutre of  at most three dimensions. Generalization being 
one of the key strategies in mathematics--"generalize it up to the next d imension"--one can 
quickly grasp that the concept of  symmetry/asymmetry poses many difficult questions. Some we 
may require for solving recondite problems, others remain more like nightmare chess problems. 
It is unlikely that art can contribute to this daunting area, as it once did in the Renaissance, but 
there is no "logical" reason why not since the notions of  symmetry/asymmetry belong, in a sense, 
to both science and art. 
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