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Abstract 

Advances in cancer biology are increasingly dependent on integration of heterogeneous datasets. 

Large scale efforts have systematically mapped many aspects of cancer cell biology; however, it 

remains challenging for individual scientists to effectively integrate and understand this data. We 

have developed a new data retrieval and indexing framework that allows us to integrate publicly 

available data from different sources and to combine publicly available data with new or bespoke 

datasets. Beyond a database search, our approach empowered testable hypotheses of new 

synthetic lethal gene pairs, genes associated with sex disparity, and immunotherapy targets in 

cancer. Our approach is straightforward to implement, well documented and is continuously 

updated which should enable individual users to take full advantage of efforts to map cancer cell 

biology.  

Introduction 

Large scale but often independent efforts have mapped phenotypic characteristics of more than 

one thousand human cancer cell lines. Despite this, static lists of univariate data generally cannot 

identify the underlying molecular mechanisms driving a complex phenotype.  

We hypothesized that a global cancer data integrator that could incorporate many types of 

publicly available data including functional genomics, whole genome sequencing, exome 

sequencing, RNA expression data, protein mass spectrometry, DNA methylation profiling, ChIP-

seq, ATAC-seq, and metabolomics data would enable us to link disease features to gene products 

1–15. We set out to build a resource that enables cross platform correlation analysis of multi-omic 

data as this analysis is in and of itself is a high-resolution phenotype.  Multi-omic analysis of 
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functional genomics data with genomic, metabolomic or transcriptomic profiling can link cell 

state or specific signaling pathways to gene function 2,3,13,15–18. Lastly, co-essentiality profiling 

across large panels of cell lines has revealed protein complexes and co-essential modules that can 

assign function to uncharacterized genes 19.  

Problematically, in many cases publicly available data are poorly integrated when 

considering information on all genes across different types of data and the existing data portals 

are inflexible. For example, lists of genes cannot be queried against groups of cell lines stratified 

by mutation status or disease subtype. Furthermore, one cannot integrate new data derived from 

individual labs or other consortia.   

We created the Cancer Data Integrator (CanDI) which is a series of python modules 

designed to seamlessly integrate genomic, functional genomic, RNA, protein and metabolomic 

data into one ecosystem. Our python framework operates like a relational database without the 

overhead of running MySQL or Postgres and enables individual users to easily query this vast 

dataset and add new data in flexible ways.  This was achieved by unifying the indices of these 

datasets via index tables that are automatically accessed through CanDI’s biologically relevant 

Python Classes.  We highlight the utility of CanDI through four types of analysis to demonstrate 

how complex queries can reveal previously unknown molecular mechanisms in synthetic 

lethality, sex disparity and immunotherapy. These data nominate new small molecule and 

immunotherapy anti-cancer strategies in KRAS-mutant colon, lung and pancreatic cancers.  

Results 

CanDI is a global cancer data integrator. 

We set out to integrate three types of data by creating programmatic and biologically 

relevant abstractions that allow for flexible cross referencing across all datasets. Data from the 
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Cancer Cell Line Encyclopedia (CCLE) for RNA expression, DNA mutation, DNA copy number 

and chromosome fusions across more than 1000 cancer cells lines was integrated into our 

database with the functional genomics data from the Cancer Dependency Map (DepMap) (Fig. 

1a,b and Supplementary Fig. 1) 1,12,20. We also integrated protein-protein interaction data from 

the CORUM database along with three additional distinct protein localization databases 4,7,11,21. 

CanDI by default will access the most recent release of data from DepMap although users can 

also specify both the release and data type that is accessed. The key advantage to this approach is 

that CanDI enables one to easily input user defined queries with multi-tiered conditional logic 

into this large integrated dataset to analyze gene function, gene expression, protein localization 

and protein-protein interactions.  

 

CanDI identifies genes that are conditionally essential in BRCA-mutant ovarian cancer.  

The concept that loss-of-function tumor suppressor gene mutations can render cancer 

cells critically reliant on the function of a second gene is known as synthetic lethality. Despite 

the promise of synthetic lethality, it has been challenging to predict or identify genes that are 

synthetic lethal with commonly mutated tumor suppressor genes. While there are many 

underlying reasons for this challenge, we reasoned that data integration through CanDI could 

identify synthetic lethal interactions missed by others. 

A paradigmatic example of synthetic lethality emerged from the study of DNA damage 

repair (DDR)22. Somatic mutations in the DNA double-strand break (DSB) repair genes, 

BRCA1/2, create an increased dependence on DNA single strand break (SSB) repair. This 

dependence can be exploited through small molecule inhibition of PARP1 mediated SSB repair. 

Inhibition of PARP provides significant clinical responses in advanced breast and ovarian cancer 
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patients but they ultimately progress22. Thus, new synthetic lethal associations with BRCA1/2 are 

a potential path towards therapeutic development PARP refractory patients. 

To illustrate the flexibility of CanDI to mine context specific synthetic sick lethal (SSL) 

genetic relationships we hypothesized that the genes that modulate response to a PARP1 

inhibitor might be enriched for selectively essential proliferation or survival of BRCA1/2-mutant 

cancer cells. To test this hypothesis, we integrated the results of an existing CRISPR screen that 

identified genes that modulate response to the PARP inhibitor olaparib23. We then tested whether 

any of these genes are differentially essential for cell proliferation or survival in ovarian cancer 

and in breast cancer cell models that are either BRCA1/2 proficient or deficient (Fig. 1c,d). This 

query revealed that the Fanconi Anemia pathway is selectively essential in BRCA1/2-mutated 

ovarian cancer models but not in BRCA1/2-wild type ovarian cancer, BRCA1/2-mutated breast 

cancer or BRCA1/2-wildtype breast cancer models (Fig. 1e and Supplementary Table 1). To our 

knowledge a SSL phenotype between FANCM and BRCA1/2 has never been reported although 

a recent paper nominated a role for FANCM and BRCA1 in telomere maintenance24. 

Importantly, FANCM is a helicase/translocase and thus considered to be a druggable target for 

cancer therapy25. Clinical genomics data support this SSL hypothesis although this remains to be 

tested in ovarian cancer patient samples26. Because the DepMap currently only allows single 

genes to be queried and does not enable users to easily stratify cell lines by mutation such 

analysis would normally take a user several days to complete manually. Our approach enabled 

this analysis to be completed using a desktop computer in less than two hours, which includes 

the visualization of data presented here (Fig. 1e).    

 

Figure 1. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425918doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425918


 

Figure 1. (A) A schematic showing human cell models integrated by CanDI. (B) A schematic 

illustrating types of data integrated by CanDI. (C) A cartoon of a genome-scale CRISPRi screen 

to identify genes that modulate response to PARP inhibition by Olaparib.  (D) A schematic 

depicting data feature inputs parsed by CanDI. (E) Essentiality of Fanconi Anemia genes in 

ovarian and breast cancer cell lines separated by BRCA mutation status. A Bayes Factor score of 

gene essentiality is displayed by a heat map. N=4 BRCA1/2-mutant ovarian cancer, N=27 

BRCA-wildtype ovarian cancer, N=5 BRCA1/2-mutant breast cancer, N=19 BRCA1/2-wildtype 

breast cancer. 

 

Conditional genetic essentiality in KRAS- and EGFR- mutant NSCLC cells.  

Beyond TSGs, many common driver oncogenes such as KRASG12D are currently 

undruggable, which motivates the search for oncogene specific conditional genetic dependencies. 
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We reasoned that CanDI enables us to rapidly search functional genomics data for genes that are 

conditionally essential in lung cancer cells driven by KRAS- and EGFR-mutations. We stratified 

non-small cell lung cancer cell (NSCLC) models by EGFR and KRAS mutations and then 

looked at the average gene essentiality for all genes within each of these 4 subtypes of NSCLC. 

We observed that KRAS is conditionally self-essential in KRAS-mutant cell models but that no 

other genes are conditionally essential in KRAS-mutant, EGFR-mutant, KRAS-wildtype or 

EGFR-wildtype cell models (Fig. 2a,b and Supplementary Table 2). This finding demonstrates 

that very few---if any--- genes are synthetic lethal with KRAS- or EGFR- in KRAS- and EGFR-

mutant lung cancer cell lines. It may be that these experiments are underpowered or it may be 

that when the genetic dependencies of diverse cell lines representing a disease subtype are 

averaged across a single variable (e.g. a KRAS-mutation) very few common synthetic lethal 

phenotypes are observed27. CanDI provides potential solutions for both of these hypotheses. 

 

CanDI enables a global analysis of conditional essentiality in cancer. 

It is thought that data aggregation across vast landscapes of unknown co-variates does not 

necessarily increase the statistical power to identify rare associations27. Thus, the global analyses 

of aggregated cancer data sometimes lies in systematically sub setting data based on key co-

variates post aggregation. This has been observed in driver gene identification28. Inspired by our 

analysis of TSG and oncogene conditionally essentiality above, we next used CanDI to identify 

genes that are conditionally essential in the context of several hundred cancer driver mutations. 

We first grouped driver mutations (e.g. nonsense or missense) for each driver gene. For this 

analysis, we selected several thousand genes that are in the 85-90th percentile of essentiality 

within the DepMap data and therefore conditionally essential, meaning these genes are required 
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for cell growth or survival in a subset of cell lines. Importantly, it is not known why these several 

thousand genes are conditionally essential. We then tested whether each of these conditionally 

essential genes has a significant association with individual driver mutations. Our analytic 

approach does not weight the number of cell models representing each driver mutation nor does 

this give information on phenotype effect sizes. Our analysis nominates a large number of 

conditionally dependent genetic relationships with both TSG and oncogenes (Fig. 2c,d and 

Supplementary Table 3). A number of the conditional genetic dependencies identified in our 

independent variable analysis above are represented by a limited number of cell models and so 

further investigation is needed to validate these conditional dependencies, but this data further 

suggests that averaging genetic dependencies across diverse cell lines with un-modeled 

covariates obscures conditional SSL relationships. 

To further investigate this hypothesis, we analyzed these same conditional genetic 

relationships with a second analytic approach that weights the number of cell models 

representing each driver mutation. We observed a limited number of conditional genetic 

dependencies that largely consists of oncogene self-essential dependencies as previously 

highlighted for KRAS-mutant cell lines (Fig. 2e-g and Supplementary Table 4)13,29. Thus, 

analysis that averages each conditional phenotype across diverse panels of cell lines with 

unknown covariates masks interesting conditional genetic dependencies.  

 

Figure 2. 
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Figure 2. (A) Average gene essentiality for KRAS and EGFR in groups of NSCLC cell lines 

stratified by KRAS mutation status or by both KRAS and EGFR mutation status. N=38 for 

KRAS-wildtype shown in blue N=19 for KRAS-mutant shown in blue. N=30 for KRAS-

wildtype EGFR-wildtype shown in grey and N=16 for KRAS-mutant EGFR-wildtype shown in 

grey. Gene essentiality is an averaged Bayes Factor score for each group of cell lines. (B) 

Average gene essentiality for KRAS and EGFR in groups of NSCLC cell lines stratified by 

EGFR mutation status or by both EGFR and KRAS mutation status. N=46 for EGFR-wildtype 

shown in blue, N=11 for EGFR-mutant shown in blue. N=30 for EGFR-wildtype KRAS-

wildtype shown in grey and N=8 for EGFR-mutant KRAS-wildtype shown in grey. Gene 

essentiality is an averaged Bayes Factor score for each group of cell lines. (C) P-values from 

Chi2 tests of gene essentiality and nonsense mutations. (D) P-values from Chi2 tests of gene 

essentiality and missense mutations. (E) A scatter plot showing effect size of the change in gene 

essentiality with select missense mutations and the -Log10(P-value) of each essentiality/mutation 

pair. (F) A scatter plot showing effect size of the change in gene essentiality with select nonsense 

mutations and the -Log10(P-value) of each essentiality/mutation pair. (G) A scatter plot showing 

effect size of the change in gene essentiality with all mutations and the -Log10(P-value) of each 

essentiality/mutation pair. 

 

CanDI reveals female and male context specific essential genes in colon, lung and 

pancreatic cancer.   

Cancer functional genomics data is often analyzed without consideration for fundamental 

biological properties such as the sex of the tumor from which each cell line is derived. It is well 

established that biological sex influences cancer predisposition, cancer progression and response 
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to therapy30. We hypothesized that individual genes may be differentially essential across male 

and female cell lines. This hypothesis to our knowledge has never been tested in an unbiased 

large-scale manner. To maximize our statistical power to identify such differences we chose to 

test this hypothesis in a disease setting with large number of relatively homogenous cell lines and 

fewer unknown covariates. Using CanDI, we stratified all KRAS-mutant NSCLC, pancreatic 

adenocarcinoma (PDAC), and colorectal cancer (CRC) by sex and then tested for conditional 

gene essentiality. This analysis identified a number of genes that are differentially essential in 

male or female KRAS-mutant NSCLC, PDAC and CRC models (Fig. 3a-f and Supplementary 

Table 5). The genes that we identify are not common across all three disease types suggesting as 

one might expect that the biology of the tumor in part also determines gene essentiality. To test 

whether any association between differentially essential genes could be identified from 

expression data (e.g essential genes encoded on the Y chromosome) we first used CanDI to 

identify genes that are differentially expressed between male and female cell lines within each 

disease 31. We then plotted the set of differentially essential genes against the differentially 

expressed genes in KRAS-mutant NSCLC, PDAC and CRC models (Fig. 3a,c,e and 

Supplementary Table 6) and found little overlap between these gene lists. A number of genes 

that are more essential in male cells, such as AHCYL1, ENO1, GPI and PKM, regulate cellular 

metabolism. This finding is consistent with previous literature on sex and metabolism32. Our 

analysis demonstrates that stratifying groups of heterogeneous cancer models by three variables, 

in this case tumor type, KRAS mutation status and sex, reveals differentially essential genes. 

CanDi enables biologically principled stratification of data in the CCLE and DepMap by any 

feature associated with a group of cell models.  This stratification allows us to identify genes 

associated with sex, which is not possible with other covariates included. 
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Figure 3. 

 

Figure 3. (A) Differential gene expression and differential gene essentiality in male and female 

CRC cell lines. N=7 male cell lines and N=3 female cell lines. (B) The distribution of Bayes 

factor gene essentiality scores in male and female CRC cell lines. The top seven and bottom 
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three differentially essential genes are shown in violin plots split by the sex of the cell lines. (C) 

Differential gene expression and differential gene essentiality in male and female NSCLC cell 

lines. N=9 male cell lines and N=5 female cell lines. (D) The distribution of Bayes factor gene 

essentiality scores in male and female NSCLC cell lines. The top seven and bottom three 

differentially essential genes are shown in violin plots split by the sex of the cell lines. (E) 

Differential gene expression and differential gene essentiality in male and female PDAC cancer 

cell lines. N=13 male cell lines and N=5 female cell lines. (F) The distribution of Bayes factor 

gene essentiality scores in male and female PDAC cell lines. The top seven and bottom three 

differentially essential genes are shown in violin plots split by the sex of the cell lines. 

 

CanDI enables rapid integration of external datasets to reveal new immunotherapy targets. 

An emerging challenge in the cancer biology is how to robustly integrate larger 

“resource” datasets like CCLE with the vast amount of published data from individual 

laboratories. For example, a big challenge in antibody discovery is identifying specific surface 

markers on cancer cells. To approach these big questions we utilized CanDIs ability to rapidly 

take new datasets, such as raw RNA-seq counts data in a disparate study of interest, then 

normalize and integrate this data into the CCLE, DepMap and protein localization databases 

previously described. Specifically, we rapidly integrated an RNA-seq expression dataset that 

measured the set of transcribed genes in primary lung bronchial epithelial cells from 4 donors 33. 

Classes within CanDI enable rapid application of DESeq2 to assess the differential expression 

between outside datasets and the CCLE. We used this feature to identify genes that are 

differentially expressed between primary lung bronchial epithelial cells and KRAS-mutant 

NSCLC, EGFR-mutant NSCLC or all NSCLC models in CCLE. We then used CanDI to identify 
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genes that are upregulated in cancer cells over normal lung bronchial epithelial cells with protein 

products that are localized to the cell membrane. This analysis of KRAS-mutant, EGFR-mutant 

and pan-NSCLC generated highly similar lists of differentially expressed surface proteins (Fig. 

4a-f and Supplementary Table 7). Notably, overexpression of several of these genes, such as 

CD151 and CD44, has been observed in lung cancer and is associated with poor prognosis 34–36. 

These proteins represent potential new immunotherapy targets in KRAS-driven NSCLC.  

 

Figure 4. 

 

Figure 4. (A) A graph showing genes that are upregulated in KRAS-mutant NSCLC cell lines 

relative to primary human bronchial epithelial cells. A cell membrane protein localization score 
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is shown for each gene. Higher protein localization scores indicate higher confidence 

annotations. (B) A scatter plot showing gene expression for genes that encode cell surface 

proteins in KRAS-mutant NSCLC cell lines and primary human bronchial epithelial cells. N=46 

for KRAS-mutant NSCLC cell lines and N=4 for primary human bronchial epithelial cells. (C) A 

graph showing genes that are upregulated in EGFR-mutant NSCLC cell lines relative to primary 

human bronchial epithelial cells. A cell membrane protein localization score is shown for each 

gene. Higher protein localization scores indicate higher confidence annotations. (D) A scatter 

plot showing gene expression for genes that encode cell surface proteins in EGFR-mutant 

NSCLC cell lines and primary human bronchial epithelial cells. N=21 for EGFR-mutant NSCLC 

cell lines and N=4 for primary human bronchial epithelial cells. (E) A graph showing genes that 

are upregulated in NSCLC cell lines relative to primary human bronchial epithelial cells. A cell 

membrane protein localization score is shown for each gene. Higher protein localization scores 

indicate higher confidence annotations. (F) A scatter plot showing gene expression for genes that 

encode cell surface proteins in NSCLC cell lines and primary human bronchial epithelial cells. 

N=141 for NSCLC cell lines and N=4 for primary human bronchial epithelial cells. 

 

Discussion 

Data integration is a critical requirement in biology research in the era of genomics and 

functional genomics. Large scale efforts such as the CCLE have revealed genomic features of 

more than 1000 cell line models. This data has not to our knowledge previously been integrated 

with functional genomics data in a manner that individual users can enter batched queries that 

are stratified by disease subtype or mutation status. This is not just a small improvement in 

functionality, but rather it is an enabling format that makes possible the types of conditional 
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genomics analyses that drive discovery. Moreover, it fills a fundamental gap in the cancer 

research community that integrates large scale projects with investigator initiated studies 

 Our data framework enables biologists without specialized expertise in bioinformatics to 

use the full spectrum of data in the CCLE and DepMap in a higher throughput and precise 

manner. Using CanDI, we identified genes that are selectively essential in male versus female 

KRAS-mutant NSCLC, PDAC and CRC models. To our knowledge, such analysis has never 

been performed to begin to query the biologic basis of sex disparity in cancer or cancer therapy. 

We illustrate another feature of our framework by analyzing a list of hit genes nominated by a 

bespoke CRISPR drug screen for gene essentiality in BRCA1/2-wild type and BRCA1/2-

mutated breast and ovarian cancer. In a third application, we analyzed the principle of synthetic 

lethality for 17427 genes in 19 KRAS-mutant and 11 EGFR-mutant NSCLC models. We then 

used CanDI to globally identify genes that are conditionally essential in the context of common 

cancer driver mutations. Finally, we nominated 12 potential new immunotherapy targets in 

KRAS-mutant, EGFR-mutant and pan -NSCLC models by using CanDI to identify genes that are 

differentially expressed in normal bronchial epithelial cells versus NSCLC models that are 

localized at the plasma membrane. Our data reveal a wealth of new hypotheses that can be 

rapidly generated from publicly available cancer data. By sharing data flows and use cases with a 

CanDI community we illustrate the ways in which individual research groups can interact with 

massive cancer genomics projects without reinventing tools or relying upon DepMap tool 

releases. We anticipate that CanDI will be widely used in cell biology, immunology and cancer 

research. 

 

Methods 
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CanDI 

The CanDI data integrator is available at https://github.com/Yogiski/CanDI. 

 

CanDI Module Structure 

The CanDI data integrator is a python library built on top of the Pandas that is specialized 

in integrating the publicly available data from The Cancer Dependency Map (DepMap Release: 

2019 Quarter 3)12, The Cancer Cell Line Encyclopedia (CCLE Release: 2019 Quarter 3) 1, The 

Pooled In-Vitro CRISPR Knockout Essentiality Screens Database (PICKLES Library: Avana 

2018 Quarter 4) 20, The Comprehensive Resource of Mammalian Protein Complexes (CORUM)8 

and protein localization data from The Cell Atlas4, The Map of the Cell11, and The In Silico 

Surfaceome7,21. Data from DepMap and CCLE used in the following analyses are from the 

2019Q3 release. Data from PICKLES is from the 2018 Quarter 4 release of DepMap using the 

Avana library. 

Access to all datasets is controlled via a python class called Data. Upon import the data 

class reads the config file established during installation and defines unique paths to each dataset 

and automatically loads the cell line index table and the gene index table. Installation of CanDI, 

configuration, and data retrieval is handled by a manager class that is accessed indirectly through 

installation scripts and the Data class. Interactions with this data are controlled through a parent 

Entity class and several handlers. The biologically relevant abstraction classes (Gene, CellLine 

Cancer, Organelle, GeneCluster, CellLineCluster) inherit their methods from Entity. Entity 

methods are wrappers for hidden data handler classes who perform specific transformations, 

such as data indexing and high throughput filtering.  
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Differential Expression 

In all cases where it is mentioned differential expression was evaluated using the DESeq2 

R package (Release 3.10) 31. Significance was considered to be an adjusted p-value of less than 

0.01. 

 

Differential Essentiality 

 Essentiality scores are taken from the PICKLES database (Avana 2018Q4). To reduce the 

number of hypotheses posed during this analysis the mutual information of gene essentiality was 

calculated using the mutual information metric from the python package SciKitLearn (Version 

0.22.0). Genes with mutual information scores greater than one standard devation above the 

median were removed from consideration. Differential essentiality was evaluated by performing 

a Mann-Whitney u-test between two groups on every gene that passed the mutual information 

filter. Significance was considered to be a p-value of less than 0.01. Magnitude of differential 

essentiality of a given gene was shown as the difference in mean Bayes factors between two 

groups of cell lines. 

 

Protein Localization Confidence 

 Protein localization data was assembled from The Cell Atlas4, The Map of the Cell11, and 

The In Silico Surfaceome7,21. Confidence annotations were taken from the supplemental data of 

each paper and put on a number scale from 0 to 4 and summed for a total confidence score for 

each localization annotation for every gene where across all three papers. The analysis shown in 

Figure 4 represents a gene list that was further manually curated to remove the genes that are 
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localized to the intracellular space at the cell membrane revealing cell surface protein targets that 

are highly expressed in NSCLC cancer models over normal lung bronchial epithelial cells 4,7,11,21. 

 

DepMap Creative Commons License 

When an individual user runs CanDI they are downloading DepMap data and thus are 

agreeing to a CC Attribution 4.0 license (https://creativecommons.org/licenses/by/4.0/). 

 

Synthetic Lethality of Fanconi Anemia Genes in Ovarian and Breast Cancer Models 

 We made a list of the top 50 gene hits that confer sensitivity to PARP inhibition in HeLa 

cells23. Using CanDI the essentiality scores of these top hits were visualized across all ovarian 

cancer cell models in PICKLES (Avana 2018Q4). FANCA and FANCE showed selective 

essentiality in the BRCA1/2 mutant ovarian cancer cell lines. Following this observation CanDI 

was used to gather the gene essentiality for all FANC genes in the fanconi anemia pathway. 

CanDI was then used to visualize these data across all ovarian and breast cancer cell lines, 

sorting by BRCA1/2 mutation status. 

Synthetic Lethality in KRAS and EGFR mutant Cell Lines 

 CanDI was leveraged to bin NSCLC cell lines present in both CCLE (Release: 2019Q3) 

and PICKLES (Avana 2018Q4) into 8 groups. KRAS mutant and KRAS wild type cell lines with 

and without EGFR mutants removed as well as EGFR mutant and EGFR wild type cell lines 

with and without KRAS mutants removed. The mean essentiality score for every gene in the 

genome was calculated for every group of cell lines. Synthetic lethality score per gene is defined 

as the change in mean essentiality from the mutant groups to the wild type groups. 
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Pan Cancer Synthetic Lethality Analysis 

 A set of 299 core oncogenes and tumor suppressor driver mutations was chosen for 

analysis37. To test the effect of these gene’s mutations on gene essentiality CanDI was leveraged 

to split into two groups: a nonsense mutation group containing genes annotated as tumor 

suppressors (N=153) and a missense mutation group containing genes annotated as oncogenes 

with specific driver protein changes (N=53). CanDI was then used to collect a core set of genes 

with highly variable essentiality. To do this the Bayes factors from the PICKLES database 

(Avana 2018Q4) were converted to binary numeric variables. Bayes factors over 5 were assigned 

a 1=essential and Bayes factors under 5 were assigned a 0=non-essential. Genes were then sorted 

buy their variance across cell lines and genes between the 85th and 95th percentile were used for 

this analysis (N=2340). To determine a short list of genes with which to follow up on Chi2 tests 

were applied to the 95940 gene pairs in the missense group and the 603720 gene pairs in the 

tumor suppressor group. Three new groups were formed for further analysis: the first consisted 

of the significant gene/mutation pairs from the oncogenic group, the second consisted of the 

significant gene/mutation pairs from the tumor suppressor group, and the third was a 

combination of the significant pairs from both groups with no discrimination on the type of 

mutations considered. 

These groups were further analyzed for differential essentiality via the Mann Whitney 

method described above and the Cohens D effect size were calculated to measure the extent of 

the phenotype. 

 

Differential Expression and Essentiality of Male and Female KRAS driven cancers 
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 We used CanDI to gather all cell lines that are present in both PICKLES (Avana 2018Q4) 

and CCLE (Release 2019Q3). CanDI was then leveraged to put these cell lines into the following 

tissue groups: KRAS mutant Colon/Colorectal, PDAC, and NSCLC. Each tissue group was then 

split into male and female sub-groups. Differential expression was analyzed by applying the 

methods described above to raw RNA-seq counts data from CCLE (Release: 2019Q3). Genes 

with adjusted p-values less than 0.01 were considered significantly differentially expressed. 

Differential essentiality was analyzed using the methods described above on the previously 

described sex-subgroups for each tissue type. Genes with p-values less than 0.01 were 

considered significantly differentially essential between male and female cell models. For each 

tissue type the distributions of the top 7 significantly differentially essential genes were 

highlighted in comparison with the bottom 3 as a negative control. 

 

Differential expression of benign and malignant cancer cell lines 

 We downloaded human bronchial epithelial (HBE) RNA-seq data from Gillen et al via 

the European Nucleotide Archive to use as a benign lung tissue model33. This 4 data set contains 

gene expression data for primary HBE cells cultured from three different donors and also NHBE 

cells (Lonza CC-2541, a mixture of HBE and human tracheal epithelial cells). We then used 

CanDI to put NSCLC models into three different groups: KRAS mutant, EGFR mutant, and all 

cell lines. For our benign model raw counts were quantified via kallisto38. Raw counts for our 

malignant cell lines were queried via CanDI. DESeq2 was then applied to evaluate the 

differential expression between our normal lung tissue model and our three malignant lung tissue 

groups. The results from DESeq2 were then filtered by significance (adjusted p-value < 0.01). To 

filter based on potential immunotherapy targets we removed all genes not annotated as being 
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localized to the plasma membrane, and genes with localization confidence scores lower than six. 

Genes that were obviously mis-annotated as surface proteins were also manually removed.  

Supplementary Figure/Table Legends 

Supplementary Figure 1. 

 

 

Supplementary Figure 1. An Object-oriented schema diagram showing core structure of CanDI 

software. 

Supplementary Table 1. A table containing raw PICKLES Bayes factors displayed in the heat 

map of Fig. 1e. 

Supplementary Table 2. A table containing mean PICKLES Bayes factors for each series 

displayed in Fig. 2a,b.  

A
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 Supplementary Table 3. A table containing the data for all chi2 tests performed to generate Fig. 

2c,d.  

Supplementary Table 4. A table containing the data for scatter plots shown in Fig. 2e,f,g.  

Supplementary Table 5. A table containing the data from the differential essentiality analysis 

for all three tissues in Fig. 3a-f.   

Supplementary Table 6. A table containing the data from the differential expression analysis 

for all three tissues in Fig. 3a,c,e. 

Supplementary Table 7. A table containing the differential expression analysis data merged 

with the location data for all three tissues shown in Fig. 4. 
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