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Abstract: In this design study, we introduce a novel class of digital audio effects that
extend the recently introduced modal processor approach to artificial reverberation and effects
processing. These pitch and distortion processing effects mimic the design and sonics of a classic
additive-synthesis-based electromechanical musical instrument, the Hammond tonewheel organ.
As a reverb effect, the modal processor simulates a room response as the sum of resonant filter
responses. This architecture provides precise, interactive control over the frequency, damping, and
complex amplitude of each mode. Into this framework, we introduce two types of processing effects:
pitch effects inspired by the Hammond organ’s equal tempered “tonewheels”, “drawbar” tone
controls, vibrato/chorus circuit, and distortion effects inspired by the pseudo-sinusoidal shape of its
tonewheels and electromagnetic pickup distortion. The result is an effects processor that imprints the
Hammond organ’s sonics onto any audio input.

Keywords: audio signal processing; modal analysis; room acoustics; signal analysis; artificial
reverberation; digital audio effects; virtual analog; musical instruments

1. Introduction

The Hammond tonewheel organ is a classic electromechanical musical instrument, patented
by Laurens Hammond in 1934 [1]. Although it was intended as an affordable substitute for church
organs [2], it has also become widely known as an essential part of jazz (where it was popularized by
Jimmy Smith), R & B and rock music (where the Hammond playing of Keith Emerson of Emerson, Lake
& and Palmer and Jon Lord of Deep Purple is exemplary). The most popular model is the Hammond
B-3, although many other models exist [3]. The sound of the Hammond organ is rich and unusual.
Its complexity comes from the Hammond organ’s unique approach to timbre and certain quirks of
its construction.

In this article, we describe a novel class of modal-processor-based audio effects which we call the
“Hammondizer”. The Hammondizer can imprint the sonics of the Hammond organ onto any sound;
it mimics and draws inspiration from the architecture of the Hammond tonewheel organ. We begin by
describing the architecture and sonics of the Hammond tonewheel organ alongside related work on
Hammond organ modeling.

The Hammond organ is essentially an additive synthesizer. Additive synthesizers create complex
musical tones by adding together sinusoidal signals of different frequencies, amplitudes, and phases [4].
In the Hammond organ, 91 sinusoidal signals are available. These sinusoids are created when
“tonewheels”—ferromagnetic metal discs—spin and the pattern of ridges cut into their edges is
transduced by electromagnetic pickups into electrical signals, a technique originated in Thaddeus
Cahill’s late-19th century instrument, the Telharmonium [5]. Hammond organ tonewheel pickups
have not been studied much in particular, but modeling and simulation of electromagnetic pickups in
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general is an active research area [6–10]. Any nonlinearities in a pickup model will cause bandwidth
expansion and add to the characteristic sound of the Hammond organ. In the case that this bandwidth
expansion would go beyond the Nyquist limit, alias-suppression methods become relevant [11–14].

These 91 tonewheels are tuned approximately to the twelve-tone equal-tempered musical
scale [15]—In scientific pitch notation, the lowest-frequency tonewheel on a Hammond organ is
tuned to C1 (≈32.7 Hz) and the highest-frequency tonewheel is tuned to F#7 (≈5919.9 Hz) [16].
The lowest octave of tonewheels do not form sinusoids, but more complex tones that have strong
3rd and 5th harmonics, making them closer to square waves than sine waves [15]. Some aficionados
have pointed to crosstalk between nearby tonewheel/pickup pairs as an important sonic feature of the
Hammond organ [17,18].

The tone of the Hammond organ is set using nine “drawbars”. Unlike traditional organs,
where “stops” bring in entire complex organ sounds, the Hammond organ’s drawbars set the
relative amplitudes of individual sinusoids in a particular timbre. These nine sinusoids form a
pseudo-harmonic series summarized in Table 1 [19]. This pseudo-harmonic series deviates from the
standard harmonic series in three ways: (1) each overtone is tuned to the nearest available tonewheel;
(2) certain overtones are omitted, especially the 6th harmonic, which would be between the 8th and
9th drawbar); and (3) new fictitious overtones are added (the 5th and sub-octave).

Table 1. Hammond Organ Drawbars—Pitch in organ stop lengths and musical intervals.

Pipe Pitch 16’ 51/3’ 8’ 4’ 22/3’ 2’ 13/5’ 11/3’ 1’

Scale Interval sub-octave 5th Unison 8th 12th 15th 17th 19th 22nd
Stop Name Bourdon Quint Principal Octave Nazard Block Flöte Tierce Larigot Sifflöte

Semitone Offset −12 +7 0 +12 +19 +24 +28 +31 +36
Error E (cents) N/A N/A 0 0 −1.955 0 +13.686 −1.955 0

The raw sound of the Hammond organ tonewheels is static. To enrich the sound, Hammond
added a chorus/vibrato circuit [20]. Earlier models used a tremolo effect in place of the chorus/vibrato
circuit [21]. The sound was further enriched by an electro-mechanical spring reverb device [22].
Although Hammond did not originally approve of the practice, it became customary to play Hammond
organs through a Leslie speaker, an assembly with a spinning horn and baffle that creates acoustic
chorus and tremolo effects. The Leslie speaker has been covered extensively in the modeling literature.
Various approaches have involved interpolating delay lines [23,24] and amplitude modulation [25,26],
perception-based models [28], and time-varying Finite Impulse Response (FIR) filters [29]. Recently,
Pekonen et al. presented a novel Leslie model [18] using spectral delay filters [30]. Werner et al. used
the Wave Digital Filter approach to model the Hammond vibrato/chorus circuit [31].

Although Hammond had stopped manufacturing their tonewheel organs by 1975, the Hammond
sound remained influential. Many manufacturers developed clones of the Hammond tonewheel
organ [17,32–35]. Commercial efforts have been accompanied by popular and academic work in virtual
analog modeling [36]. Gordon Reid wrote a series of articles for Sound on Sound on generic synthesis
approaches to modeling aspects of the Hammond organ [17,32–35]. Pekonen et al. studied efficient
methods for digital tonewheel organ synthesis [18].

The Hammondizer audio effect is implemented as an extension to the recently-introduced “modal
reverberator” approach to artificial reverberation [37–40]. Although there are many other approaches
to modal sound synthesis in the literature (e.g., [41–44], the choice to extend the modal reverberator
architecture to create the Hammondizer effect was a natural one for two reasons: (1) there are strong
similarities between the system architecture of the Hammond organ and the system architecture of
the modal reverberator; (2) the modal reverberator is already formulated as an audio effect which
processes rather than synthesizes sound.

The rest of the article is structured as follows. Section 2 presents a simplified system architecture
of the Hammond organ, Section 3 reviews relevant aspects of the modal processor approach,
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Section 4 presents the novel Hammondizer digital audio effect, Section 5 demonstrates features
of the Hammondizer through a series of examples, and Section 6 concludes.

2. Hammond Organ System Architecture

Here we extend the qualitative description above and present a mathematical formulation of the
basic operation of the Hammond tonewheel organ. Referring to Figure 1, the player controls the organ
by depressing keys on a standard musical keyboard shown on the left. Each of its 61 keys has a note
on/off state nk(t) ∈ [0, 1] that is indexed by a key number k ∈ [1 · · · 61]>; these are collected into a
column n(t). Here and in the rest of the article, t is the discrete time sample index.

route tone
wheels

+
1

y(t)

Γ(r(t)) ψ(t) 1

� 9r(t)

�
61

n(t)

�
91

a(t)

�
91

y(t)

Figure 1. Hammond Tonewheel Organ block diagram.

The timbre is controlled by nine drawbars shown on the top. Each drawbar has a level
rd(t) ∈ [0 · · · 8] that is indexed by a drawbar number d ∈ [1 · · · 9]>; these are collected into a
column r(t). The drawbars may be changed over time to alter the sounds of the Hammond organ.
Each drawbar’s level rd(t) is converted to an amplitude in −3 dB increments (Table 2) [45].

Table 2. Amplitude of each drawbar rd, d ∈ [1 · · · 9].

rd 0 1 2 3 4 5 6 7 8

amplitude (dB) 0 −3 −6 −9 −12 −15 −18 −21 −∞

Furthermore, each drawbar has a tuning offset od, corresponding to the tuning offset in semitones
of each pseudo-harmonic. The entire set of offsets is

o = [o1 · · · o9]
> = [−12, 7, 0, 12, 19, 24, 28, 31, 36]> (1)

Each tuning offset (except the first two) approximates a harmonic overtone. This is discussed
further at the end of the section.

Each tonewheel has a frequency fw and amplitude aw(t) indexed by a tonewheel number
w ∈ [1 · · · 91]>; these are collected into columns f and a(t). Each tonewheel is tuned to the twelve-tone
equal-tempered scale

fw = (440)2(w−45)/12 Hz (2)
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In practice there are slight deviations according to the gearing ratios, producing deviations of up
to 0.69 cents [15].

The outputs of all the tonewheels are summed by the 91× 1 gain block 1 = [1 · · · 1]> on the right
to form the output signal y(t):

y(t) = 1>y(t) (3)

The 91× 61 routing matrix Γ(r(t)) forms the 91-tall column of tonewheel amplitudes a(t) from
the 61-tall column of key on/off states n(t). This is accomplished by a matrix multiply

a(t) = Γ(r(t))n(t) (4)

Γ(r(t)) is sparse (most entries are 0) and has a pseudo-convolutional form [46] in which the
non-zero entries r1(t) · · · r9(t) ∈ [0 · · · 8] are dictated by the 9-tall column of drawbar levels r(t).
Denoting each entry in Γ(r(t)) as γw,k(t), we have

γw,k(t) =
9

∑
d=1

rd(t) δ (w− k− od) (5)

where δ(x) is the Kronecker delta function

δ(x) =

{
1 , x = 0

0 , x 6= 0
(6)

The tonewheel block is comprised of 91 tonewheel processors ψw(t) in parallel. As shown in
Figure 2, each individual tonewheel processor has a tonewheel producing a periodic signal xw(t) at
a particular frequency fw, an amplitude input aw(t) provided by the routing matrix Γ(r(t)), and an
electromagnetic model pw (). Each tonewheel processor forms an output yw(t) by

yw(t) = aw(t) pw(xw(t)) (7)

× pw() ×

aw(t)

yw(t)xw(t)

ψw(t)

pickuptonewheel

Figure 2. One tonewheel processor.

A block diagram of an individual tonewheel processor is shown in Figure 2. The matrix equation
describing the entire bank of tonewheels is

y(t) = p(x(t))� a(t) (8)

where � is the Hadamard (elementwise) product operator

(A� B)i,j = Ai,jBi,j (9)

where Ai,j denotes the ijth element of the matrix A.
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The lowest 12 tonewheels produce roughly square-wave signals and the rest produce essentially
sinusoidal signals:

xw(t) =

{
4
π sin(2π fw t) + 4

3π sin(2π 3 fw t) + 4
5π sin(2π 5 fw t) , w ∈ [1 · · · 12]

sin(2π fw t) , w ∈ [13 · · · 91]
(10)

As a final note, we can discuss the pseudo overtone series of the Hammond organ in more detail.
Equation (5) implies a certain relationship between any pressed key k and the set of frequencies that
are produced. Here we state this relationship explicitly. Given Equations (1), (2) and (5), we can see
that pressing any key k will, in general, drive a set of nine tonewheels with frequencies

fk,d = (440)2(k+od−45)/12 , d ∈ [1 · · · 9] (11)

Most wind and string instruments are characterized by a harmonic overtone series—i.e., one
where overtone frequencies are integer multiples of a fundamental frequency. Most of the tonewheel
frequencies given in Equation (11) approximate idealized harmonic overtones with frequencies given
by

f̃k,d = (440)2(k−45)/12 Nd , d ∈ [3 · · · 9] (12)

The first two tonewheel frequencies fk,1 and fk,2 are the octave below the fundamental frequency
and approximately a fourth below the fundamental frequency—they are not approximations of
standard harmonic overtones.

In general, f̃k,d 6= fk,d. The error in “cents” (1/100 of a semitone) is given by

Ed = 1200 log2
(

f̃k,d/ fk,d
)
= 1200 [od/12− log2 (Nd)] , d ∈ [3 · · · 9] (13)

The tuning error of each tonewheel frequency is independent of k; it depends only on the drawbar
index d—i.e., which overtone it is supposed to be approximating. These errors are given for each
drawbar in Table 1. For the fundamental and octave overtones, the tonewheels are perfectly in tune.
For the 12th and 19th, the tonewheels are ≈−1.955 cents flat of the ideal overtones. The 19th is ≈13.686
cents sharp. This detuning is very unique to the Hammond organ.

3. Modal Processor Review

The Hammondizer effect involves decomposing an input signal into a parallel set of narrow-band
signals, analogous to a bank of organ keys. Each of the “keys” is then pitch processed according
to the drawbar settings, and distortion processed according to the tonewheel and pickup
mechanics and electromagnetics. It turns out that this structure closely resembles that of the modal
reverberator [37,38], which forms a room response as the parallel combination of room vibrational
mode responses. In the following, we review the modal reverberator and adapt it to produce the
needed pitch and distortion processing.

The impulse response h(t) between a pair of points in an acoustic space may be expressed as the
linear combination of normal mode responses [47,48],

h(t) =
M

∑
m=1

hm(t) (14)

where the system has M modes, with the mth mode response denoted by hm(t). The system output y(t)
in response to an input x(t), the convolution y(t) = h(t) ∗ x(t), is therefore the sum of mode outputs

y(t) =
M

∑
m=1

ym(t), ym(t) = hm(t) ∗ x(t) (15)
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where the mth mode output ym(t) is the mth mode response convolved with the input. The modal
reverberator simply implements this parallel combination of mode responses (15), as shown in Figure 3.
Denoting by h(t) the M-tall column of complex mode responses, we have

y(t) = 1>(h(t) ∗ x(t)) (16)

with
h(t) = ψ(t)� (g(t) ∗ Γϕ(t)) (17)

and where convolution here obeys the rules of matrix multiplication, with each individual matrix
operation replaced by a convolution.

heterodyne gain smooth modulate +
1

x(t)

1

y(t)

ϕ(t) Γ g(t) ψ(t) 1

�
M

�
M

�
M

�
M

y(t)

Figure 3. Basic modal reverberator architecture. The modal reverberator is the parallel combination of
resonant filters matched to the modes of a linear system.

The mode responses hm(t) are complex exponentials, each characterized by a mode frequency
ωm = 2π fw, mode damping αm, and mode complex amplitude γm,

hm(t) = γm exp{(jωm − αm)t} (18)

The mode frequencies and dampings are properties of the room or object; the mode amplitudes
are determined by the sound source and listener positions (driver and pick-up positions for an
electro-mechanical device), according to the mode spatial patterns.

Rearranging terms in the convolution ym(t) = hm(t) ∗ x(t), the mode filtering is seen to
heterodyne the input signal to dc to form a baseband response, smooth this baseband response
by convolution with an exponential, and modulate the result back to the original mode frequency,

ym(t) = ∑
τ

e(jωm−αm)(t−τ)x(τ) = ejωmt ∑
τ

γme−αm(t−τ)
[
e−jωmτx(τ)

]
(19)

All M γs are stacked into a diagonal gain matrix Γ. All the heterodyning sinusoids are stacked
into a column ϕ(t), and all of the modulating sinusoids into a column ψ(t). The mode damping filters
are stacked into a column g(t). This process is shown in Figure 4. The heterodyning and modulation
steps implement the mode frequency, and the smoothing filter generates the mode envelope, an
exponential decay.

x(t) × γme−αm t × ym(t)

e−jωm t ejωm t

heterodyne smooth modulate

Figure 4. Mode response implementation. The mode response may be implemented as a cascade of
heterodyning, smoothing, and modulation operations.

Using this architecture, rooms and objects may be simulated by tuning the filter resonant
frequencies and dampings to the corresponding room or object mode frequencies and decay times.
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The parallel structure allows the mode parameters to be separately adjusted, while Equation (19)
provides interactive parameter control with no computational latency.

As described in [39], the modal reverberator architecture can be adapted to produce pitch shifting
by using different sinusoid frequencies for the heterodyning and modulation steps in Equation (19),
and adapted to produce distortion effects by inserting nonlinearities on the output of each mode
or group of modes. The modal processor architecture has been used for other effects, including
mode-wise gated reverb using Truncated Infinite Impulse Response (TIIR) filters [49], groupwise
distortion, time stretching by resampling of the baseband signals, and manipulation of mode time
envelopes by introducing repeated poles [39].

4. Hammondizer Modal Processor Implementation

The Hammondizer effect system architecture is shown in Figure 5. It turns out that this structure
closely resembles that of the modal reverberator (Figure 3), which forms a room response as the parallel
combination of room vibrational mode responses. Both have inputs designated by x(t), a column of
narrow-band outputs designated by y(t), summed to form the system output y(t).

heterodyne smooth route smooth tone
wheels

+
1

x(t)

1

y(t)

ϕ(t) gpre(t) Γ(r(t)) gpost(t) ψ(t) 1

� 9r(t)

�
61

n(t)

�
61

n′(t)

�
91

a(t)

�
91

a′(t)

�
91

y(t)

Figure 5. Block diagram of the Hammondizer effect.

In the Hammondizer, the input signal x(t) is heterodyned to baseband by a column of modulating
sinusoids ϕ(t):

n(t) = ϕ(t)x(t) (20)

These baseband signals are smoothed by a column of pre-smoothing filters gpre(t)

n′(t) = gpre(t) ∗ n(t) (21)

A column of tonewheel amplitudes a(t) is formed by the drawbar routing matrix Γ(r(t)),

a(t) = Γ(r(t))n′(t) (22)

and further smoothed by a column of post-smoothing filters gpost(t):

a′(t) = gpost(t) ∗ a(t) (23)

A set of mode outputs y(t) is formed by the tonewheel processing stages ψ(t), which include a
column of pickup models p() and modulating signals x(t)

y(t) = p
(
x(t)� a′(t)

)
(24)

An individual tonewheel processing stage is shown in Figure 6. Notice the slight change in
architecture from the analogous Figure 2. In Figure 6, the pickup distortion has been moved to
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operate on the output rather than the raw tonewheel signal. The reason for this change is artistic—it
disambiguates the effects of the memoryless pickup nonlinearities and the distortion of the tonewheel
basis functions.

× × pw()

a′w(t)

yw(t)xw(t)

ψw(t)

pickupmodulator

Figure 6. One tonewheel processor in the Hammondizer.

Finally, the output y(t) is formed by summing all of the mode outputs:

y(t) = 1>y(t) (25)

In the rest of this section, we describe in detail how aspects of the modal processor are
tuned and adapted to create the Hammondizer. Pitch processing adaptations include tuning the
modes to the particular frequencies and frequency range of the Hammond organ Section 4.1),
introducing drawbar-style controls to pitch processing (Section 4.2), adding vibrato to mode frequencies
(Section 4.3), and adding crosstalk between nearby modes to simulate crosstalk between nearby
tonewheels (Section 4.4). Distortion processing adaptations include adapting saturating nonlinearities
for each mode to mimic the pickup distortion of each tonewheel (Section 4.5) and replacing modulation
sinusoids with sums of sinusoids to mimic non-sinusoidal tonewheel shapes (Section 4.6).

4.1. Frequency Range

The first step of adapting the modal reverberator to create the Hammondizer effect is to pick
the mode frequencies which specify the heterodyning and modulating sinusoids ϕ(t) and ψ(t).
The unique sound of the Hammond organ is largely due to the tonewheels being tuned to the
12-tone equal tempered scale. Here we discuss how to preserve this feature in the context of the
Hammondizer audio effect.

Since each mode of the modal reverberator is a narrow bandpass filter, a sufficient frequency
density of modes is required to support typical wideband musical signals. In particular, unless each
frequency component of the input is sufficiently close to a mode center, it may not contribute audibly to
the output. For this reason, tuning the modal reverberator’s frequencies to the 12-tone equal tempered
scale used by the Hammond organ heavily attenuates the frequencies “in the cracks”, producing an
artificial sound (compare to composer Peter Ablinger’s “Talking Piano” [50]).

To avoid this effect, we use many exponentially-spaced mode frequencies per semitone.
Denoting the number of modes per semitone as S, the tuning of each mode is

fw = f1 2w/(12 S) Hz (26)

(cf. Equation (2)). S is chosen to satisfy two subjective constraints. As S gets larger, the computational
cost of the modal processor grows. As S becomes small, the modal density decreases and produces
an artificial sound. We found by experimentation that S = 14 is a good setting that balances these
two constraints.

Heterodyning and modulating sinusoids at constant frequencies are given by

ϕw(t) = exp{−jωwt} (27)

ψw(t) = exp{+jωwt} (28)
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(cf. Equation (18)).
The next step of adapting the modal reverberator to create the Hammondizer effect is to choose

the range of mode frequencies. The range of the Hammond organ is C1 (≈32.7 Hz) to F#7 (≈5919.9 Hz).
For simplicity, we set f1 = 40 Hz and let the modes range up seven octaves, up to f1177 = 5120 Hz;
these modes are indexed by a tonewheel index w ∈ [1 · · · 1177]. These round numbers correspond
very closely to the range of the Hammond organ. Forty Hz corresponds to k ≈ 3.5 and 5120 Hz to
k ≈ 87.5; therefore, this range technically cuts off ≈3 semitones from the top and bottom of the range
of the Hammond organ tonewheel range. Nonetheless, it does not negatively affect the qualitative
effect of the Hammondizer.

4.2. Tone Controls

The heart of the Hammondizer effect is the drawbar tone controls. As before, the drawbar settings
give a column r(t) of registrations, which drive the entries of the sparse matrix Γ(r(t)) according to

γw,k(t) =
9

∑
d=1

rd(t) δ (w− k− od S) (29)

The only difference from Equation (5) is the presence of S to account for the multiple modes
per semitone.

In the Hammondizer context, the entries in Γ(r(t)) control a Hammond-style pitch shift.
The structure of Γ(r(t)) means that energy in a smoothed baseband signal nw(t) (centered at some
mode frequency fw) contributes to nine different tonewheel amplitudes fκ , κ ∈ 1w + So, according
to γw,κ(t).

4.3. Vibrato

A vibrato effect that can mimic Hammond organ vibrato is created when the frequencies of the
modulating sinusoids ψ(t) are varied. In this case, modulation sinusoids can be implemented with
phase accumulators

xw(t) = exp{−jθw(t)} (30)

Each vibrato phase signal is given by

θw(t) = θw(t− 1) + 2Vdepth/1200 sin(2π/ fs Vratet)2π/ fs (31)

where Vdepth is the vibrato depth in cents and Vrate is the vibrato rate in Hz.
An early Hammond patent [20] praises “. . . a musical tone containing a vibrato, that is, a cyclical

shift in frequency of approximately 1.5%, at a rate of about 6 per second. . . ” To match that design
criteria, we typically choose a vibrato depth of 26 cents ≈1.5% and a vibrato rate of 6 Hz. Of course,
these can be parameterized as desired.

4.4. Crosstalk

Some aficionados point to crosstalk between tonewheels as an important part of Hammond organ
sonics. We can consider that since mode filters are not “brick wall” filters, there is already a sort of
crosstalk built into the Hammondizer effect.

Drawing inspiration from Pekonen et al. [18], we can explicitly simulate leakage between adjacent
tonewheels by adding another matrix multiply between gpost(t) and ψ(t). This creates a new set of
signals with crosstalk that includes modes one semitone away from the main modes with a crosstalk
level C:

a′′w(t) = Ca′w−S(t) + a′w(t) + Ca′w+S(t) (32)
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4.5. Memoryless Pickup Nonlinearities

As detailed in [39], distortion effects may be generated by passing a mode through a memoryless
nonlinear function or by substituting a complex waveform for the modulation sinusoid waveform.
Here we adapt both types of distortion to mimic aspects of the Hammond organ’s sonics and design to
the Hammondizer. Note that since both kinds of distortion are applied separately to each mode, the
output will contain no intermodulation products.

Drawing inspiration from the Mustonen et al.’s model of a guitar pickup [10], we propose a
memoryless nonlinearity of the form

yw(t) =
(

1− e−αxw(t)a′w(t)
)

/α (33)

This memoryless nonlinearity is shown for values of α ∈ [0.1, 0.3, 0.9] in Figure 7. This has the
property of maintaining unity gain around zero, but distorting signals with a large swing around zero
by compressing positive signals and expanding negative signals. In this article, we will use a value of
α = 0.3.

−1 −0.5 0 0.5 1 1.5 2
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tonewheel signal x
w
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w

(t)a
w
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α=0.1

α=0.3

α=0.9

Figure 7. Memoryless tonewheel pickup nonlinearity.

Typically, memoryless nonlinearities like this will produce effects including “harmonic distortion”
(new frequencies at multiples of existing frequencies) and “intermodulation products” (new frequencies
at sums and differences of existing frequencies). Since this memoryless nonlinearity is applied to the
output of a bandpass filter, mostly harmonic distortion will be created, since energy is concentrated at
one frequency.

4.6. Tonewheel Basis Distortion

On the Hammond organ, tonewheels may not be perfectly sinusoidal. Also, the lowest octave of
tonewheels are cut closer to a square wave shape than a sinusoid. This can be considered a distortion
of the sinusoidal basis functions that the tonewheels represent. To approximate this distortion of
the lower tonewheel basis functions, we can replace each modulating sinusoid ψw(t) with a sum
of sinusoids

ψ̃w(t) =
4
π

exp(jww t) +
4

3π
exp(j3 fw t) +

4
5π

exp(j5 fw t) (34)

(cf. Equation (10)).
Drawing inspiration from the Hammond organ, this should be done for the lowest octave of

tonewheels. In practice, it can be useful to define the effect for a large range of modes.
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Note that this distortion is very different in character from the saturating nonlinearities.
Specifically, it has the unique feature of being amplitude-independent.

5. Results and Discussion

To demonstrate the features of the Hammondizer, we present a series of examples. Examples
of the pitch processing and distortion processing Hammondizer components, operating on a pure
tone input, are presented in Sections 5.1 and 5.2, respectively. Examples of the full Hammondizer,
applied to program material, are described in Section 5.3. Aspects of the Hammondizer’s sonics are
visible in the spectrogram and explained in the text. To understand the full effect of the Hammondizer,
it is necessary to listen to it. Audio recordings (.wav file format) of all these examples are available
online [51].

For all of these examples, the Hammondizer is configured to have 1177 exponentially spaced
modes, with 14 modes per semitone over the seven octave range from 40 Hz to 5120 Hz. The two
columns of smoothing operations gpre(t) and gpost(t) are set so that the gain of each mode during the
smoothing operations is set to unity. gpre(t) is simply a column of ones. Except where noted, each
mode is assigned a 200-ms decay time. We form gpost(t) using smoothing filters which are applied
twice, as suggested in [39]. This creates impulse responses with a linear ramp onset and a 200-ms
decay (e.g., [52])—i.e., of the form t exp{−αt}.

Although we have not emphasized the variation of the mode dampings and complex amplitudes
in this article—focusing rather on the novel aspects of the Hammondizer—the mode dampings
and complex amplitudes can be set just as in the modal reverberator [37,38], creating hybrid
Hammond/reverb effects. The different Hammond organ registrations shown in these results are
given in Figure 8 and are taken from a Hammond owner’s manual [53] and a Keyboard Magazine
article [54].

5.1. Pitch Processing Examples

In this section, we demonstrate the Hammondizer’s drawbar tone controls (Figure 9), its frequency
range (Figure 10), and crosstalk and vibrato processing (Figure 11).

Figure 9 shows spectrograms of a pure tone input signal and versions processed with the
Hammondizer. The input signal (Figure 9a) is a 1.75-second-long sine wave tuned to middle C
(C3, ≈261.63 Hz). The output signal (Figure 9b) shows five different Hammondized versions of the
input signal. Each of the five versions uses a different registration; the vibrato, crosstalk, and distortion
were disabled. The different Hammond organ registrations shown in these results are given in Figure 8.
Figure 9b uses the first five registrations of Figure 8 in order.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Various Hammond organ registrations and their names. (a) 008000000 fundamental; (b)
447000000 “bassoon”; (c) 803600000 “mellow-Dee”; (d) 006070540 “clarinet”; (e) 668848588 “shoutin’ ”;
(f) 888888888 “all out”; (g) 888000008 “whistle stop”; (h) 888800000 “Jimmy Smith”.
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(a) (b)

Figure 9. (a) C3 sine wave input and (b) Hammondized version with five different registrations.

The C3 sine wave is tuned very close to the center frequency of mode w = 455. Knowing that the
Hammondizer uses the matrix Γ(r(t)) to drive output modes that are offset from each analysis mode
by the length-9 column o (recall Table 1 and Equation (1)), we expect that an input consisting of a single
sinusoid will in general create output signals with nine sinusoidal components (recall Equation (11))
near modes (287, 553, 455, 623, 721, 791, 847, 889, 959). However, since Γ(r(t)) is a function of the
registration r(t), the output behavior is heavily dependent on the registration. Notice that the 008000000
registration does not affect the signal much beyond a slight lengthening due to the decay time of
the modes near C3. Since each r(t) except r3(t) is zero, only one sinusoid comes out. The second
setting, “bassoon” (447000000) produces three sinusoids in response to the input sinusoid, since it
has three non-zero r(t)s. The amplitude of each sinusoid depends on its corresponding drawbar
setting (recall Table 2). The “bassoon,” “mellow-Dee,” and “shoutin’ ” registrations have non-zero first
drawbar settings—notice that they produce energy an octave below C3. The “shoutin’ ” and “all out”
registrations have no non-zero drawbar settings—notice that the individual sine wave of the input has
driven nine sine waves in the output, and that their relative amplitudes reflect the “shoutin’ ” and “all
out” registrations (668848588 and 888888888, respectively).

Figure 10 shows spectrograms of a sinusoidal input signal and its Hammondized response.
The input signal (Figure 10a) is a series of nine 0.5-second-long sine waves, generated at octave
intervals from C0 (≈32.70 Hz) and to C8 (≈8372.02 Hz). The Hammondized output (Figure 10a)
used the 668848588 (“shoutin’ ”) registration, and the vibrato, crosstalk, and distortion were disabled.
In a broad sense, the Hammondizer imprints the “shoutin’ ” partial structure onto the input sinusoids.
Note, however, that since the Hammondizer does not have any modes outside the 40 Hz to 5120 Hz
frequency range, the C0 and C8 inputs generate little output, though transients in the C0 sinusoid
produce a ghostly “whoosh” sound.
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(a) (b)

Figure 10. Showing range of Hammond tonewheels. (a) C0–C8 input signal; (b) Hammondizer with
“shoutin’ ” registration.

The Hammondizer crosstalk and vibrato components are now explored using the pure tone
input of Figure 9a. In Figure 11a, the effect of crosstalk is illustrated using the “clarinet” registration
with vibrato and distortion disabled. Crosstalk amplitudes of −∞, −24, −18, −12, and −6 dB are
simulated. Note the increased presence of energy in adjacent notes with increased crosstalk amplitude.
In Figure 11b, the effect of vibrato is studied using a “whistle stop” (888000008) registration, with
crosstalk and distortion disabled. Each output uses a 6 Hz vibrato, with (from left to right) vibrato
depths of 0, 25, 50, 100, and 1200 cents, with a depth of 25 cents being typical for a Hammond tonewheel
organ. As expected, there is a sinusoidal variation in the output frequency of each partial.

(a) (b)

Figure 11. (a) Clarinet registration, various levels of crosstalk ∈ [−∞,−24,−18,−12,−6]dB and
(b) Whistle stop registration, various levels of vibrato ∈ [0, 26, 50, 100, 1200] cents on the right.

5.2. Distortion Processing Examples

Here, we demonstrate the Hammondizer’s tonewheel shape distortion (Figure 12) and its
mode-wise distortion (Figures 13 and 14).
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(a) (b)

Figure 12. Keyboard split demonstration. (a) C0–C5 input signal; (b) Driving keyboard split.

Figure 12 shows an input signal spectrogram (Figure 12a) and a Hammondized version showing
the tonewheel shape distortion (Figure 12b). The input signal is the collection of sinusoids C0 through
C5. This is applied to the Hammondizer set to a fundamental-only registration (008000000), with
vibrato and distortion disabled. As described above, the lowest two octaves of tonewheels are given
3rd and 5th harmonics. Notice how C0, C1, and C2 produce pronounced 3rd and 5th harmonics even
though the registration is 008000000, but that C3–C5 don’t generate harmonics.

Figure 13 shows spectrograms of an input signal and its Hammondized version. Figure 13a shows
the input signal: five 1.75-second-long sinusoidal bursts, all tuned to C3. From left to right, the input
sinusoid amplitudes are 0,−3,−6,−9, and−12 dB. Notice in the output (Figure 13b) that the degree of
distortion decreases as the amplitude decreases, as is typical of saturating memoryless nonlinearities.

(a) (b)

Figure 13. Decreasing amplitude interacting with distortion. (a) C3 input signal, various amplitudes;
(b) Distorted.

Recall that the Hammond distortion is generated separately on each key, and accordingly there
is no intermodulation distortion. To demonstrate this and to test the presence of intermodulation
distortion in our Hammondizer process, we use a signal having C3 and E3 notes which appear both
individually and overlapped—see Figure 14. Figure 14b shows the Hammondized result. Notice that
there is little to no intermodulation distortion in the output; the response to the combination of C3 and
E3 is very nearly equal to the sum of the response to C3 and the response to E3. Figure 14c shows the
result of a modified algorithm y(t) = p(1>(x(t)� a′(t))) in which the hundreds of individual mode
pickup distortions are replaced by a single pickup distortion that operates on the sum of all modes.
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(cf. Equations (24) and (25)). This more typical approach to implementing distortion produces heavy
intermodulation distortion. This sort of intermodulation distortion can be considered unpleasant;
its absence can be considered a unique feature of the Hammondizer.

(a) (b) (c)

Figure 14. Showing how the Hammondizer mode-wise distortion does not cause intermodulation
distortion. (a) Input signal; (b) Hammondizer with mode-wise distortion; and (c) Hammondizer with
“global” distortion.

5.3. Full Examples

In this section, we present examples of the full Hammondizer processing program material, a
guitar (Figure 15) and a violoncello (Figure 16).

(a) (b) (c)

Figure 15. Blues guitar lick, original and two different Hammondized settings. (a) Input signal;
(b) Hammondized, “Jimmy Smith” registration; (c) Hammondized, “all out” registration.

(a) (b) (c)

Figure 16. Beginning of “El Cant dels Ocells” [55], original and two different Hammondized settings.
(a) Input signal; (b) Hammondized, “bassoon” registration; (c) Hammondized, “clarinet” registration.

Figure 15a shows a blues guitar lick, and two Hammondized versions, with a “Jimmy Smith”
(888800000) registration in Figure 15b and an “all out” (888800000) registration in Figure 15c. Notice that
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the relatively full-range input of the guitar is mostly restricted to below 5120 Hz in the Hammondized
examples. Especially from 1–2 s, the vibrato is visible. In the “all out” registration, some pickup
distortion is visible above the 5120-Hz tonewheel limit.

Figure 16a shows a melody “El Cant dels Ocells” played on the violoncello, and two
Hammondized versions, with a “bassoon” (447000000) registration in Figure 16b and a “clarinet”
(006070540) registration in Figure 16c.

6. Conclusions

In this article, we’ve described a novel class of audio effects—the Hammondizer—that imprints
the sonics of the Hammond tonewheel organ on any audio signal. The Hammondizer extends
the recently-introduced modal processor approach to artificial reverberation and effects processing.
We close with comments on two extensions to the Hammondizer audio effect.

We’ve discussed parameterizations of each aspect of the Hammondizer which are chosen to
closely mimic the sonics of the Hammond organ. For example, the mode frequency range of the
Hammondizer is chosen to match the range of tonewheel tunings on the Hammond organ, and the
the vibrato rate and depth are chosen to mimic a standard Hammond organ vibrato tone. In closing,
we wish to mention that these parameterizations can be extended to loosen the connection to the
Hammond organ but widen the range of applicability of the Hammondizer. For instance, the mode
frequencies can be tuned across the entire audio range (≈20–20000 Hz) rather than being limited to
40–5120 Hz. In this context, some of the connection with the Hammond organ is relaxed, but the
drawbar controls still give a powerful and unique interface for pitch shift in a reverberant context.

Although the Hammondizer is designed to process complex program material as a digital audio
effect, it is possible to configure the Hammondizer so that it will act somewhat like a direct Hammond
organ emulation. This can be done by driving the Hammondizer with only sinusoids (e.g., a keyboard
set to a sinusoid tone) which act as control signals, effectively driving n(t) directly. This is particularly
effective using short mode dampings (as in this article). An example is given alongside the other audio
online [51].
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