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ABSTRACT 

Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage 
of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines 
activating the same signaling pathway have different biological roles. We found that IL-27 
induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing 
comparable levels of STAT3 phosphorylation. Mathematical and statistical modelling of IL-6 
and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Ra, as the 
main dynamical processes contributing to sustained pSTAT1 by IL-27. Mutation of Tyr613 on 
IL-27Ra decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on 
STAT3 phosphorylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene 
expression program, which required sustained STAT1 phosphorylation and IRF1 expression 
and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor 
coupling exhibited by IL-6/IL-27 was altered in patients with Systemic lupus erythematosus 
(SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy 
controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of 
JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 
activation by IL-6. Our data show that receptor and STATs concentrations critically contribute 
to shape cytokine responses and generate functional pleiotropy in health and disease.  
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INTRODUCTION 

IL-27 and IL-6 both have intricate functions regulating inflammatory responses (1). IL-27 is a 
hetero-dimeric cytokine comprised of p28 and EBI3 subunits (2). IL-27 exerts its activities by 
binding GP130 and IL-27Rα receptor subunits in the surface of responsive cells, triggering the 
activation of the JAK1/STAT1/STAT3 signaling pathway. IL-27 elicits both pro- and anti-
inflammatory responses, although the later activity seems to be the dominant one (3). IL-27 
stimulation inhibits RORgt expression, thereby suppressing Th-17 commitment and limiting 
subsequent production of pro-inflammatory IL-17 (4, 5). Moreover, IL-27 induces a strong 
production of anti-inflammatory IL-10 on (Tbet+ and FoxP3-) Tr-1 cells (6-8) further 
contributing to limit the inflammatory response. IL-6 engages a hexameric receptor complex 
comprised of each of two copies of IL-6Ra, GP130 and IL-6 (9), triggering the activation, as 
IL-27 does, of the JAK1/STAT1/STAT3 signaling pathway. However, opposite to IL-27, IL-6 is 
known as a paradigm pro-inflammatory cytokine (10, 11). IL-6 inhibits lineage differentiation 
to Treg cells (12) while promoting Th-17 (13, 14), thus supporting its pro-inflammatory role. 
How IL-27 and IL-6 elicit opposite immuno-modulatory activities despite activating almost 
identical signaling pathways is currently not completely understood.  

The relative and absolute STATs activation levels seem to have intricate roles, which lead to 
a strong signaling and functional plasticity by cytokines. Although IL-6 robustly activates 
STAT3, it is capable to mount a considerable STAT1 response as well (15). Moreover, in the 
absence of STAT3, IL-6 induces a strong STAT1 response comparable to IFNg – a prototypic 
STAT1 activating cytokine (16). Likewise, the absence of STAT1 potentiates the STAT3 
response for IL-27, which normally elicits a strong STAT1 response, rendering it to mount an 
IL-6-like response (15). Furthermore, negative feedback mechanisms like SOCSs and 
phosphatases have been described as critical players influencing STAT1 and STAT3 
phosphorylation kinetics and thereby shaping their signal integration for GP130-utilizing 
cytokines (17-20). Yet, how all these molecular components are integrated by a given cell to 
produce the desired response is still an open question. Among the IL-6/IL-12 cytokine family, 
IL-27 exhibits a unique STAT activation pattern. The majority of GP130-engaging cytokines 
activate preferentially STAT3, with activation of STAT1 being an accessory or balancing 
component (21, 22). IL-27, however, triggers STAT1 and STAT3 activation with high potency 
(23). Indeed, different studies have shown that IL-27 responses rely on either STAT1 (24-26) 
or STAT3 activation (7, 27). Moreover, recent transcriptomics studies showed that in the 
absence of STAT3, IL-6 and IL-27 lost more than 75% of target gene induction. Yet, STAT1 
was the main factor driving the specificity of the IL-27 versus the IL-6 response, highlighting a 
critical interplay of STAT1 and STAT3 engagement (28).  

While the biological responses induced by IL-27 and IL-6 have been extensively studied (3, 
11), the very initial steps of signal activation and kinetic integration by these two cytokines 
have not been comprehensively analysed. Since the different biological outcomes elicited by 
IL-27 and IL-6 are most likely encoded in the early events of cytokine stimulation, here we 
specifically aimed to identify the molecular determinants underlying functional selectivity by 
IL-27 in human T-cells. We asked how a defined cytokine stimulus is propagated in time over 
multiple layers of signaling to produce the desired response. To this end, we probed IL-27 and 
IL-6 signaling at different scales, ranging from cell surface receptor assembly and early 
STAT1/3 effector activation to an unbiased and quantitative multi-omics approach: phospho-
proteomics after early cytokine stimulation, kinetics of transcriptomic changes and alteration 
of the T-cell proteome upon prolonged cytokine exposure.  
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IL-6 and IL-27 induced similar levels of assembly of their respective receptor complexes, 
which resulted in comparable phosphorylation of STAT3 by the two cytokines. IL-27, on the 
other hand, triggered a more sustained STAT1 phosphorylation. To decipher the molecular 
events which determine sustained STAT1 phosphorylation by IL-27, we mathematically model 
the STAT1 and STAT3 signaling kinetics induced by each of these cytokines. We identified 
differential binding of STAT1 and STAT3 to IL-27Ra and GP130, respectively, as the main 
factor contributing to a sustained STAT1 activation by IL-27. At the transcriptional level, IL-27 
triggered the expression of a unique gene program, which strictly required the cooperative 
action between sustained pSTAT1 and IRF1 expression to drive the induction of an interferon-
like gene signature that profoundly shaped the T-cell proteome. Interestingly, our 
mathematical models of IL-6 and IL-27 signaling predicted that changes in receptor and STAT 
expression could fundamentally change the magnitude and timescale of the IL-6 and IL-27 
responses. We found high levels of STAT1 expression in SLE patients when compared to 
healthy donors, which correlated with biased STAT1 responses induced by IL-6 and IL-27 in 
these patients. Strikingly, we could specifically inhibit STAT1 activation by IL-6 using 
suboptimal doses of the JAK inhibitor Tofacitinib. This could provide a new strategy to 
specifically target individual STATs engaged by cytokines. 
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RESULTS: 

IL-27 induces a more sustained STAT1 activation than HypIL-6 in human Th-1 cells 

IL-6 and IL-27 are critical immuno-modulatory cytokines. While IL-6 engages a hexameric 
surface receptor comprised of two molecules of IL-6Ra and two molecules of GP130 to trigger 
the activation of STAT1 and STAT3 transcription factors (Figure 1a), IL-27 binds GP130 and 
IL-27Ra to trigger activation of the same STATs molecules (Figure 1a). Despite sharing a 
common receptor subunit, GP130, and activating similar signaling pathways, these two 
cytokines exhibit non-redundant immuno-modulatory activities, with IL-6 eliciting a potent pro-
inflammatory response and IL-27 acting more as an anti-inflammatory cytokine. Here, we set 
to investigate the molecular rules that determine the functional specificity elicited by IL-6 and 
IL-27 using human Th-1 cells as a model experimental system. Due to the challenging 
recombinant expression of the human IL-27, we have recombinantly produced a murine 
single-chain variant of IL-27 (p28 and EBI3) which cross-reacts with the human receptors and 
triggers potent signaling, comparable to the signaling output produced by commercial human 
IL-27 (29) (Supp. Fig. 1a). In addition, we have used a linker-connected single-chain fusion 
protein of IL-6Ra and IL-6 termed HyperIL-6 (HypIL-6) (30) to diminish IL-6 signaling variability 
due to changes in IL-6Ra expression during T cell activation (31). 

CD4+ T cells from human buffy coat samples were isolated by magnetic activated cell sorting 
(MACS) and grew under Th-1 polarizing conditions. Th-1 cells were then used to study in vitro 
signaling by IL-27 and IL-6 (Supp. Fig. 1b). We took advantage of a barcoding methodology 
allowing high-throughput multiparameter flow cytometry to perform detailed dose/response 
and kinetics studies induced by HypIL-6 and IL-27 in Th-1 cells (32) (Supp. Fig. 1b). Dose-
response experiments with IL-27 and HypIL-6 on Th-1 cells showed concentration-dependent 
phosphorylation of STAT1 and STAT3. Phosphorylation of STAT1/3 was more sensitive to 
activation by IL-27 with an EC50 of ~20pM compared to ~400pM for HypIL-6 (Figure 1b). 
Despite this difference in sensitivity, both cytokines yielded the same activation amplitude for 
pSTAT3. For pSTAT1, however, we observed a significantly reduced maximal amplitude for 
HypIL-6 relative to IL-27 (Figure 1b). We next performed kinetic studies to assess whether the 
poor STAT1 activation by HypIL-6 was a result from different activation kinetics. For STAT3, 
we saw the peak of phosphorylation after ~15-30 minutes, followed by a gradual decline. Both 
cytokines exhibited an almost identical sustained pSTAT3 profile, with ~20% of activation still 
seen after 3h of continuous stimulation. Interestingly, IL-27 did not only activate STAT1 with 
higher amplitude but also more sustained than HypIL-6 (Figure 1c). This could be better 
appreciated when pSTAT1 levels were normalized to maximal MFI for each cytokine, with IL-
27 inducing clearly a more sustain phosphorylation of STAT1 than HypIL-6 (Supp. Fig. 1c). 
The same phenotype was observed in other T-cell subsets of activated PBMCs 
(Supp. Fig. 1d). As cell surface GP130 levels are significantly reduced upon T-cell activation 
(33), we next investigated whether the transient STAT1 activation profile induced by HypIL-6 
resulted from limited availability of GP130. For that we generated a RPE1 cell clone stably 
expressing ten times higher levels of GP130 in its surface (Figure 1d, right panel). Stimulation 
of this RPE1 clone with HypIL-6 resulted in a more sustained activation of STAT3, with very 
little effect on STAT1 activation kinetics when compared to RPE1 wild type cells, suggesting 
that GP130 receptor density does not contribute to the transient STAT1 activation kinetics 
elicited by HypIL-6 (Figure 1d). 

Ligand-induced cell-surface receptor assembly by IL-27 and HypIL-6 
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We next investigated whether IL-27 and HypIL-6 elicited differential cell surface receptor 
engagement that could explain their distinct signaling output. For that, we measured the 
dynamics of receptor assembly in the plasma membrane of live cells by simultaneous dual-
colour total internal reflection fluorescence (TIRF) imaging. RPE1 cells were chosen as a 
model experimental system since they do not express endogenous IL-27Ra (Supp. Fig. 1e). 
We used previously described RPE1 GP130 KO cells (Supp. Fig. 2a) (34) to transfect and 
express tagged variants of IL-27Ra and GP130, to allow quantitative site-specific 
fluorescence cell surface labelling by dye-conjugated nanobodies (NBs) (Figure 1e) as 
recently described in (35). For both IL-27Ra and GP130 we found a random distribution and 
unhindered lateral diffusion of individual receptor monomers (Figure 1f). Single molecule co-
localization combined with co-tracking analysis was then used to identify correlated motion of 
IL-27Ra and GP130 which was taken as a readout for receptor heterodimer formation (36) 
(Figure 1f, Figure 1 supp. Movie 1). In the resting state, we did not observe pre-assembly of 
IL-27Ra and GP130. However, after stimulation with IL-27 we found substantial 
heterodimerization (Figure 1f & 1g, Supp. Fig. 2b, Figure 1 supp. Movie 1 & 2). At elevated 
laser intensities, bleaching analysis of individual complexes confirmed a one-to-one (1:1) 
complex stoichiometry of IL-27Ra and GP130, whereas single-molecule Förster resonance 
energy transfer (FRET) further corroborated close molecular proximity of the two receptor 
chains (Figure 1h). We also observed association and dissociation events of receptor 
heterodimers, pointing to a dynamic equilibrium between monomers and dimers as proposed 
for other heterodimeric cytokine receptor systems (37, 38) (Figure1 supp. Movie 3). 

To measure homodimerization of GP130 by HypIL-6, we stochastically labelled GP130 with 
equal concentrations of the same NB species conjugated to either of the two dyes (39). We 
saw strong homodimerization of GP130 after stimulation with HypIL-6 (Figure 1g, 
Supp. Fig. 2b , Figure 1 supp. Movie 4). Homodimerization was confirmed either by single-
color dual-step bleaching or dual-color single-step bleaching as shown for other homodimeric 
cytokine receptors (Supp. Fig. 2c) (40). For both cytokine receptor systems, we saw a 
cytokine-induced reduction of the diffusion mobility, which has been ascribed to increased 
friction of receptor dimers diffusing in the plasma membrane. However, we note that HypIL-6 
stimulation impaired diffusion of GP130 more strongly than IL-27 did, possibly indicating faster 
receptor internalization (Supp. Fig. 2d). Based on the dimerization data, we were able to 
calculate the two-dimensional equilibrium dissociation constants (𝐾!"!) according to the law of 
mass action for a dynamic monomer-dimer equilibrium: for IL-27-induced heterodimerization 
of IL-27Ra and GP130, we calculated a 2D KD of ~0.81 µm-2. In activated T-cells with high 
levels and a significant excess of IL-27Ra over GP130, this 𝐾!"! ensures strong receptor 
assembly by IL-27 (41). The 2D KD for GP130 homodimerization by HypIL-6 was ~0.21 µm-2. 
This higher affinity is most likely due to the two high-affinity binding sites engaged in the 
hexameric receptor complex (9). However, in T-cells the expression of GP130 can be 
particularly low, thus, probably limiting HypIL-6. Taken together, these experiments marked 
ligand-induced receptor assembly as the initial step triggering downstream signaling for both 
IL-27 and HypIL-6, with no obvious differences in their receptor activation mechanism which 
could support the observed more sustained STAT1 activation elicited by IL-27. 

Mathematical and statistical analysis of HypIL-6 and IL-27 induced STAT kinetic 
responses 

To gain further insight into the molecular rules and kinetics that define IL-27 sustained STAT1 
phosphorylation, we developed two mathematical models of the initial steps of HypIL-6 and 
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IL-27 receptor-mediated signaling, respectively. The mathematical model for each cytokine 
considers the following events: i) cytokine association and dissociation to a receptor chain 
(Figure 2a, Supp. Fig. 3a and 3b, top panel), ii) cytokine-induced dimer association and 
dissociation (Supp. Fig. 3a and 3b, bottom panel), iii) STAT1 (or STAT3) binding and 
unbinding to dimer (Supp. Fig. 3c and 3d), iv) STAT1 (or STAT3) phosphorylation when bound 
to dimer (Supp. Fig. 3c and 3d), v) internalisation/degradation of complexes (Supp. Fig. 3e 
and 3f), and vi) dephosphorylation of free STAT1 (or STAT3) (Supp. Fig. 3g). Details of model 
assumptions, model parameters and parameter inference have been provided in the Material 
and Methods under Mathematical models and Bayesian inference.  

We first wanted to explore if there existed a potential feedback mechanism in the way in which 
receptor molecules are internalised/degraded over time. To this end, and for each cytokine 
model, we considered two hypotheses: hypothesis 1 assumes that receptor complexes 
(Supp. Fig. 3e and 3f) are internalised with rate proportional to the concentration of the 
species in which they are contained (e.g., different dimer types), and hypothesis 2, that 
receptor complexes are internalised with rate proportional to the product of the concentration 
of the species in which they are contained and the sum of the concentrations of free 
phosphorylated STAT1 and STAT3. Hypothesis 2 is consistent with a negative feedback 
mechanism in which pSTAT molecules translocate to the nucleus, where they increase the 
production of negative feedback proteins such as SOCS3. As described in the Material and 
Methods (Mathematical models and Bayesian inference) we made use of the RPE1 
experimental data set to carry out mathematical model selection for the two different 
hypotheses. We found that hypothesis 1 could explain the data better than hypothesis 2, with 
a probability of 70%. This result can be seen in Figure 2b, in which we plot, for different values 
of the distance threshold between the mathematical model output and the data (see 
Mathematical models and Bayesian inference in Material and Methods, for details), the relative 
probability of each hypothesis, where hypothesis 1 is denoted 𝐻# and hypothesis 2 is denoted 
𝐻". It can be observed that for smaller values of the distance threshold, which indicate better 
support from the data to the mathematical model, the relative probability of hypothesis 1 is 
higher than that of hypothesis 2. 

We then made use of this result to explore the mathematical models for both cytokines under 
hypothesis 1, in particular we performed parameter calibration. To this end (and as described 
in Material and Methods under Mathematical models and Bayesian inference), we carried out 
Bayesian inference together with the mathematical models (hypothesis 1) and the 
experimental data sets to quantify the reaction rates (see Supp. Fig. 3) and initial molecular 
concentrations (see Table 1 and Table 2). The Bayesian parameter calibration of the two 
models of cytokine signaling allows one to quantify the observed kinetics of pSTAT1/3 
phosphorylation induced by HypIL-6 and IL-27 in RPE1 and Th-1 cells (Figure 2c). Substantial 
differences in STAT association rates to and dissociation rates from the dimeric complexes 
were inferred to critically contribute to defining pSTAT1/3 kinetics. Figure 2d shows the kernel 
density estimates (KDEs) for the posterior distributions of the rate constants and initial 
concentrations in the models.  𝑘$%&  denotes the rate at which STAT𝑖 binds to GP130 and 𝑘$'&  
denotes the rate at which STAT𝑖 binds to IL-27Ra, for 𝑖 ∈ 	 {1,3}. Our results indicate that 
STAT1 and STAT3 exhibit different binding preferences towards IL-27Ra and GP130, 
respectively. While STAT1 exhibits stronger binding to IL-27Ra than GP130 (𝑘#'& > 𝑘#%& ), 
STAT3 exhibits stronger binding to GP130 than IL-27Ra,  (𝑘(%& > 𝑘('& ) in agreement with 
previous observations (42).  
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IL-27Rα cytoplasmic domain is required for sustained pSTAT1 kinetics 

The Bayesian inference carried out with the experimental data and the mathematical models 
clearly indicated statistically significant differences in the binding rates of STAT1/STAT3 to 
GP130 and IL-27Ra, to account for the different phosphorylation kinetics exhibited by HypIL-
6 and IL-27. Thus, we next investigated whether the more sustained STAT1 activation by IL-
27 resulted from its specific engagement of IL-27Ra. For that, we used RPE1 cells, which do 
not express IL-27Ra (Supp. Fig. 1e), to systematically dissect the contribution of the IL-27Ra 
cytoplasmic domain to the differential pSTAT activation by IL-27. IL-27Ra’s intracellular 
domain is very short and only encodes two Tyr susceptible to be phosphorylated in response 
to IL-27 stimulation, i.e., Tyr543 and Ty613 (Figure 3a). We mutated these two Tyr to Phe to 
analyse their contribution to IL-27 induced signaling. We stably expressed WT IL-27Ra as 
well as different IL-27Ra Tyr mutants in RPE1 cells with comparable cell surface expression 
levels (Figure 3b). Importantly, this reconstituted experimental system mimicked the 
pSTAT1/3 activation kinetics of T-cells (Supp. Fig. 4a). As the endogenous GP130 expression 
levels remain unaltered, all generated clones exhibited very comparable responses to HypIL-
6 (Figure 3b, bottom panels). IL-27 triggered comparable levels of STAT1 and STAT3 
activation in RPE1 cells reconstituted with IL-27Ra WT and IL-27Ra Y543F mutant, 
suggesting that this Tyr residue does not contribute to signaling by this cytokine (Figure 3b 
and Supp. Fig. 4b). In RPE1 cells reconstituted with the IL-27Ra Y613F or Y543F-Y613F 
mutants, IL-27 stimulation resulted in 80% of the STAT3 activation, but only 20% of the STAT1 
activation levels induced by this cytokine relative to IL-27Ra WT (Figure 3b) (43). These 
observations suggest a tight coupling of STAT phosphorylation to one of the receptor chains; 
namely, IL-27Ra with pSTAT1 and GP130 with pSTAT3, respectively. We next tested how 
the cytoplasmic domains of GP130 and IL-27Ra shape the pSTAT kinetic profiles. Thus, we 
generated a stable RPE1 clone expressing a chimeric construct comprised of the extracellular 
and transmembrane domain of IL-27Ra but the cytoplasmic domain of GP130 (Figure 3c, 
Supp. Fig. 5a). Again, as both cell lines express unaltered endogenous GP130 levels, they 
exhibited comparable responses to HyIL-6 (Figure 3c). Strikingly, this domain-swap resulted 
in a transient pSTAT1 kinetic response by IL-27 comparable to HypIL-6 stimulation. STAT3 
activation on the other hand remained unaltered suggesting that the cytoplasmic domain of 
IL-27Ra is essential for a sustained pSTAT1 response but not for pSTAT3. 

Two plausible scenarios could explain the observed pSTAT1/3 activation differential by HypIL-
6 and IL-27: i) IL-27Ra-JAK2 complex phosphorylates STAT1 faster than GP130-JAK1 
complex or ii) pSTAT1 is more quickly dephosphorylated in the IL-6/GP130 receptor 
homodimer. In the latter case, pSTAT deactivation by constitutively expressed phosphatases 
could be an additional factor of regulation. Indeed, SHP-2 has been described to bind to 
GP130 and shape IL-6 responses (44). However, our Bayesian inference results (together 
with the mathematical models and the experimental data) identified the STAT/receptor 
association rates as the only rates that could account for the greater and more sustained 
activation of STAT1 by IL-27. We note (as described in the Material and Methods) that the 
phosphorylation rate, denoted by q, of STAT1 and STAT3 when bound to a dimer (homo- or 
hetero-) has been assumed to be independent of the STAT type and the receptor chain. 
Moreover, the model also included dephosphorylation of free pSTAT molecules, and predicted 
that the rates at which these reactions occur (𝑑# and 𝑑() had rather similar posterior 
distributions, hence arguing against the potential role of phosphatases to specifically target 
STAT1 upon HypIL-6 stimulation. To distinguish between the two plausible scenarios, we next 
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determined the rates of pSTAT1/3 dephosphorylation by blocking JAK activity upon cytokine 
stimulation making use of the JAK inhibitor Tofacitinib in RPE1 cells. Tofacitinib was added 
15 minutes after stimulation with either cytokine and pSTAT1 and pSTAT3 levels were 
measured at the indicated times. JAK inhibition markedly shortened the pSTAT1/3 activation 
profiles induced by both cytokines (Figure 3d, Supp. Fig. 5b). The relative dephosphorylation 
rates could then be determined by the signal intensity ratio of +/- Tofacitinib. Even though 
pSTAT1 levels were more affected by JAK inhibition than those of pSTAT3, the observed 
relative changes were nearly identical for IL-27 and HypIL-6. These findings were also 
confirmed for Th-1 cells (Supp. Fig. 5c & 5d) and indicate, that selective phosphatase activity 
cannot serve as an explanation for the pSTAT1/3 differential by HypIL-6 and IL-27, in 
agreement with our mathematical modelling predictions. Similarly, we tested whether 
neosynthesis of feedback inhibitors such as SOCS3 (19) would selectively impair signaling by 
HypIL-6 but not by IL-27. To this end we pre-treated cells with Cycloheximide (CHX) and 
followed the pSTAT1/3 kinetics induced by the two cytokines (Supp. Fig. 6a & 6b). CHX 
treatment resulted in more sustained pSTAT3 activity for both cytokines. To our surprise, 
STAT1 phosphorylation by IL-27 was even more sustained while pSTAT1 levels induced by 
IL-6 remained unaffected. These observations exclude that feedback inhibitors selectively 
impair STAT1 activation kinetics by HypIL-6 and thus do not account for the faster STAT1 
dephosphorylation kinetics observed under HypIL-6 stimulation. Overall our data from the 
chimera and mutant experiments, which were not used in the Bayesian calibration, provide 
strong and independent support, as well as validation, to the mathematical models of HypIL-
6 and IL-27 signaling, and point to the differential association/dissociation of STAT1 and 
STAT3 to IL-27Ra and GP130, respectively, as the main factor defining STAT phosphorylation 
kinetics in response to HypIL-6 and IL-27 stimulation. 

Unique and overlapping effects of IL-27 and HypIL-6 on the Th-1 phosphoproteome 

Thus far, we have investigated the differential activation of STAT1/STAT3 induced by HypIL-
6 and IL-27. Next, we asked whether IL-27 and IL-6 induced the activation of additional and 
specific intracellular signaling programs that could contribute to their unique biological profiles. 
To this end, we investigated the IL-27 and HypIL-6 activated signalosome using quantitative 
mass-spectrometry-based phospho-proteomics. MACS-isolated CD4+ were polarized into Th-
1 cells and expanded in vitro for stable isotope labelling by amino acids in cell culture (SILAC). 
Cells were then stimulated for 15 min with saturating concentrations of IL-27, HypIL-6 or left 
untreated. Samples were enriched for phosphopeptides (Ti-IMAC), subjected to mass 
spectrometry and raw files analysed by MaxQuant software (Supp. Fig. 7a). In total we could 
quantify ~6400 phosphopeptides from 2600 proteins, identified across all conditions 
(unstimulated, IL-27, HypIL-6) for at least two out of three tested donors. For IL-27 and HypIL-
6 we detected similar numbers of significantly upregulated (87 vs. 78) and downregulated (155 
vs. 140) phosphorylation events (Figure 4a) and systematically categorized them in context 
with their cellular location and ascribed biological functions (Supp. Fig. 7b & 7c) (45). The two 
cytokines shared approximately half of the upregulated and one third of the downregulated 
phospho-peptides (Supp. Fig. 8a) but also exhibited differential target phosphorylation 
(Figure 4b and Supp. Fig. 8b). As expected, we found multiple members of the STAT protein 
family among the top phosphorylation hits by the two cytokines, validating our study 
(Figure 4b & 4c). In line with our previous observations, we detected the same relative 
amplitudes for tyrosine phosphorylated STAT3 and STAT1. In addition to tyrosine-
phosphorylation, we detected robust serine-phosphorylation on S727 for STAT1 and STAT3 
(Figure 4c). While pS-STAT1 activity correlated with pY-STAT1 with IL-27 being more potent 
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than HypIL-6, this was not the case for STAT3. Despite an identical pY-STAT3 
phosphorylation profile, HypIL-6 induced a ~50% higher pS-STAT3 relative to IL-27 
(Figure 4c). These results were corroborated, following the phosphorylation kinetics of pS-
STAT1 and pS-STAT3 by flow-cytometry (Figure 4d).  

Given the overlapping phospho-proteomic changes, gene ontology (GO) analysis associated 
several sets of phosphopeptides with biological processes that were mostly shared between 
both cytokines (Figure 4e, Supp. Fig. 8c). A large set of phospho-peptides was linked to 
transcription initiation (including JAK/STAT signaling) or mRNA modification (Figure 5e). 
Interestingly, IL-27 stimulation was associated to negative regulation of RNA polymerase II, 
whereas a positive regulation was detected for HypIL-6. A closer look into the functional 
regulation of RNA-pol II activity by the two cytokines revealed that multiple proteins involved 
in this process were differentially regulated by HypIL-6 and IL-27 (Figure 5f). While positive 
regulators of RNA-pol II transcription, such as Negative Elongation Factor A (NELFA), 
PPM1G, RCHY1 and POL2RA, were much more phosphorylated in response to HypIL-6 than 
IL-27, negative regulators of RNA-pol II transcription, such as LARP7, were much more 
engaged by IL-27 treatment than by HypIL-6 (Figure 4f). Interestingly, in a previous study we 
linked RNA-pol II regulation with the levels of STAT3 S727phosphorylation induced by HypIL-
6 via recruitment of CDK8 to STAT3 dependent genes (46). Our phospho-proteomic analysis 
thus, suggests that IL-27 and HypIL-6 recruit different transcriptional complexes that ultimately 
could contribute to provide gene expression specificity by the two cytokines. Additionally, we 
identified several interesting IL-27-specific phosphorylation targets. One example was 
Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5). Phosphorylated UBR5 leads 
to ubiquitination and subsequent degradation of Rorgc (47), the key transcription factor 
required for Th-17 lineage commitment, thus limiting Th-17 differentiation (Supp. Fig. 8d). A 
second example is PAK2, which phosphorylates and stabilizes FoxP3 leading to higher levels 
of TReg cells (Supp. Fig. 8d) (48). Moreover, IL-27 stimulation led to a very strong 
phosphorylation of BCL2-associated agonist of cell death (BAD), a critical regulator of T-cell 
survival and a well-known substrate of the PAK2 kinase (49). Overall, our data show a large 
overlap between the IL-6 and IL-27 signaling program, with a strong focus on JAK/STAT 
signaling. However, IL-27 engages additional signaling intermediaries that could contribute to 
its unique immuno-modulatory activities. Further studies will be required to assess how these 
IL-27 specific signaling pockets contribute to shape IL-27 responses. 

Kinetic decoupling of gene induction programs depends on sustained STAT1 activation 
and IRF1 expression by IL-27 

Next, we investigated how the different kinetics of STAT activation induced by HypIL-6 and 
IL-27 ultimately modulated gene expression by these two cytokines. To this end, we performed 
RNA-seq analysis of Th-1 cells stimulated with HypIL-6 or IL-27 for 1h, 6h and 24h to obtain 
a dynamic perspective of gene regulation. We identified ~12500 shared genes that could be 
quantified for all three donors and throughout all tested experimental conditions. In a first step, 
we compared how similar the gene programs induced by HypIL-6 and IL-27 were. Principal 
component analysis (PCA) was run for a subset of genes, found to be significantly up- 
(total ~250) or downregulated (total ~950) by either of the experimental conditions (p value£ 
0.05, fold change ³+2 or £-2). At one hour of stimulation HypIL-6 and IL-27 induced very 
similar gene programs, with the two cytokines clustering together in the PCA analysis 
regardless of whether we focused on the subsets of upregulated or downregulated genes 
(Figure 5a). However, the similarities between the two cytokines changed dramatically in the 
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course of continuous stimulation. While the two cytokines induced the downregulation of 
comparable gene programs at 6h and 24h stimulation, as denoted by the close clustering in 
the PCA analysis (Figure 5a, right panel) and the fraction of shared genes (~40%, Figure 5b, 
Supp. Fig. 9a-c, Supp. Fig. 10a), this was not observed for upregulated genes. Although the 
two cytokines induced comparable gene upregulation programs after 1h of stimulation (~80% 
shared genes), this trend almost completely disappeared at later stimulation times 
(Figure 5a & 5b, Supp. Fig. 10b). This is well-reflected by the absolute numbers of up- or 
downregulated genes observed for IL-27 and HypIL-6 (Figure 5c). Stimulation with both 
cytokines yielded a similar trend of gene downregulation (Figure 5c, right panel). However, 
while HypIL-6 stimulation resulted in a spike of gene upregulation at 1h that quickly 
disappeared at later stimulation times, IL-27 stimulation was capable to increase the number 
of upregulated genes beyond 6h of stimulation and maintains it even after 24h (Figure 5c, left 
panel). This “kinetic decoupling” of gene induction seems to have a striking functional 
relevance. Gene set enrichment analysis (GSEA) (50) identified several reactome pathways 
to be enriched for IL-27 over the course of stimulation – most of them linked with Interferon 
signaling and immune responses (Figure 5d). In contrast, for HypIL-6 stimulation no pathway 
enrichment was detected. Most importantly, the vast majority of IL-27-induced genes that were 
associated to these pathways belonged to genes upregulated by IL-27 treatment and that 
have been previously linked to STAT1 activation (51, 52) (Supp. Fig. 10c). Although HypIL-6 
treatment resulted in the induction of some of these genes, their expression was very transient 
in time, in agreement with the short STAT1 activation kinetic profile exhibited by HypIL-6 
(Supp. Fig. 10b & 10c). 

Next, we performed cluster analysis to find further similarities and discrepancies between the 
gene expression programs engaged by HypIL-6 and IL-27 (Figure 5e). Since genes 
downregulated by IL-27 and HypIL-6 showed overall good similarity throughout the whole 
kinetic series, we mainly focused on differences in upregulated gene induction. We identified 
three functionally relevant gene clusters. The first gene cluster corresponds to genes that are 
transiently and equally induced by HypIL-6 and IL-27. These genes peak after one hour and 
return to basal levels after 6h and 24h of stimulation (Figure 5e). Interestingly, this cluster 
contains classical IL-6-induced and STAT3-dependent genes, such as members of the NFkB 
and Jun/Fos transcriptional complex (53), as well as the feedback inhibitor Suppressor Of 
Cytokine Signaling 3 (SOCS3) (54) and T-cell early activation marker CD69. (Figure 5e). A 
second cluster of genes corresponded to genes that were persistently activated by IL-27 but 
only transiently by HypIL-6 (Figure 5e). Among these genes we found classical STAT1-
dependent genes, such as SOCS1, Programmed Cell Death Ligand 1 (PDL1 = CD274) (55) 
and members of the interferon-induced protein with tetratricopeptide repeats (IFIT) family. The 
third cluster of genes corresponded to genes exhibiting strong and sustained activation by IL-
27 after 6h and 24h stimulation but no activation by HypIL-6 at all. This “2nd wave” of gene 
induction by IL-27 was almost exclusively comprised of classical Interferon Stimulated Genes 
(ISGs) (Supp. Fig. 10c), such as STAT1 & 2, Guanylate Binding Protein 1 (GBP1), GBP2, 4 
& 5, and IRF8 & 9.  

It is worth mentioning, that genes in the third cluster appear to require persistent STAT1 
activation (56, 57) and were the basis for the IFN signature identified in our reactome pathway 
analysis. Still, we were surprised about the magnitude of this 2nd gene wave. Even though IL-
27 exerts a sustained pSTAT1 kinetic profile, pSTAT1 levels were down to ~10% of maximal 
amplitude after 3h of stimulation. We reasoned that additional factors could further amplify the 
STAT1 response for IL-27 but not for HypIL-6. Within the 1st wave of STAT1-dependent genes, 
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we also spotted the transcription factor Interferon Response Factor 1 (IRF1), that was 
continuously induced throughout the kinetic series in response to IL-27 but only transiently 
spiking after 1h of HypIL-6 stimulation (Figure 5e). IRF1 expression was shown to prolong 
pSTAT1 kinetics (58) and to be required for IL-27-dependent Tr-1 differentiation and function 
(59). We confirmed the kinetics of IRF1 protein expression by flow cytometry and showed 
higher and more sustained protein levels after IL-27 stimulation relative to HypIL-6 (Figure 6a). 
Next, we tested in our RPE1 cell system, whether siRNA mediated knockdown of IRF1 would 
alter the gene induction profiles of certain STAT1 or STAT3-dependent marker genes. In 
RPE1 cells, reconstituted with IL-27Ra, IRF1 protein levels were peaking around 6h after 
stimulation with IL-27 and transfection with IRF1-targeting siRNA knocked down expression 
by >80% (Figure 6b). Importantly, knockdown of IRF1 did not alter the overall kinetics of 
pSTAT1 and pSTAT3 activation (Figure 6c). Induction of STAT1-dependent genes STAT1, 
GBP5 and OAS1 as well as STAT3-dependent gene SOCS3 were followed by RT qPCR 
(Figure 6d). Interestingly, up to 6h of stimulation, the gene induction curves were identical for 
control- and IRF1-siRNA treated cells. Later than 6h – that is, when IRF1 protein levels are 
peaking – the gene induction was decreased between 40-70% in absence of IRF1. Strikingly, 
expression of SOCS3, a classical STAT3-dependent reporter gene was transient and 
independent on IRF1 levels, highlighting that IRF1 selectively amplifies STAT1-dependent 
gene induction. Taken together our data support a scenario whereby IL-27 by exhibiting a 
kinetic decoupling of STAT1 and STAT3 activation is capable of triggering independent gene 
expression waves, which ultimately contribute to shape its distinct biology. 

IL-27-induced STAT1 response drives global proteomic changes in Th-1 cells 

Next, we aimed to uncover how the distinct gene expression programs engaged by HypIL-6 
and IL-27 ultimately relate to alterations of the Th-1 cell proteome. For that, we continuously 
stimulated SILAC labelled Th-1 cells for 24h with saturating doses of IL-27 and HypIL-6 and 
compared quantitative proteomic changes to unstimulated controls (Figure 7a). We quantified 
~3600 proteins present in all three biological replicates and in all tested conditions 
(unstimulated/IL-27/HypIL-6). Both cytokines downregulated a similar number of proteins (IL-
27: 57, HypIL-6: 52) (Figure 7b) with approximately half of them being shared by the two 
cytokines, mimicking our observations in the RNA-seq studies (Figure 7c, Supp. Fig. 11a). 
With 68 upregulated proteins, IL-27 was almost twice as potent as HypIL-6 (35 proteins) with 
very little overlap. 

Among the upregulated proteins by IL-27 but not HypIL-6, we detected several proteins with 
described immune-modulatory functions on T-cells. One of these proteins was Transforming 
Growth Factor b (TGF-b), which is a key regulator with pleiotropic functions on T-cells (60). 
TGF-b has been identified to synergistically act with IL-27 to induce IL-10 secretion from Tr-1 
cells – thus accounting for one of the key anti-inflammatory functions of IL-27 (61). On the 
other hand, we also found SELPLG-encoded protein RSGL-1 which is critically required for 
efficient migration and adhesion of Th-1 cells to inflamed intestines (62, 63). Interestingly, we 
found LARP7 moderately upregulated by IL-27. This negative regulator for RNA pol II was 
also identified in our phospho-target screening and selectively engaged by IL-27 (Figure 4f). 
IL-27 and HypIL-6 share ~60% of downregulated proteins, but without strong functional 
patterns. Both cytokines downregulated several proteins related to mitotic cell cycle (LIG1, 
CSNK2B, PSMB1) mRNA processing and splicing (NCBP2, PCBP2, NUDT21) (64). 

Strikingly, a significant number (~40%) of proteins upregulated by IL-27 belong to the group 
of ISGs (Figure 7b & 7c, Supp. Fig. 11b). This particular set of proteins including STAT1, 
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STAT2, MX Dynamin like GTPase 1 (MX1), Interferon Stimulated Gene 20 (ISG20) or 
Poly(ADP-Ribose) Polymerase Family Member 9 (PARP9) was not markedly altered by 
HypIL-6. Of note: the overall expression patterns of the most significantly altered proteins are 
congruent to the gene induction patterns observed after 6h and 24h (Figure 7d & 7e, 
Supp. Fig. 10b). Similar to this, GSEA reactome analysis identified again pathways associated 
with interferon signaling and cytokine/immune system but failed to detect any significant 
functional enrichment by HypIL-6 (Figure 7e, Supp. Fig. 11b & 11c). Finally, we correlated 
RNAseq-based gene induction patterns with detected proteomic changes. To our surprise we 
only found a relatively low number of shared hits. However, the identified proteins belong 
exclusively to a group upregulated by IL-27 (Figure 7f). They are all located in the “2nd gene 
wave” cluster and all of them are regulated by ISGs (Figure 5e). Taken together these results 
provide compelling evidence that sustained pSTAT1 activation by IL-27 accounts for its gene 
induction and proteomic profiles, thus, giving a mechanistic explanation for the diverse 
biological outcomes of IL-27 and IL-6. Our observations are in good agreement with previous 
findings in cancer cells, showing that particularly the involvement of STAT1 activation is 
responsible for proteomic remodeling by IL-27 (65). 

Receptor and STAT concentrations determine the nature of the IL-6/IL-27 response  

Our data suggest that STAT molecules compete for binding to a limited number of phospho-
Tyr motifs in the intracellular domains of cytokine receptors. A direct consequence derived 
from this hypothesis is that cells can adjust and change their responses to cytokines by altering 
their concentrations of specific STATs or receptors molecules. To assess to what degree 
immune cells differ in their expression of cytokine receptors and STATs, we investigated levels 
of IL-6Ra, GP130, IL-27Ra, STAT1 and STAT3 protein expression across different immune 
cell populations making use of the Immunological Proteomic Resource (ImmPRes - 
http://immpres.co.uk) database. Strikingly, the level of expression of these proteins change 
dramatically across the populations studied (Figure 8a), suggesting that these cells could 
potentially produce very different responses to HypIL-6 and IL-27 stimulation.  

In order to quantify (and predict) how changes in expression levels of different proteins modify 
the kinetics of pSTAT, we made use of the two mathematical models of HypIL-6 and IL-27 
stimulation and the parameters inferred with Bayesian methods. Our mathematical models 
could accurately reproduce the experimental results generated across our study, i.e., signaling 
by the IL-27Ra chimeric and IL-27Ra-Y616F mutant receptors and dose/response studies 
(Supp. Fig. 12a-c), making use of the posterior parameter distributions generated from the 
Bayesian parameter calibration. Having developed mathematical models which are able to 
accurately explain the experimental data (Supp. Fig. 5b and 5c) and reproduce independent 
experiments (Fig. 3b and 3c), we then sought to use the models to predict pSTAT signaling 
kinetics under different concentration regimes of receptors and STATs. To simplify the 
simulations, we focused our analysis in GP130 and STAT1 proteins, two of the proteins that 
greatly vary in the different immune populations (Figure 8a). As baseline values for the 
concentrations [𝐺𝑃130(0)], [𝐼𝐿27𝑅𝑎(0)] [𝑆𝑇𝐴𝑇1(0)] and [𝑆𝑇𝐴𝑇3(0)] we used approximately 
the median values from the posterior distributions for each parameter: [𝐺𝑃130(0)] = 25 nM, 
[𝐼𝐿27𝑅𝑎(0)] = 50 nM and [𝑆𝑇𝐴𝑇1(0)] = [𝑆𝑇𝐴𝑇3(0)] = 500 nM. To see the effect of varying 
GP130 concentrations on pSTAT signaling, we decreased the initial concentration of GP130 
and simulated the model using the accepted parameters sets from the ABC-SMC to inform 
the other parameter values. A tenfold reduction on GP130 concentration ([𝐺𝑃130(0)] =
2.5𝑛𝑀) resulted in a striking loss in pSTAT1 levels induced by HypIL-6, with very little effect 
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on pSTAT3 levels induced by this cytokine (Figure 8b). pSTAT1/3 kinetics induced by IL-27 
however was not affected by this decrease in GP130 concentration (Figure 8b). Interestingly, 
the HypIL-6 signaling profile predicted by our model at low GP130 concentrations strongly 
resemble the one induced by HypIL-6 in Th-1 cells (Figure 1c), where very low levels of GP130 
are found, further confirming the robustness of the predictions generated by our mathematical 
models. When the concentration of STAT1 was increased by a factor of ten ([𝑆𝑇𝐴𝑇1(0)] =
5000 nM, both HypIL-6 and IL-27 induced significantly higher levels of pSTAT1 activation 
(Figure 8b). pSTAT3 levels were not affected for HypIL-6 stimulation but were decreased for 
IL-27 stimulation (Figure 8b), further indicating the competitive nature of the binding of STAT1 
and STAT3 to IL-27Ra and GP130. Overall, our mathematical model predicts that changes 
on GP130 and STAT1 expression produce a substantial remodeling of the HypIL-6 and IL-27 
signalosome, which ultimately could lead to aberrant responses. 

STAT1 protein levels in SLE patients modify HypIL-6 and IL-27 signaling responses 

STAT1 is a classical IFN responsive gene and STAT1 levels are highly increased in 
environments rich in IFNs (66). Thus, we next ask whether STAT1 levels would be increased 
in SLE patients, an examples of disease where IFNs have been shown to correlate with a poor 
prognosis, making use of available gene expression datasets (67). We did not find differences 
in the expression of GP130, IL-6Ra or IL-27Ra in SLE patients (Figure 8c). However, we 
detected a significant increase in the levels of STAT1 and STAT3 transcripts in these patients 
when compared to healthy controls, with the increase on STAT1 expression being significantly 
more pronounced (Figure 8c). Since our mathematical model predicted that increases in 
STAT1 expression could significantly change cytokine-induced cellular responses by HypIL-6 
and IL-27, we next experimentally tested this prediction. For that, we primed Th-1 cells with 
IFNa2 overnight to increase total STAT1 levels (and to a lower extent STAT3) in these cells 
(Supp. Fig. 13a). While both HypIL-6 and IL-27 induced comparable levels of pSTAT3 in 
primed and non-primed Th-1 cells, levels of pSTAT1 induced by the two cytokines were 
significantly upregulated in primed Th-1 cells, resulting in a bias STAT1 response and 
confirming our model predictions (Figure 8d). We next investigated whether this bias STAT1 
activation by HypIL-6 and IL-27 observed in IFNa2-primed Th-1 cells was also present in SLE 
patients. For that we collected PBMCs from six SLE patients or five age-matched healthy 
controls and measured STAT1 and STAT3 expression, as well as pSTAT1 and pSTAT3 
induction by HyIL-6 and IL-27 after 15 min treatments in CD4 T cells. Importantly, comparable 
results to those obtained with IFN-primed Th-1 cells were obtained, with signaling bias towards 
pSTAT1 in CD4+ T cells from SLE patients stimulated with HypIL-6 and IL-27 (Figure 8e, 
Supp. Fig. 13b & c), further supporting the fact that STAT concentrations play a critical role in 
defining cytokine responses in autoimmune disorders.  

Our data show that STAT1 and STAT3 compete for phospho-Tyr motifs in GP130, with STAT3 
having an advantage resulting from its tighter affinity to GP130. Finally, we asked whether 
crippling JAK activity by using sub-saturating doses of JAK inhibitors could differentially affect 
STAT1 and STAT3 activation by HypIL-6 and therefore rescue the altered cytokine responses 
found in SLE patients. To test this, RPE1 and Th-1 cells were stimulated with saturated 
concentrations of HypIL-6 and titrating the concentrations of Tofacitinib, a clinically approved 
JAK inhibitor. Strikingly, Tofacitinib inhibited HypIL-6 induced pSTAT1 more efficiently than 
pSTAT3 in both RPE1 cells and Th-1 cells (Figure 8f). At 50 nM concentration, Tofacitinib 
inhibited pSTAT1 levels induced by HypIL-6 by 60%, while only inhibited pSTAT3 levels by 
30% (Figure 8f) – an effect that we did not observe for IL-27 stimulation (Supp. Fig. 13d). 
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Overall, our results show that the changes in STATs concentration found in autoimmune 
disorders shape cytokine signaling responses and could contribute to disease progression. 
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DISCUSSION:  
Cytokine pleiotropy is the ability of a cytokine to exert a wide range of biological responses in 
different cell types. This functional pleiotropy has made the study of cytokine biology extremely 
challenging given the strong cross-talk and shared usage of key components of their signaling 
pathways, leading to a high degree of signaling plasticity, yet still allowing functional selectivity 
(68, 69). Here we aimed to identify the underlying determinants that define cytokine functional 
selectivity by comparing IL-27 and IL-6 at multiple scales – ranging from cell surface receptors 
to proteomic changes. We show that IL-27 triggers a more sustained STAT1 phosphorylation 
than IL-6, via a high affinity STAT1/IL-27Ra interaction centered around Tyr613 on IL-27Ra. 
This in turn results in a more sustained IRF1 expression induced by IL-27, which leads to the 
upregulation of a second wave of gene expression unique to IL-27 and comprised of classical 
ISGs. We go one step further and show that this strong receptor/STAT coupling is altered in 
autoimmune disorders where STATs concentrations are often dysregulated. Increased 
expression of STAT1 in SLE patients biases HypIL-6 and IL-27 responses towards STAT1 
activation, further contributing to the worsening of the disease. By using suboptimal doses of 
the JAK inhibitor Tofacitinib we show that specific STAT proteins engaged by a given cytokine 
can be targeted. Overall, our study highlights a new layer of cytokine signaling regulation, 
whereby STAT affinity to specific cytokine receptor phospho-Tyr motifs controls STAT 
phosphorylation kinetics and the identity of the gene expression program engaged, ultimately 
ensuing the generation of functional diversity through the use of a limited set of signaling 
intermediaries. 

The tight coupling of one receptor subunit to one particular STAT that we have identified in 
our study is a rather unusual phenomenon for heterodimeric cytokine receptor complexes, 
which has been first suggested by Owaki et al. (27). Generally, the entire signaling output 
driven by a cytokine-receptor complex emanates from a dominant receptor subunit, which 
carries several Tyr residues susceptible of being phosphorylated (70, 71). This in turn results 
in competition between different STATs for binding to shared phospho-Tyr motifs in the 
dominant receptor chain, leading to different kinetics of STAT phosphorylation as observed 
for IL-6 stimulation (15) (Figure 1b). Moreover, this localized signaling quantum allows 
phosphatases and feedback regulators – induced upon cytokine stimulation – to act in synergy 
to reset the system to its basal state, generating a very synchronous and coordinated signaling 
wave. Although very effective, this molecular paradigm presents its limitations. STAT 
competition for the same pool of phospho-Tyr makes the system very sensitive to changes in 
STAT concentration. IFNg primed cells, which exhibit increased STAT1 levels, trigger an IFNg-
like STAT1 response upon IL-6 stimulation (16). IL-10 anti-inflammatory properties are lost in 
cells with high levels of STAT1 expression, as a result of a pro-inflammatory environment rich 
in IFNs (72). Indeed, we show that STAT1 transcripts levels are increased in Crohn’s disease 
and SLE patients and they contributed to alter IL-6 responses. Strikingly, IL-27 appears to 
have evolved away from this general model of cytokine signaling activation. Our results show 
that STAT1 activation by IL-27 is tightly coupled to IL-27Ra, while STAT3 activation by this 
cytokine mostly depends on GP130. This decoupled  STAT1 and STAT3 activation by IL-27 
is possible thanks to the presence of a putative high affinity STAT1 binding site on IL-27Ra 
that resembles the one present in IFNgR1 (41). As a result of this, IL-27 can trigger sustained 
and independent phosphorylation of both STAT1 and STAT3. This unique feature of IL-27 
allows it to induce robust responses in dynamic immune environments. Indeed, our 
mathematical models of cytokine signaling and Bayesian inference, together with the 
experimental observations show that changes in receptor concentration minimally affected 
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pSTAT1/3 induced by IL-27, while they fundamentally alter IL-6 responses. Overall, our data 
show that cytokine responses are versatile and adapt to the continuously changing cell 
proteome, highlighting the need to measure cytokine receptors and STATs expression levels, 
in addition to cytokine levels, in disease environments to better understand and predict altered 
responses elicited by dysregulated cytokines. 

In recent years, it has become apparent that the stability of the cytokine-receptor complex 
influences signaling identity by cytokines (73). Short-lived complexes activate less efficiently 
those STAT molecules that bind with low affinity phospho-Tyr motif in a given cytokine receptor 
(34). Our current results further support this kinetic discrimination mechanism for STAT 
activation. Our statistical inference identified differences in STAT recognition to the cytokine 
receptor phospho-Tyr motifs as one of the major determinants of STAT phosphorylation 
kinetics. This parameter alone was sufficient to explain transient and sustained STAT1 
phosphorylation induced by IL-6 and IL-27, respectively, without the need to invoke the action 
of phosphatases or negative feedback regulators such as SOCSs. Indeed, our results indicate 
that the rate of STAT1 dephosphorylation is similar between the IL-6 and IL-27 systems, 
suggesting that phosphatases do not contribute to these early kinetic differences. Moreover, 
blocking protein translation, and therefore the upregulation of negative feedback regulators by 
IL-6 treatment did not result in a more sustained STAT1 phosphorylation by IL-6, again 
indicating that the transient kinetics of STAT1 phosphorylation by IL-6 is encoded at the 
receptor level and does not require further regulation. However, recent reports have found 
that the amplitude of STAT1 phosphorylation in response to IL-6 is regulated by levels of 
PTPN2 expression, suggesting that phosphatases can play additional roles in shaping IL-6 
responses beyond controlling the kinetics of STAT activation (74). STAT1 phosphorylation 
levels by IL-27 on the other hand were significantly more sustained in the absence of protein 
translation, suggesting that negative feedback mechanisms are required to downmodulate 
signaling emanating from high affinity STAT-receptor interactions. Overall our results suggest 
that while phosphatases and negative feedback regulators play an important role in 
maintaining cytokine signaling homeostasis (75), the kinetics of STAT activation appears to 
be already encoded at the level of receptor engagement, thus ensuring maximal efficiency 
and signal robustness. 

Cytokine signaling plasticity can occur at the level of receptor activation. In the past years, a 
scenario has emerged suggesting that the absolute number of signaling active receptor 
complexes is a critical determinant for signal output integration. Accordingly, specific biological 
responses were shown to be tuned either by abundance of cell surface receptors (76, 77) or 
by the level of receptor assembly (34, 38, 78). Here, we show for the first time that IL-27-
induced dimerization of IL-27Ra and GP130 at the cell surface of live cells – in good 
agreement with previous studies on heterodimeric cytokine receptor systems (38, 73). For IL-
27, the receptor subunits IL-27Ra and GP130 can be expressed at different ratios as seen for 
naïve vs. activated T-cells (79) as well as intestinal cells (80). On T-cells, particularly after 
activation, IL-27Ra is expressed in strong excess over GP130, rendering GP130 as the 
limiting factor for receptor complex assembly (41). Interestingly, we observe that in addition to 
a faster kinetic of STAT1 phosphorylation, HypIL-6 treatment induces a lower maximal 
amplitude in pSTAT1 activation in T cells. This is in stark contrast to our results in RPE1 cells, 
where high abundance of GP130 (~3000-4000 copies of cell surface GP130) is found. In these 
cells both cytokines elicited similar amplitudes of STAT1 phosphorylation. Our results suggest 
that surface receptor density in synergy with STATs binding dynamics to phospho-Tyr motif 
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on cytokine receptors act to define the amplitude and kinetics of STAT activation in response 
to cytokine stimulation. 

The distinct STAT1 and STAT3 kinetic profiles induced by IL-6 and IL-27 are the prerequisite 
for time-correlated decoupling of genetic programs: a “shared GP130/STAT3-dependent 
wave” and an IL-27-“unique IL-27Ra/STAT1-dependent wave”. However, pSTAT1 levels 
induced by IL-27 at 3h were down to ~10% of maximal amplitude, suggesting that additional 
factors would be required to amplify the initial STAT1 response elicited by IL-27. We observed 
that IL-27 induces the expression of an early wave of classical STAT1-dependent genes, 
which is also shared by IL-6. However, while IL-27 induces the upregulation of these genes 
throughout the entire duration of the experiment, IL-6 only resulted in a transient spike. We 
reasoned that this additional factor required for IL-27 signal amplification would be among 
these early STAT1-dependent genes. Among this set of genes we found the transcription 
factor IRF1, which had been shown to act as a feedback amplificant for pSTAT1 activity (58). 
Importantly, IRF1 protein levels have been shown to be upregulated in response to IL-27 and 
IFNg but not to IL-6 stimulation in hepatocytes (81). IRF1 plays a key role in chromatin 
accessibility which is critically required for IL-27-induced differentiation of Tr1 cells and 
subsequent IL-10 secretion (59). Here, we could prove that the contribution of IRF1 on STAT1- 
but not STAT3-dependent genes is a generic feature of IL-27 signaling. This readily explains 
the significant transcriptomic overlap of IL-27 with type I (82) or type II interferons (15) after 
long-term stimulation with these cytokines. Along this line, it is not surprising that IL-27 – 
beyond its well-described effects on T-cell development – can also mount a considerable 
antiviral response as shown in hepatic cells and PBMCs (83, 84). Our results suggest that by 
modulating the kinetics of STAT phosphorylation, cytokines can modulate the expression of 
accessory transcription factors, such as IRF1, that act in synergy with STATs to fine-tune gene 
expression and provide functional diversity. 
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MATERIAL AND METHODS 
 
Protein expression and purification: 

Murine IL-27 was cloned as a linker-connected single-chain variant (p28+EBI3) as described 
in (29). Human HyperIL-6 (HypIL-6), and murine single-chain IL-27 were cloned into the 
pAcGP67-A vector (BD Biosciences) in frame with an N-terminal gp67 signal sequence and a 
C-terminal hexahistidine tag, and produced using the baculovirus expression system, as 
described in (85). Baculovirus stocks were prepared by transfection and amplification in 
Spodoptera frugiperda (Sf9) cells grown in SF900II media (Invitrogen) and protein expression 
was carried out in suspension Trichoplusiani ni (High Five) cells grown in InsectXpress media 
(Lonza).  

Purification was performed using the method described in (86). For IL-27, the cells were 
pelleted with centrifugation at 2000 rpm, prior to a precipitation step through addition of Tris 
pH 8.0, CaCl2 and NiCl2 to final concentrations of 200mM, 50mM and 1mM respectively. The 
precipitate formed was then removed through centrifugation at 6000 rpm. Nickel-NTA agarose 
beads (Qiagen) were added and the target proteins purified through batch binding followed by 
column washing in HBS-Hi buffer (HBS buffer supplemented to 500mM NaCl and 5% glycerol, 
pH 7.2). Elution was performed using HBS-Hi buffer plus 200mM imidazole. Final purification 
was performed by size exclusion chromatography on an ENrich SEC 650 300 column (Biorad), 
again equilibrated in HBS-Hi. Concentration of the purified sample was carried out using 
10kDa Millipore Amicon-Ultra spin concentrators. For HypIL-6, proteins were purified likewise, 
but in 10 mM HEPES (pH 7.2) containing 150 mM NaCl. Recombinant cytokines were purified 
to greater than 98% homogeneity.  
For cell surface labeling, the anti-GFP nanobody (NB) “enhancer” and “minimizer” were used, 
which bind mEGFP with subnanomolar  binding affinity (87). NB was cloned into pET-21a with 
an additional cysteine at the C-terminus for site-specific fluorophore conjugation in a 1:1 
fluorophore:nanobody stoichiometry. Furthermore, (PAS)5 sequence to increase protein 
stability and a His-tag for purification were fused at the C-terminus. Protein expression in E. 
coli Rosetta (DE3) and purification by immobilized metal ion affinity chromatography was 
carried out by standard protocols. Purified protein was dialyzed against HEPES pH 7.5 and 
reacted with a two-fold molar excess of DY647 maleimide (Dyomics), ATTO 643 maleimide 
(AT643) and ATTO Rho11 maleimide (Rho11) (ATTO-TEC GmbH), respectively. After 1 h, a 
3-fold molar excess (with respect to the maleimide) of cysteine was added to quench excess 
dye. Protein aggregates and free dye were subsequently removed by size exclusion 
chromatography (SEC). A labeling degree of 0.9-1:1 fluorophore:protein was achieved as 
determined by UV/Vis spectrophotometry. 

CD4+ T cell purification and Th-1 differentiation: 

Human buffy coats were obtained from the Scottish Blood Transfusion Service and peripheral 
blood mononuclear cells (PBMCs) of healthy donors were isolated from buffy coat samples by 
density gradient centrifugation according to manufacturer’s protocols (Lymphoprep, 
STEMCELL Technologies). From each donor, 100x106 PBMCs were used for isolation of 
CD4+ T-cells. Cells were decorated with anti-CD4FITC antibodies (Biolegend, #357406) and 
isolated by magnetic separation according to manufacturer’s protocols (MACS Miltenyi) to a 
purity >98% CD4+. Freshly isolated resting CD4+ T cells (3x107 per donor) were activated 
under Th-1 polarizing conditions using ImmunoCult™ Human CD3/CD28 T Cell Activator 
(StemCell, Cat#10971) following manufacturer instructions for 3 days in RPMI-1640, 10% v/v 
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FBS, 100 U/ml penicillin-streptomycin (Gibco) in the presence of the cytokines IL-2 (Novartis, 
#709421, 20 ng/ml), anti-IL-4 antibody (10 ng/ml, BD Biosciences, #554481), IL-12 (20 ng/ml, 
BioLegend, #573002). After three days of priming, cells were expanded for another 5 days in 
the presence of IL-2 (20 ng/ml).  

Human SLE patient samples: 

This study was authorized by the French Competent Authority dealing with Research on 
Human Biological Samples namely the French Ministry of Research. The Authorization 
number is ECH 19/04. To issue such authorization, the Ministry of Research has sought the 
advice of an independent ethics committee, namely the “Comité de Protection des 
Personnes,” which voted positively, and all patients gave their written informed consent. The 
healthy volunteer was recruited to serve as healthy control individuals. Healthy and patients’ 
blood samples were collected in heparinized tubes (BD Vacutainer 368886, BD Biosciences 
San Jose, CA, USA) and PBMC samples were isolated using Ficoll (Pancoll, Pan Biotech 
#P04-60500) density gradient centrifugation. The isolated PBMCs were washed with PBS and 
the remaining red blood cells were lysed using RBC lysis buffer (ACK lysing buffer, Gibco 
#A10492-01), incubate 3min at room temperature. Cells were washed in PBS and resuspend 
the cells with 1ml of freezing medium (with DMSO, PAN Biotech, #P07-90050) and transfer 
the cells in a cryotube. cryotube in a Freezing container (Nalgene) and at -80°C and then 
transferred into liquid nitrogen container for long term storage.  

Classification and demographic information about SLE patients and healthy controls:  

SLE patients were included if they fulfilled the American College of Rheumatology (ACR) 
Classification Criteria (Hochberg MC. Updating the American College of Rheumatology 
revised criteria for the classification of systemic lupus erythematosus (88). Exclusion criteria 
were current intake of 10 mg or more of prednisone or equivalent and/or use of 
immunosupressants within the previous 6 months before inclusion. Use of hydroxychloroquine 
was not an exclusion criterion. Patients were mostly in clinical remission, half with biological 
remission, half with persistent anti native DNA autoantibodies. All SLE patients and healthy 
controls were females between 41 and 58 years old.  

(Phospho-) Proteomics: 

For (phospho-) proteomic experiments, Th-1 cells from each donor were split into three 
different conditions after initial expansion: Light SILAC media (40 mg/ml L-Lysine K0 (Sigma, 
#L8662) and 84 mg/ml L-Arginine R0 (Sigma, #A8094)), medium SILAC media (49 mg/ml L-
Lysine U-13C6 K6 (CKGAS, #CLM-2247-0.25) and 103 mg/ml L-Arginine U-13C6 R6 
(CKGAS, #CLM-2265-0.25)) and heavy SILAC media (49.7 mg/ml L-Lysine U-13C6,U-15N2 
K8 (CKGAS, #CNLM-291-H-0.25) and 105.8 mg/ml L-Arginine U-13C6,U-15N2 R10 (CKGAS, 
#CNLM-539-H-0.25)) prepared in RPMI SILAC media (Thermo Scientific, #88365) 
supplemented with 10% dialyzed FBS (HyClone, #SH30079.03), 5 ml L-Glutamine 
(Invitrogen, #25030024), 5 ml Pen/Strep (Invitrogen, #15140122), 5 ml MEM vitamin solution 
(Thermo Scientific, #11120052), 5 ml Selenium-Transferrin-Insulin (Thermo Scientific, 
#41400045) and expanded in the presence of 20 ng/ml IL-2 and 10 ng/ml anti-IL4 for another 
10 days in order to achieve complete labelling. Media was exchanged every two days. 
Incorporation of medium and heavy version of Lysine and Arginine was checked by mass 
spectrometry and samples with an incorporation greater than 95% were used.  
After expansion, cells were starved without IL-2 for 24 hours before stimulation with 10 nM IL-
27 or 20 nM HyIL-6 for 15 minutes (phosphoproteomics) or 24 h (global proteomic changes). 
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Cells were then washed three times in ice-cold PBS, mix in a 1:1:1 ratio, resuspended in SDS-
containing lysis buffer (1% SDS in 100 mM Triethylammonium Bicarbonate buffer (TEAB)) 
and incubated on ice for 10 min to ensure cell lysis. Then, cell lysates were centrifuged at 
20000 g for 10 minutes at +4°C and supernatant was transferred to a clean tube. Protein 
concentration was determined by using BCA Protein Assay Kit (Thermo, #23227), and 10 mg 
of protein per experiment were reduced with 10mM dithiothreitol (DTT, Sigma, #D0632) for 
1 h at 55°C and alkylated with 20mM iodoacetamide (IAA, Sigma, #I6125) for 30 min at RT. 
Protein was then precipitated using six volumes of chilled (-20°C) acetone overnight. After 
precipitation, protein pellet was resuspended in 1 ml of 100 mM TEAB and digested with 
Trypsin (1:100 w/w, Thermo, #90058) and digested overnight at 37.C. Then, samples were 
cleared by centrifugation at 20000 g for 30 min at +4°C, and peptide concentration was 
quantified with Quantitative Colorimetric Peptide Assay (Thermo, #23275).  
Phosphopeptide enrichment in the peptide fractions generated as described above was 
carried out using MagResyn Ti-IMAC following manufacturer instructions (2BScientific, 
MRTIM002).  

High pH reverse phase fractionation for phosphoproteomics: 
 
Samples were dissolved in 200 μL of 10 mM ammonium formate buffer pH 9.5 and peptides 
are fractionated using high pH RP chromatography. A C18 Column from Waters (XBridge 
peptide BEH, 130Å, 3.5 µm 4.6 X 150 mm, Ireland) with a guard column (XBridge, C18, 3.5 
µm, 4.6 X 20mm, Waters) are used on a Ultimate 3000 HPLC (Thermo-Scientific). Buffers A 
and B used for fractionation consist, respectively of 10 mM ammonium formate in milliQ water 
(Buffer A) and 10 mM ammonium formate in 90% acetonitrile (Buffer B), both buffers were 
adjusted to pH 9.5 with ammonia. Fractions are collected using a WPS-3000FC autosampler 
(Thermo-Scientific) at 1 min intervals. Column and guard column were equilibrated with 2% 
buffer B for 20 min at a constant flow rate of 0.8 ml/min and a constant temperature 0f 21oC. 
Samples (193 µl) are loaded onto the column at 0.8 ml/min, and separation gradient started 
from  2% buffer B, to 8% B in 6 min, then from 8% B to 45% B within  54 min and finaly from 
45% B to 100% B in 5 min. The column is washed for 15 min at 100% buffer B and equilibrated 
at 2% buffer B for 20 min as mentioned above. The fraction collection started 1 min after 
injection and stopped after 80 min (total of 80 fractions, 800 µl each). Each peptide fraction 
was acidified immediately after elution from the column by adding 20 to 30 µl 10% formic acid 
to each tube in the autosampler. The total number of fractions concatenated was set to 10. 
The content of fractions from each set was dried prior to further analysis.  
 
LC-MS/MS Analysis: 
 
LC-MS analysis was done at the FingerPrints Proteomics Facility (University of Dundee). 
Analysis of peptide readout was performed on a Q Exactive™ plus, Mass Spectrometer 
(Thermo Scientific) coupled with a Dionex Ultimate 3000 RS (Thermo Scientific). LC buffers 
used are the following:  buffer A (0.1% formic acid in Milli-Q water (v/v)) and buffer B (80% 
acetonitrile and 0.1% formic acid in Milli-Q water (v/v). Dried fractions were resuspended in 
35µl, 1% formic acid and aliquots of 15 μL of each fraction were loaded at 10 μL/min onto a 
trap column (100 μm × 2 cm, PepMap nanoViper C18 column, 5 μm, 100 Å, Thermo Scientific) 
equilibrated in 0.1% TFA. The trap column was washed for 5 min at the same flow rate with 
0.1% TFA and then switched in-line with a Thermo Scientific, resolving C18 column (75 μm × 
50 cm, PepMap RSLC C18 column, 2 μm, 100 Å). The peptides were eluted from the column 
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at a constant flow rate of 300 nl/min with a linear gradient from 2% buffer B to 5 % buffer B in 
5 min then from 5% buffer B to 35% buffer B in 125 min, and finally from 35% buffer B  to 98% 
buffer B in 2 min. The column was then washed with 98% buffer B for 20 min and re-
equilibrated in 2% buffer B for 17 min. The column was kept at a constant temperature of 
50oC. Q-exactive plus was operated in data dependent positive ionization mode. The source 
voltage was set to 2.5 Kv and the capillary temperature was 250oC. 
A scan cycle comprised MS1 scan (m/z range from 350-1600, ion injection time of 20 ms, 
resolution 70 000 and automatic gain control (AGC) 1x106) acquired in profile mode, followed 
by 15 sequential dependent MS2 scans (resolution 17500) of the most intense ions fulfilling 
predefined selection criteria (AGC 2 x 105, maximum ion injection time 100 ms, isolation 
window of 1.4 m/z, fixed first mass of 100 m/z, spectrum data type: centroid, intensity threshold 
2 x 104, exclusion of unassigned, singly and >7 charged precursors, peptide match preferred, 
exclude isotopes on, dynamic exclusion time 45 s). The HCD collision energy was set to 27% 
of the normalized collision energy. Mass accuracy is checked before the start of samples 
analysis. 
 
Mass spectrometry data analysis: 

Q Exactive Plus Mass Spectrometer .RAW files were analyzed, and peptides and proteins 
quantified using MaxQuant (89), using the built-in search engine Andromeda (90). All settings 
were set as default, except for the minimal peptide length of 5, and Andromeda search engine 
was configured for the UniProt Homo sapiens protein database (release date: 2018_09). 
Peptide and protein ratios only quantified in at least two out of the three replicates were 
considered, and the p-values were determined by Student’s t test and corrected for multiple 
testing using the Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995). 
 
Plasmid constructs: 

For single molecule fluorescence microscopy, monomeric non-fluorescent (Y67F) variant of 
eGFP was N-terminally fused to GP130. This tag (mXFPm) was engineered to specifically 
bind anti-GFP nanobody “minimizer” (aGFP-miNB). This construct was inserted into a 
modified version of pSems-26 m (Covalys) using a signal peptide of Igk. The ORF was linked 
to a neomycin resistance cassette via an IRES site. A mXFPe-IL-27Ra construct was 
designed likewise but is recognized by  aGFP nanobody “enhancer” (mXFPe). The chimeric 
construct mXFP-IL-27Ra (ECD & TMD)-GP130(ICD) was a fusion construct of IL-27Ra (aa 
33-540) and GP130 (aa 645-918).  

Cell lines and media: 

HeLa cells were grown in DMEM containing 10% v/v FBS, penicillin-streptomycin, and L-
glutamine (2 mM). RPE1 cells were grown in DMEM/F12 containing 10% v/v FBS, penicillin-
streptomycin, and L-glutamine (2 mM). RPE1 cells were stably transfected by mXFPe-IL-
27Ra, mutants and the chimeric construct by PEI method according to standard protocols. 
Using G418 selection (0.6 mg/ml) individual clones were selected, proliferated and 
characterized. For comparing receptor cell surface expression levels of stable clones 
expressing variants of IL-27Ra, cells were detached using PBS+2mM EDTA, spun down 
(300g, 5 min) and incubated with “enhancer” aGFP-enNBDy647 (10 nM, 15 min on ice). After 
incubation, cells were washed with PBS and run on cytometer. 
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Flow cytometry staining and antibodies: 

For measuring dose-response curves of STAT1/3 phosphorylation (either Th-1 cells or RPE1 
clones), 96-well plated were prepared with 50µl of cell suspensions at 2x106 cells/ml/well for 
Th-1 and 2x105 cells/ml/well for RPE1. The latter were detached using Accutase (Sigma). 
Cells were stimulated with a set of different concentrations to obtain dose-response curves. 
To this end cells were stimulated for 15 min at 37°C with the respective cytokines followed by 
PFA fixation (2%) for 15 min at RT.  

For kinetic experiments, cell suspensions were stimulated with a defined, saturating 
concentration of cytokines (10 nM IL-27, 20 nM HypIL-6, 100 nM wt-IL-6) in a reverse order 
so that all cell suspensions were PFA-fixed (2%) simultaneously. For pSTAT1/3 kinetic 
experiments at JAK inhibition, Tofacitinib (2 μM, Stratech, #S2789-SEL) was added after 15 
min of stimulation and cells were PFA-fixed in correct order. 

After fixation (15 min at RT), cells were spun down at 300g for 6 min at 4°C. Cell pellets were 
resuspended and permeabilized in ice-cold methanol and kept for 30 min on ice. After 
permeabilization cells were fluorescently barcoded according to (91). In brief: using two NHS-
dyes (PacificBlue, #10163, DyLight800, #46421, Thermo Scientific), individual wells were 
stained with a combination of different concentrations of these dyes. After barcoding, cells are 
pooled and stained with anti-pSTAT1Alexa647 (Cell Signaling Technologies, #8009) and anti-
pSTAT3Alexa488 (Biolegend, #651006) at a 1:100 dilution in PBS+0.5%BSA for 1h at RT. T-cells 
were also stained with anti-CD8AlexaFlour700 (1:120, Biolegend, #300920), anti-CD4PE (1:120, 
Biolegend, #357404), anti-CD3BrilliantViolet510 (1:100, Biolegend, #300448). Cells were analzyed 
at the flow cytometer (Beckman Coulter, Cytoflex S) and individual cell populations were 
identified by their barcoding pattern. Mean fluorescence intensity (MFI) of pSTAT1647and 
pSTAT3488 was measured for all individual cell populations. 
For measuring total STAT levels, methanol-permeabilized cells were stained with anti-
STAT1Alexa647 (1:70, Biolegend, #558560) or anti-STAT3APC (1:50, Biolegend, #560392). Total 
IRF1 levels methanol-permeabilized cells were stained with anti-IRF1Alexa647 (1:50, Biolegend, 
#14105). For measuring cell surface levels of GP130, cells were detached with Accutase 
(Sigma) and stained with anti-GP130APC (1:100, Biolegend, #362006) for 1h on ice. 
 
RNA Transcriptome Sequencing: 

Human Th-1 cells from three donors each (StemCell Technologies) were cultivated and 
stimulated as described in above. Cells were washed in Hank’s balanced salt solution (HBSS, 
Gibco) and snap frozen for storage. RNA was isolated using the RNeasy Kit (Quiagen) 
according to manufacturer’s protocol. All RNA 260/280 ratios were above 1.9. Of each sample, 
1 μg of RNA was used. Transcriptomic analysis was done by Novogene as follows. 
Sequencing libraries were generated using NEBNext® UltraTM RNALibrary Prep Kit for 
Illumina® (NEB, USA) following manufacturer’s recommendations and index codes were 
added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using 
poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations 
under elevated temperature in NEBNext First StrandSynthesis Reaction Buffer (5X). First 
strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse 
Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently performed using 
DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via 
exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext 
Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select 
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cDNA fragments of preferentially 150~200 bp in length, the library fragments were purified 
with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, 
USA) was used with size-selected, adaptor-ligated cDNA at 37 °C for 15 min followed by 5 
min at 95 °C before PCR. Then PCR was performed with Phusion High-Fidelity DNA 
polymerase, Universal PCR primers and Index (X) Primer. At last, PCR products were purified 
(AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 
system.  
 
RNA Sequencing Data Analysis: 

Primary data analysis for quality control, mapping to reference genome and quantification was 
conducted by Novogene as outlined below.  
Quality control: Raw data (raw reads) of FASTQ format were firstly processed through in-
house scripts. In this step, clean data (clean reads) were obtained by removing reads 
containing adapter and poly-N sequences and reads with low quality from raw data. At the 
same time, Q20, Q30 and GC content of the clean data were calculated. All the downstream 
analyses were based on the clean data with high quality.  
Mapping to reference genome: Reference genome and gene model annotation files were 
downloaded from genome website browser (NCBI/UCSC/Ensembl) directly. Paired-end clean 
reads were mapped to the reference genome using HISAT2 software. HISAT2 uses a large 
set of small GFM indexes that collectively cover the whole genome. These small indexes 
(called local indexes), combined with several alignment strategies, enable rapid and accurate 
alignment of sequencing reads.  
Quantification: HTSeq was used to count the read numbers mapped of each gene, including 
known and novel genes. And then RPKM of each gene was calculated based on the length of 
the gene and reads count mapped to this gene. RPKM, (Reads Per Kilobase of exon model 
per Million mapped reads), considers the effect of sequencing depth and gene length for the 
reads count at the same time and is currently the most commonly used method for estimating 
gene expression levels. 
For each identified gene, the fold change was calculated by the ratio of cytokine 
stimulated/unstimulated expression levels within each donor and an unpaired, two-tailed t test 
was applied to calculate p values. Genes were considered to be significantly altered if: p value 
£ 0.05, and log2 fold change ³+1 or £-1. Genes with an RPKM of less than 1 in two or more 
donors were excluded from analysis so as to remove genes with abundance near detection 
limit. Genes without annotated function were also removed. Functional annotation of genes 
(KEGG pathways, GO terms) was done using DAVID Bioinformatics Resource functional 
annotation tool (92, 93). Clustered heatmap was generated using R Studio Pheatmap 
package.  
 
siRNA-mediated knockdown of IRF1 in RPE1 cells: 

A set of four IRF1-siRNAs were purchased from Dharmacon and tested individually to 
determine levels of knockdown achieved. The siRNA providing the highest level of IRF1. 
knockdown (Horizon, LQ-011704-00-0005, siRNA #2: UGAACUCCCUGCCAGAUAU) were 
subsequently used in all the experiments. RPE1-IL27Ra cells were plated in 6-well dishes 
(0.4x106 cells per well) and transfected the next day with IRF1-siRNA or control-GAPDH 
siRNA (Horizon, D-001830-10-05) (Dharmacon) using DharmaFect 1 transfection reagent 
(Dharmacon) following the manufacturer’s instructions for 24h. At different timepoints of IL-27 
(2nM) or HypIL-6 (10nM) stimulation, samples were collected from each one 6-well. Cells were 
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trypsinized and each sample was spun down and pellets snap-frozen in liquid nitrogen for 
subsequent RNA isolation (90%) or PFA-fixed for total IRF1 staining (10%) by flow cytometry. 
 

Real-time quantitative PCR: 

Cells were subject to RNA isolation using the Qiagen RNeasy kit. RNA (100 ng) was reverse 
transcribed to complementary DNA (cDNA) using an iScript cDNA synthesis kit (BioRad, 
#1708890), which was used as template for quantitative PCR. PowerTrack™ SYBR Green 
Master Mix (Takara, #A46109) was used for the reaction with the following primers:  
 

 
b-actin was used as housekeeping gene for normalization. Each siRNA knockdown 
experiment was performed in three replicates with each sample for qPCR being done in two 
technical replicates. 

 
Mathematical models and Bayesian inference: 
 
We developed two new mathematical models, making use of ordinary differential equations 
(ODEs), for the initial steps of cytokine-receptor binding, dimer formation and signal activation 
by HypIL-6 and IL-27, respectively; namely, a set of ODEs for  the HypIL-6 system and a 
separate set of ODEs for the IL-27 system (see end of this section for the set of ODEs included 
in each model). These ODEs describe the rate of change of the concentration for each 
molecular species considered in the receptor-ligand systems (HypIL-6 and IL-27) over time. 
By solving these ODEs, a time-course for the concentration of total (free and bound) 
phosphorylated STAT1 and STAT3 can be obtained and compared to the experimental data 
(Supp. Fig. 5b & c). The HypIL-6 and IL-27 mathematical models differ due to the reactions 
involved in the formation of the signaling dimer for each cytokine. Under stimulation with 
HypIL-6, two HypIL-6 bound GP130 monomers are required to form the homodimer 
(Supp. Fig. 3a), whereas under IL-27 stimulation, we assume that IL-27 binds to the IL-27Ra 
chain and not to GP130 (Supp. Fig. 3b) and hence the heterodimer is comprised of an IL-27 
molecule bound to an IL-27Ra monomer and one GP130 chain. In the mathematical models, 
we assume that upon formation of the dimers (homo- or heterodimer), these receptor chains 
become immediately phosphorylated. The models do not consider JAK molecules explicitly. 
We are assuming that these molecules are constitutively bound to their corresponding 
receptor chains and that they phosphorylate immediately upon receptor phosphorylation 
(dimer formation). After the formation of the dimer, which we denote by 𝐷) or 𝐷"*, formed by 
HypIL-6 or IL-27 respectively, the biochemical reactions included in each mathematical model 
are similar, and are summarized as follows. Table 1 provides a description of the rates for 
each reaction considered in each (and both) mathematical model(s). In what follows we 
assume mass action kinetics for all the reactions. A free cytoplasmic unphosphorylated STAT1 
or STAT3 molecule can bind to either receptor chain in the dimer, provided that the intracellular 
tyrosine residue of the receptor in the dimer is free (Supp. Fig. 3c & d). The STAT1 or STAT3 

target For Rev Size 
b-actin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 250bp 
STAT1 CTAGTGGAGTGGAAGCGGAG CACCACAAACGAGCTCTGAA 252bp 
GBP5  TCCTCGGATTATTGCTCGGC CCTTTGCGCTTCAGCCTTTT 309bp 
OAS1 GAAGGCAGCTCACGAAACC AGGCCTCAGCCTCTTGTG 114bp 
SOCS3 GTCCCCCCAGAAGAGCCTATTA TTGACGGTCTTCCGACAGAGAT 118 
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molecule can subsequently dissociate from the receptor chain in the dimer or can become 
phosphorylated (with rate 𝑞) whilst bound to the dimer. We have assumed that the rate of 
STAT1 or STAT3 phosphorylation when bound does not depend on the STAT type (1 or 3) or 
on the receptor chain (Supp. Fig. 3c & d). Phosphorylated STAT1 (pSTAT1) and STAT3 
(pSTAT3) molecules can dissociate from the dimer. Once free in the cytoplasm, they can then 
dephosphorylate (Supp. Fig. 3g). We have assumed that this rate of STAT dephosphorylation 
only depends on the concentration of the respective pSTAT type, free in the cytoplasm. We 
note that no allostery has been considered in the models and hence, phosphorylated and 
unphosphorylated STAT molecules dissociate from the receptor with the same rate 
(Supp. Fig. 3c & d). Finally, any molecular species containing receptor molecules can be 
removed from the system, due to internalisation or degradation, via one of two hypothesised 
mechanisms (Supp. Fig. 3e & f): 

• hypothesis 1 (H1): receptors (free or bound, phosphorylated or unphosphorylated) are 
internalised/degraded with a rate proportional to the concentration of the species in 
which they are contained, or 

• hypothesis 2 (H2): receptors (free or bound, phosphorylated or unphosphorylated) are 
internalised/degraded with a rate proportional to the product of the concentration of the 
species in which they are contained and the sum of the concentrations of free 
cytoplasmic phosphorylated STAT1 and STAT3. 

 
We note that hypothesis 1 assumes that receptor molecules (free or bound, phosphorylated 
or unphosphorylated) are being internalised/degraded as part of the natural cellular trafficking 
cycle. Hypothesis 2 is consistent with a potential feedback mechanism, whereby the free 
cytoplasmic pSTAT molecules would migrate to the nucleus and increase the production of 
negative feedback proteins, such as SOCS3, which down-regulate cytokine signaling. Thus, 
the internalisation/degradation rate of receptor molecules (free or bound, phosphorylated or 
unphosphorylated) under hypothesis 2 increases with the total amount of free cytoplasmic 
phosphorylated STAT1 and STAT3, to account for this surface receptor down-regulation. A 
depiction of the reactions in both the HypIL-6 and IL-27 mathematical models and under each 
hypothesis is given in Supp. Fig. 3 where a), c), e) and g) describe the HypIL-6 model and b), 
d), f) and g) describe the IL-27 model. In this figure, 𝑖	 ∈ {1,3} so that the reactions shown can 
either involve STAT1 or STAT3. Above or below the reaction arrows is a symbol which 
represents the rate at which the reaction occurs (under the assumption of mass action 
kinetics). The notation for the rate constants and initial concentrations in the models, along 
with their descriptions and units, are given in Table 1.  
 

Parameter Description Unit 

𝑟#,)& , 𝑟#,"*&  Rate of receptor-ligand binding nM-1s-1 

𝑟#,), , 𝑟#,"*,  Rate of receptor-ligand dissociation s-1 

𝑟",)& , 𝑟","*&  Rate of monomers binding to form a dimer nM-1s-1 

𝑟",), , 𝑟","*,  Rate of dissociation of the dimer s-1 

𝑘$%&  Rate of STAT𝑖 binding to GP130 nM-1s-1 

𝑘$'&  Rate of STAT𝑖 binding to IL-27Ra nM-1s-1 

𝑘$%,  Rate of STAT𝑖 dissociating GP130 s-1 
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𝑘$',  Rate of STAT𝑖 dissociating IL-27Ra s-1 

𝑞 Rate of STAT phosphorylation on the dimer s-1 

𝑑$ Rate of free pSTAT𝑖 dephosphorylation s-1 

𝛽), 𝛽"* Rate of receptor internalisation/degradation under hypothesis 1 s-1 

𝛾), 𝛾"* Rate of receptor internalisation/degradation under hypothesis 2 nM-1s-1 

[𝑅#(0)] Initial concentration of GP130 nM 

[𝑅"(0)] Initial concentration of IL-27Rα nM 

[𝑆$(0)] Initial concentration of STAT𝑖 nM 
Table 1: Notation, definitions and units for the parameter values used in the mathematical 
models, where 𝑖	 ∈ {1,3} so that STAT𝑖 corresponds to STAT1 or STAT3. 
 
The HypIL-6 mathematical model was formulated based on reactions involving the following 
species: 
 

• 𝐿) = HypIL-6, 
• 𝑅# = GP130, 
• 𝐶# = GP130 - HypIL-6 monomer, 
• 𝐷) = Phosphorylated GP130 - HypIL-6 - HypIL-6 - GP130 homodimer, 
• 𝑆# = Unbound cytoplasmic unphosphorylated STAT1, 
• 𝑆( = Unbound cytoplasmic unphosphorylated STAT3, 
• 𝐷) ⋅ 	𝑆# = Dimer bound to STAT1, 
• 𝐷) ⋅ 	𝑆( = Dimer bound to STAT3, 
• 𝐷) ⋅ 	𝑝𝑆# = Dimer bound to pSTAT1, 
• 𝐷) ⋅ 	𝑝𝑆( = Dimer bound to pSTAT3, 
• 𝑆# ⋅ 	𝐷) ⋅ 	𝑆# = Dimer bound to two molecules of STAT1, 
• 𝑝𝑆# ⋅ 	𝐷) ⋅ 	𝑆# = Dimer bound to two molecules of STAT1, one of which is 

phosphorylated, 
• 𝑝𝑆# ⋅ 	𝐷) ⋅ 	𝑝𝑆# = Dimer bound to two molecules of pSTAT1, 
• 𝑆( ⋅ 	𝐷) ⋅ 	𝑆( = Dimer bound to two molecules of STAT3, 
• 𝑝𝑆( ⋅ 	𝐷) ⋅ 	𝑆( = Dimer bound to two molecules of STAT3, one of which is 

phosphorylated, 
• 𝑝𝑆( ⋅ 	𝐷) ⋅ 	𝑝𝑆( = Dimer bound to two molecules of pSTAT3, 
• 𝑆# ⋅ 	𝐷) ⋅ 	𝑆( = Dimer bound to one molecule of STAT1 and one of STAT3, 
• 𝑝𝑆# ⋅ 	𝐷) ⋅ 	𝑆( = Dimer bound to one molecule of pSTAT1 and one of STAT3, 
• 𝑆# ⋅ 	𝐷) ⋅ 	𝑝𝑆( = Dimer bound to one molecule of STAT1 and one of pSTAT3, 
• 𝑝𝑆# ⋅ 	𝐷) ⋅ 	𝑝𝑆( = Dimer bound to one molecule of pSTAT1 and one of pSTAT3, 
• 𝑝𝑆# =	Unbound cytoplasmic phosphorylated STAT1, 
• 𝑝𝑆( = Unbound cytoplasmic phosphorylated STAT3. 

 
The initial reactions in the HypIL-6 signaling pathway can then be described by the ODEs (1) 
– (22), under the law of mass action, where the terms involving the parameter 𝛽) apply only 
to the model under hypothesis 1 and the terms involving the parameter 𝛾) apply only to the 
model under hypothesis 2. Square brackets around a species is a notation that denotes the 
concentration of this species with unit nM, and “⋅” implies a reaction bond between two 
molecules/species. The ODEs are valid for any time 𝑡, with 𝑡	 ≥ 0, but time has been omitted 
in the species concentration for ease of notation. We note here that, for example [𝑅#] = [𝑅#](𝑡) 
for all 𝑡	 ≥ 0. 
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𝑑[𝑅1]
𝑑𝑡 = −𝑟1,6+ [𝑅1][𝐿)]+ 𝑟1,6− [𝐶1]− 𝛽6[𝑅1]− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝑅1] (1) 

𝑑[𝐿)]
𝑑𝑡 = −𝑟1,6+ [𝑅1][𝐿)]+ 𝑟1,6− [𝐶1] (2) 

𝑑[𝐶1]
𝑑𝑡 = 𝑟1,6+ [𝑅1][𝐿)]− 𝑟1,6− [𝐶1]− 2𝑟2,6+ [𝐶1]2 + 2𝑟2,6− [𝐷6]− 𝛽6[𝐶1]

− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝐶1] 
(3) 

𝑑[𝐷6]
𝑑𝑡 = 𝑟2,6+ [𝐶1]2 − 𝑟2,6− [𝐷6]− 2𝑘1𝑎

+ [𝐷6][𝑆1]+ 𝑘1𝑎
− ([𝐷6 ⋅ 𝑆1]+ [𝐷6 ⋅ 𝑝𝑆1])

− 2𝑘3𝑎
+ [𝐷6][𝑆3]+ 𝑘3𝑎

− ([𝐷6 ⋅ 𝑆3]+ [𝐷6 ⋅ 𝑝𝑆3])− 𝛽6[𝐷6]
− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝐷6] 

(4) 

𝑑[𝑆1]
𝑑𝑡 = −𝑘1𝑎

+ [𝑆1](2[𝐷6]+ [𝐷6 ⋅ 𝑆1]+ [𝐷6 ⋅ 𝑆3]+ [𝐷6 ⋅ 𝑝𝑆1]+ [𝐷6 ⋅ 𝑝𝑆3])
+ 𝑘1𝑎

− ([𝐷6 ⋅ 𝑆1]+ 2[𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]+ [𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]+ [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1]
+ [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3])+ 𝑑1[𝑝𝑆1] 

(5) 

𝑑[𝑆3]
𝑑𝑡 = −𝑘3𝑎

+ [𝑆3](2[𝐷6]+ [𝐷6 ⋅ 𝑆3]+ [𝐷6 ⋅ 𝑆1]+ [𝐷6 ⋅ 𝑝𝑆3]+ [𝐷6 ⋅ 𝑝𝑆1])
+ 𝑘3𝑎

− ([𝐷6 ⋅ 𝑆3]+ 2[𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]+ [𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]+ [𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3]
+ [𝑝𝑆# ⋅ 𝐷) ⋅ 𝑆(])+ 𝑑3[𝑝𝑆3] 

(6) 

𝑑[𝐷6 ⋅ 𝑆1]
𝑑𝑡 = 2𝑘1𝑎

+ [𝑆1][𝐷6]− 𝑘1𝑎
− [𝐷6 ⋅ 𝑆1]− 𝑘1𝑎

+ [𝐷6 ⋅ 𝑆1][𝑆1]+ 2𝑘1𝑎
− [𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]

− 𝑘3𝑎
+ [𝐷6 ⋅ 𝑆1][𝑆3]+ 𝑘3𝑎

− [𝑆# ⋅ 𝐷6 ⋅ 𝑆(]− 𝑞[𝐷6 ⋅ 𝑆1]
+ 𝑘1𝑎

− [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1]+ 𝑘3𝑎
− [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]− 𝛽6[𝐷6 ⋅ 𝑆1]

− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝐷6 ⋅ 𝑆1] 

(7) 

𝑑[𝐷6 ⋅ 𝑆3]
𝑑𝑡 = 2𝑘3𝑎

+ [𝑆3][𝐷6]− 𝑘3𝑎
− [𝐷6 ⋅ 𝑆3]− 𝑘3𝑎

+ [𝐷6 ⋅ 𝑆3][𝑆3]+ 2𝑘3𝑎
− [𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]

− 𝑘1𝑎
+ [𝐷6 ⋅ 𝑆3][𝑆1]+ 𝑘1𝑎

− [𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]− 𝑞[𝐷6 ⋅ 𝑆3]+ 𝑘1𝑎
− [𝑝𝑆# ⋅ 𝐷) ⋅ 𝑆(]

+ 𝑘3𝑎
− [𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3]− 𝛽6[𝐷6 ⋅ 𝑆3]− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝐷6 ⋅ 𝑆3] 

(8) 

𝑑[𝐷6 ⋅ 𝑝𝑆1]
𝑑𝑡 = −𝑘1𝑎

+ [𝑆1][𝐷6 ⋅ 𝑝𝑆1]+ 𝑘1𝑎
− [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1]− 𝑘3𝑎

+ [𝑆3][𝐷6 ⋅ 𝑝𝑆1]
+ 𝑘3𝑎

− [𝑝𝑆# ⋅ 𝐷) ⋅ 𝑆(]+ 𝑞[𝐷6 ⋅ 𝑆1]− 𝑘1𝑎
− [𝐷6 ⋅ 𝑝𝑆1]

+ 2𝑘1𝑎
− [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1]+ 𝑘3𝑎

− [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]− 𝛽6[𝐷6 ⋅ 𝑝𝑆1]
− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝐷6 ⋅ 𝑝𝑆1] 

(9) 

𝑑[𝐷6 ⋅ 𝑝𝑆3]
𝑑𝑡 = −𝑘3𝑎

+ [𝑆3][𝐷6 ⋅ 𝑝𝑆3]+ 𝑘3𝑎
− [𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3]− 𝑘1𝑎

+ [𝑆1][𝐷6 ⋅ 𝑝𝑆3]
+ 𝑘1𝑎

− [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]+ 𝑞[𝐷6 ⋅ 𝑆3]− 𝑘3𝑎
− [𝐷6 ⋅ 𝑝𝑆3]

+ 2𝑘3𝑎
− [𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3]+ 𝑘1𝑎

− [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]− 𝛽6[𝐷6 ⋅ 𝑝𝑆3]
− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝐷6 ⋅ 𝑝𝑆3] 

(10) 

𝑑[𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷6 ⋅ 𝑆1]− 2𝑘1𝑎
− [𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]− 2𝑞[𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]

− 𝛽6[𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝑆1 ⋅ 𝐷6 ⋅ 𝑆1] 
(11) 

𝑑[𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]
𝑑𝑡 = 𝑘3𝑎

+ [𝑆3][𝐷6 ⋅ 𝑆3]− 2𝑘3𝑎
− [𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]− 2𝑞[𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]

− 𝛽6[𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝑆3 ⋅ 𝐷6 ⋅ 𝑆3] 
(12) 

𝑑[𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]
𝑑𝑡 = 𝑘1𝑎

+ [𝑝𝑆1 ⋅ 𝐷6][𝑆1]− 2𝑘1𝑎
− [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑆1] 

																													+2𝑞[𝑆) ⋅ 𝐷* ⋅ 𝑆)] − 𝑞[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆)] − 𝛽*[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆)] 
(13) 
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																													−𝛾*([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆)] 
𝑑[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]

𝑑𝑡
= 𝑘3𝑎

+ [𝑝𝑆3 ⋅ 𝐷6][𝑆3]− 2𝑘3𝑎
− [𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]+ 2𝑞[𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]

− 𝑞[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]− 𝛽6[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]
− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑆3] 

(14) 

𝑑[𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1]
𝑑𝑡 = 𝑞[𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑆1]− 2𝑘1𝑎

− [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1] 
																																−𝛽*[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆)] − 𝛾*([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆)] 

(15) 

𝑑[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3]
𝑑𝑡 = 𝑞[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑆3]− 2𝑘3𝑎

− [𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3] 
																																−𝛽*[𝑝𝑆+ ⋅ 𝐷* ⋅ 𝑝𝑆+] − 𝛾*([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆+ ⋅ 𝐷* ⋅ 𝑝𝑆+] 

(16) 

𝑑[𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷6 ⋅ 𝑆3]− 𝑘1𝑎
− [𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]+ 𝑘3𝑎

+ [𝑆1 ⋅ 𝐷6][𝑆3]
− 𝑘3𝑎

− [𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]− 2𝑞[𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]− 𝛽6[𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]
− 𝛾6([𝑝𝑆1]+ [𝑝𝑆3])[𝑆1 ⋅ 𝐷6 ⋅ 𝑆3] 

(17) 

𝑑[𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]
𝑑𝑡 = 𝑞[𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]+ 𝑘3𝑎

+ [𝑝𝑆1 ⋅ 𝐷6][𝑆3] 
																													−𝑘+,- [𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆+] − 𝑞[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆+] − 𝑘),- [𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆+] 
																													−𝛽*[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆+] − 𝛾*([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑆+] 

(18) 

𝑑[𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]
𝑑𝑡 = 𝑞[𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]+ 𝑘1𝑎

+ [𝑆1][𝐷6 ⋅ 𝑝𝑆3] 
																													−𝑘),- [𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] − 𝑞[𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] − 𝑘+,- [𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] 
																													−𝛽*[𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] − 𝛾*([𝑝𝑆)] + [𝑝𝑆+])[𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] 

(19) 

𝑑[𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]
𝑑𝑡 = 𝑞([𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]+ [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑆3]) 

																																−[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+](𝑘),- + 𝑘+,- ) − 𝛽*[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] 
																																−𝛾*([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷* ⋅ 𝑝𝑆+] 

(20) 

𝑑[𝑝𝑆1]
𝑑𝑡 = 𝑘1𝑎

− ([𝐷6 ⋅ 𝑝𝑆1]+ [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1]+ [𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆1]+ [𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆1]
+ 2[𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆1])− 𝑑1[𝑝𝑆1] 

(21) 

𝑑[𝑝𝑆3]
𝑑𝑡 = 𝑘3𝑎

− ([𝐷6 ⋅ 𝑝𝑆3]+ [𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3]+ [𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]+ [𝑝𝑆1 ⋅ 𝐷6 ⋅ 𝑝𝑆3]
+ 2[𝑝𝑆3 ⋅ 𝐷6 ⋅ 𝑝𝑆3])− 𝑑3[𝑝𝑆3] 

(22) 

 
Similarly, and with some species in common with the HypIL-6 model, the IL-27 model has 
been formulated based on reactions involving the following species: 
 

• 𝐿"* =	IL-27, 
• 𝑅# =	GP130, 
• 𝑅" =	IL-27Ra, 
• 𝐶" =	IL-27Ra - IL-27 monomer, 
• 𝐷"* =	Phosphorylated IL-27Ra  - IL-27 - GP130 heterodimer, 
• 𝑆# =	Unbound cytoplasmic unphosphorylated STAT1, 
• 𝑆( =	Unbound cytoplasmic unphosphorylated STAT3, 
• 𝑆# ⋅ 	𝐷"* =	Dimer bound to STAT1 via 𝑅#, 
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• 𝑆( ⋅ 	𝐷"* =	Dimer bound to STAT3 via 𝑅#, 
• 𝑝𝑆# ⋅ 	𝐷"* =	Dimer bound to pSTAT1 via 𝑅#, 
• 𝑝𝑆( ⋅ 	𝐷"* =	Dimer bound to pSTAT3 via 𝑅#, 
• 𝐷"* ⋅ 	𝑆# =	Dimer bound to STAT1 via 𝑅", 
• 𝐷"* ⋅ 	𝑆( =	Dimer bound to STAT3 via 𝑅", 
• 𝐷"* ⋅ 	𝑝𝑆# =	Dimer bound to pSTAT1 via 𝑅", 
• 𝐷"* ⋅ 	𝑝𝑆( =	Dimer bound to pSTAT3 via 𝑅", 
• 𝑆# ⋅ 	𝐷"* ⋅ 	𝑆# =	Dimer bound to two molecules of STAT1, 
• 𝑝𝑆# ⋅ 	𝐷"* ⋅ 	𝑆# =	Dimer bound to two molecules of STAT1, one of them phosphorylated 

on 𝑅#, 
• 𝑆# ⋅ 	𝐷"* ⋅ 	𝑝𝑆# =	Dimer bound to two molecules of STAT1, one of them phosphorylated 

on 𝑅", 
• 𝑝𝑆# ⋅ 	𝐷"* ⋅ 	𝑝𝑆# =	Dimer bound to two molecules of pSTAT1, 
• 𝑆( ⋅ 	𝐷"* ⋅ 	𝑆( =	Dimer bound to two molecules of STAT3, 
• 𝑝𝑆( ⋅ 	𝐷"* ⋅ 	𝑆( =	Dimer bound to two molecules of STAT3, one of them phosphorylated 

on 𝑅#, 
• 𝑆( ⋅ 	𝐷"* ⋅ 	𝑝𝑆( =	Dimer bound to two molecules of STAT3, one of them phosphorylated 

on 𝑅", 
• 𝑝𝑆( ⋅ 	𝐷"* ⋅ 	𝑝𝑆( =	Dimer bound to two molecules of pSTAT3, 
• 𝑆# ⋅ 	𝐷"* ⋅ 	𝑆( =	Dimer bound to STAT1 via 𝑅# and STAT3 via 𝑅", 
• 𝑆( ⋅ 	𝐷"* ⋅ 	𝑆# =	Dimer bound to STAT1 via 𝑅" and STAT3 via 𝑅#, 
• 𝑝𝑆# ⋅ 	𝐷"* ⋅ 	𝑆( =	Dimer bound to pSTAT1 via 𝑅# and STAT3 via 𝑅", 
• 𝑆( ⋅ 	𝐷"* ⋅ 	𝑝𝑆# =	Dimer bound to pSTAT1 via 𝑅" and STAT3 via 𝑅#, 
• 𝑆# ⋅ 	𝐷"* ⋅ 	𝑝𝑆( =	Dimer bound to STAT1 via 𝑅# and pSTAT3 via 𝑅", 
• 𝑝𝑆( ⋅ 	𝐷"* ⋅ 	𝑆# =	Dimer bound to STAT1 via 𝑅" and pSTAT3 via 𝑅#, 
• 𝑝𝑆# ⋅ 	𝐷"* ⋅ 	𝑝𝑆( =	Dimer bound pSTAT1 via 𝑅# and pSTAT3 via 𝑅", 
• 𝑝𝑆( ⋅ 	𝐷"* ⋅ 	𝑝𝑆# =	Dimer bound pSTAT3 via 𝑅# and pSTAT1 via 𝑅#, 
• 𝑝𝑆# =	Unbound cytoplasmic phosphorylated STAT1, 
• 𝑝𝑆( =	Unbound cytoplasmic phosphorylated STAT3. 

 
Again, under the law of mass action, the initial reactions in the IL-27 signaling pathway can be 
described by the ODEs (23) – (55). 
 

𝑑[𝑅1]
𝑑𝑡 = −𝑟2,27+ [𝐶2][𝑅1]+ 𝑟2,27− [𝐷27]− 𝛽27[𝑅1]− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝑅1] (23) 

𝑑[𝑅2]
𝑑𝑡 = −𝑟1,27+ [𝑅2][𝐿27]+ 𝑟1,27− [𝐶2]− 𝛽27[𝑅2]− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝑅2] 

 
(24) 

𝑑[𝐿27]
𝑑𝑡 = −𝑟1,27+ [𝑅2][𝐿27]+ 𝑟1,27− [𝐶2] 

 
(25) 

𝑑[𝐶2]
𝑑𝑡 = 𝑟1,27+ [𝑅2][𝐿27]− 𝑟1,27− [𝐶2]− 𝑟2,27+ [𝐶2][𝑅1]+ 𝑟2,27− [𝐷27]− 𝛽27[𝐶2]

− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝐶2] 
 

(26) 

𝑑[𝐷27]
𝑑𝑡 = 𝑟2,27+ [𝐶2][𝑅1]− 𝑟2,27− [𝐷27]− M𝑘1𝑎

+ + 𝑘1𝑏
+ N[𝐷27][𝑆1]

+ 𝑘1𝑎
− ([𝑆1 ⋅ 𝐷27]+ [𝑝𝑆1 ⋅ 𝐷27])+ 𝑘1𝑏

− ([𝐷27 ⋅ 𝑆1]+ [𝐷27 ⋅ 𝑝𝑆1])
− M𝑘3𝑎

+ + 𝑘3𝑏
+ N[𝐷27][𝑆3]+ 𝑘3𝑎

− ([𝑆3 ⋅ 𝐷27]+ [𝑝𝑆3 ⋅ 𝐷27])
+ 𝑘3𝑏

− ([𝐷27 ⋅ 𝑆3]+ [𝐷27 ⋅ 𝑝𝑆3])− 𝛽27[𝐷27]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝐷27] 

(27) 
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𝑑[𝑆1]
𝑑𝑡 = −𝑘1𝑎

+ [𝑆1]([𝐷27]+ [𝐷27 ⋅ 𝑆1]+ [𝐷27 ⋅ 𝑝𝑆1]+ [𝐷27 ⋅ 𝑆3]+ [𝐷27 ⋅ 𝑝𝑆3])
+ 𝑘1𝑎

− ([𝑆1 ⋅ 𝐷27]+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]
+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3])
− 𝑘1𝑏

+ [𝑆1]([𝐷27]+ [𝑆1 ⋅ 𝐷27]+ [𝑝𝑆1 ⋅ 𝐷27]+ [𝑆3 ⋅ 𝐷27]
+ [𝑝𝑆3 ⋅ 𝐷27])
+ 𝑘1𝑏

− ([𝐷27 ⋅ 𝑆1]+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]
+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1])+ 𝑑1[𝑝𝑆1] 

 

(28) 

𝑑[𝑆3]
𝑑𝑡 = −𝑘3𝑎

+ [𝑆3]([𝐷27]+ [𝐷27 ⋅ 𝑆1]+ [𝐷27 ⋅ 𝑝𝑆1]+ [𝐷27 ⋅ 𝑆3]+ [𝐷27 ⋅ 𝑝𝑆3])
+ 𝑘3𝑎

− ([𝑆3 ⋅ 𝐷27]+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]
+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3])
− 𝑘3𝑏

+ [𝑆3]([𝐷27]+ [𝑆1 ⋅ 𝐷27]+ [𝑝𝑆1 ⋅ 𝐷27]+ [𝑆3 ⋅ 𝐷27]
+ [𝑝𝑆3 ⋅ 𝐷27])
+ 𝑘3𝑏

− ([𝐷27 ⋅ 𝑆3]+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]
+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3])+ 𝑑3[𝑝𝑆3] 

 

(29) 

𝑑[𝑆1 ⋅ 𝐷27]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷27]− 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27]− 𝑞[𝑆1 ⋅ 𝐷27]− 𝑘1𝑏

+ [𝑆1][𝑆1 ⋅ 𝐷27]

+ 𝑘1𝑏
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]− 𝑘3𝑏

+ [𝑆3][𝑆1 ⋅ 𝐷27]+ 𝑘3𝑏
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]

+ 𝑘1𝑏
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ 𝑘3𝑏

− [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]− 𝛽27[𝑆1 ⋅ 𝐷27]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝑆1 ⋅ 𝐷27] 

 

(30) 

𝑑[𝐷27 ⋅ 𝑆1]
𝑑𝑡 = 𝑘1𝑏

+ [𝑆1][𝐷27]− 𝑘1𝑏
− [𝐷27 ⋅ 𝑆1]− 𝑞[𝐷27 ⋅ 𝑆1]− 𝑘1𝑎

+ [𝑆1][𝐷27 ⋅ 𝑆1]

+ 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]− 𝑘3𝑎

+ [𝑆3][𝐷27 ⋅ 𝑆1]+ 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]

+ 𝑘1𝑎
− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]+ 𝑘3𝑎

− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]− 𝛽27[𝐷27 ⋅ 𝑆1]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝐷27 ⋅ 𝑆1] 

 

(31) 

𝑑[𝑆3 ⋅ 𝐷27]
𝑑𝑡 = 𝑘3𝑎

+ [𝑆3][𝐷27]− 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27]− 𝑞[𝑆3 ⋅ 𝐷27]− 𝑘3𝑏

+ [𝑆3][𝑆3 ⋅ 𝐷27]

+ 𝑘3𝑏
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]− 𝑘1𝑏

+ [𝑆1][𝑆3 ⋅ 𝐷27]+ 𝑘1𝑏
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]

+ 𝑘3𝑏
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ 𝑘1𝑏

− [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]− 𝛽27[𝑆3 ⋅ 𝐷27]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝑆3 ⋅ 𝐷27] 

 

(32) 

𝑑[𝐷27 ⋅ 𝑆3]
𝑑𝑡 = 𝑘3𝑏

+ [𝑆3][𝐷27]− 𝑘3𝑏
− [𝐷27 ⋅ 𝑆3]− 𝑞[𝐷27 ⋅ 𝑆3]− 𝑘3𝑎

+ [𝑆3][𝐷27 ⋅ 𝑆3]

+ 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]− 𝑘1𝑎

+ [𝑆1][𝐷27 ⋅ 𝑆3]+ 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]

+ 𝑘3𝑎
− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]+ 𝑘1𝑎

− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]− 𝛽27[𝐷27 ⋅ 𝑆3]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝐷27 ⋅ 𝑆3] 

 

(33) 

𝑑[𝑝𝑆1 ⋅ 𝐷27]
𝑑𝑡 = −𝑘1𝑏

+ [𝑝𝑆1 ⋅ 𝐷27][𝑆1]+ 𝑘1𝑏
− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]− 𝑘3𝑏

+ [𝑝𝑆1 ⋅ 𝐷27][𝑆3]
+ 𝑘3𝑏

− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]+ 𝑞[𝑆1 ⋅ 𝐷27]− 𝑘1𝑎
− [𝑝𝑆1 ⋅ 𝐷27]

+ 𝑘1𝑏
− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ 𝑘3𝑏

− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]− 𝛽27[𝑝𝑆1 ⋅ 𝐷27]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝑝𝑆1 ⋅ 𝐷27] 

 

(34) 
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𝑑[𝐷27 ⋅ 𝑝𝑆1]
𝑑𝑡 = −𝑘1𝑎

+ [𝐷27 ⋅ 𝑝𝑆1][𝑆1]+ 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]− 𝑘3𝑎

+ [𝐷27 ⋅ 𝑝𝑆1][𝑆3]
+ 𝑘3𝑎

− [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ 𝑞[𝐷27 ⋅ 𝑆1]− 𝑘1𝑏
− [𝐷27 ⋅ 𝑝𝑆1]

+ 𝑘1𝑎
− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ 𝑘3𝑎

− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]− 𝛽27[𝐷27 ⋅ 𝑝𝑆1]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝐷27 ⋅ 𝑝𝑆1] 

 

(35) 

𝑑[𝑝𝑆3 ⋅ 𝐷27]
𝑑𝑡 = −𝑘3𝑏

+ [𝑝𝑆3 ⋅ 𝐷27][𝑆3]+ 𝑘3𝑏
− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]− 𝑘1𝑏

+ [𝑝𝑆3 ⋅ 𝐷27][𝑆1]
+ 𝑘1𝑏

− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]+ 𝑞[𝑆3 ⋅ 𝐷27]− 𝑘3𝑎
− [𝑝𝑆3 ⋅ 𝐷27]

+ 𝑘3𝑏
− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ 𝑘1𝑏

− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]− 𝛽27[𝑝𝑆3 ⋅ 𝐷27]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝑝𝑆3 ⋅ 𝐷27] 

 

(36) 

𝑑[𝐷27 ⋅ 𝑝𝑆3]
𝑑𝑡 = −𝑘3𝑎

+ [𝐷27 ⋅ 𝑝𝑆3][𝑆3]+ 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]− 𝑘1𝑎

+ [𝐷27 ⋅ 𝑝𝑆3][𝑆1]
+ 𝑘1𝑎

− [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ 𝑞[𝐷27 ⋅ 𝑆3]− 𝑘3𝑏
− [𝐷27 ⋅ 𝑝𝑆3]

+ 𝑘3𝑎
− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ 𝑘1𝑎

− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]− 𝛽27[𝐷27 ⋅ 𝑝𝑆3]
− 𝛾27([𝑝𝑆1]+ [𝑝𝑆3])[𝐷27 ⋅ 𝑝𝑆3] 

 

(37) 

𝑑[𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷27 ⋅ 𝑆1]− 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]	

																												+𝑘)01 [𝑆) ⋅ 𝐷23][𝑆)] − 𝑘)0- [𝑆) ⋅ 𝐷23 ⋅ 𝑆)] − 2𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑆)] 
																												−𝛽23[𝑆) ⋅ 𝐷23 ⋅ 𝑆)] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆) ⋅ 𝐷23 ⋅ 𝑆)] 
 

(38) 

𝑑[𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]
𝑑𝑡 = 𝑘1𝑏

+ [𝑝𝑆1 ⋅ 𝐷27][𝑆1]− 𝑘1𝑏
− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1] 

																															+𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑆)] − 𝑞[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆)] − 𝑘),- [𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆)] 
																															−𝛽23[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆)] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆)] 
 

(39) 

𝑑[𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷27 ⋅ 𝑝𝑆1]− 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1] 

																															+𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑆)] − 𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)] − 𝑘)0- [𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
																															−𝛽23[𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
 

(40) 

𝑑[𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]
𝑑𝑡 = 𝑞([𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]) 

																																		−[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)](𝑘),- + 𝑘)0- ) − 𝛽23[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)]	 
																																		−𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
 

(41) 

𝑑[𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]
𝑑𝑡 = 𝑘3𝑎

+ [𝑆3][𝐷27 ⋅ 𝑆3]− 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑆3] 

																													+𝑘+01 [𝑆+ ⋅ 𝐷23][𝑆+] − 𝑘+0- [𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] − 2𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] 
																													−𝛽23[𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] 
 

(42) 

𝑑[𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]
𝑑𝑡 = 𝑘3𝑏

+ [𝑝𝑆3 ⋅ 𝐷27][𝑆3]− 𝑘3𝑏
− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3] 

																															+𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] − 𝑞[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] − 𝑘+,- [𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] 
																															−𝛽23[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] 
 

(43) 

𝑑[𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]
𝑑𝑡 = 𝑘3𝑎

+ [𝑆3][𝐷27 ⋅ 𝑝𝑆3]− 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3] (44) 
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																																+𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑆+] − 𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+] − 𝑘+0- [𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
																																−𝛽23[𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
 
𝑑[𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]

𝑑𝑡 = 𝑞([𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]) 
																																			−[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+](𝑘+,- + 𝑘+0- ) − 𝛽23[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
																																			−𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
 

(45) 

𝑑[𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷27 ⋅ 𝑆3]− 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑆3] 

																												+𝑘+01 [𝑆) ⋅ 𝐷23][𝑆+] − 𝑘+0- [𝑆) ⋅ 𝐷23 ⋅ 𝑆+] − 2𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑆+] 
																												−𝛽23[𝑆) ⋅ 𝐷23 ⋅ 𝑆+] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆) ⋅ 𝐷23 ⋅ 𝑆+] 
 

(46) 

𝑑[𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]
𝑑𝑡 = 𝑘3𝑎

+ [𝑆3][𝐷27 ⋅ 𝑆1]− 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑆1] 

																												+𝑘)01 [𝑆+ ⋅ 𝐷23][𝑆)] − 𝑘)0- [𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] − 2𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] 
																												−𝛽23[𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] 
 

(47) 

𝑑[𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]
𝑑𝑡 = 𝑘3𝑏

+ [𝑝𝑆1 ⋅ 𝐷27][𝑆3]− 𝑘3𝑏
− [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3] 

																															+𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑆+] − 𝑞[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆+] − 𝑘),- [𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆+] 
																															−𝛽23[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆+] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑆+] 
 

(48) 

𝑑[𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]
𝑑𝑡 = 𝑘1𝑏

+ [𝑝𝑆3 ⋅ 𝐷27][𝑆1]− 𝑘1𝑏
− [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1] 

																															+𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] − 𝑞[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] − 𝑘+,- [𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] 
																															−𝛽23[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] 
 

(49) 

𝑑[𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]
𝑑𝑡 = 𝑘1𝑎

+ [𝑆1][𝐷27 ⋅ 𝑝𝑆3]− 𝑘1𝑎
− [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3] 

																															+𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑆+] − 𝑞[𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+] − 𝑘+0- [𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
																															−𝛽23[𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
 

(50) 

𝑑[𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]
𝑑𝑡 = 𝑘3𝑎

+ [𝑆3][𝐷27 ⋅ 𝑝𝑆1]− 𝑘3𝑎
− [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1] 

																															+𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑆)] − 𝑞[𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)] − 𝑘)0- [𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
																															−𝛽23[𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)] − 𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
 

(51) 

𝑑[𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]
𝑑𝑡 = 𝑞([𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]) 

																																		−[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+](𝑘),- + 𝑘+0- ) − 𝛽23[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
																																		−𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆) ⋅ 𝐷23 ⋅ 𝑝𝑆+] 
 

(52) 

𝑑[𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]
𝑑𝑡 = 𝑞([𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]) 

																																		−[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)](𝑘+,- + 𝑘)0- ) − 𝛽23[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
																																		−𝛾23([𝑝𝑆)] + [𝑝𝑆+])[𝑝𝑆+ ⋅ 𝐷23 ⋅ 𝑝𝑆)] 
 

(53) 
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𝑑[𝑝𝑆1]
𝑑𝑡 = 𝑘1𝑎

− ([𝑝𝑆1 ⋅ 𝐷27]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆1]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑆3]
+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3])
+ 𝑘1𝑏

− ([𝐷27 ⋅ 𝑝𝑆1]+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆1]
+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1])− 𝑑1[𝑝𝑆1] 

 

(54) 

𝑑[𝑝𝑆3]
𝑑𝑡 = 𝑘3𝑎

− ([𝑝𝑆3 ⋅ 𝐷27]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆3]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑆1]
+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆1])
+ 𝑘3𝑏

− ([𝐷27 ⋅ 𝑝𝑆3]+ [𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ [𝑝𝑆3 ⋅ 𝐷27 ⋅ 𝑝𝑆3]
+ [𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3]+ [𝑝𝑆1 ⋅ 𝐷27 ⋅ 𝑝𝑆3])− 𝑑3[𝑝𝑆3] 

 

(55) 

Similarly to the HypIL-6 model, the terms in Equations (23) - (55) involving the parameter 𝛽"* 
apply only to the model under hypothesis 1 and the terms involving the parameter 𝛾"* apply 
only to the model under hypothesis 2. 
 
We now describe how we have made use of the experimental data (Fig. 6b and 6c supp.) to 
parameterise the mathematical models described above. Since the experimental outputs are 
levels of pSTAT1 and pSTAT3 as a function of time under HypIL-6 and IL-27 stimulation (Fig. 
6b and 6c supp.), we consider two model outputs of interest for the HypIL-6 and IL-27 
mathematical models, which are proportional to the experimental data in Supp. Figure 6b and 
6c; namely, the sum of all molecular species (variables) containing phosphorylated STAT1 
(free or bound) ([𝑝𝑆#]-,., for 𝑗	 ∈ {6,27}) and the sum of all species (variables) containing 
phosphorylated STAT3 (free or bound) ([𝑝𝑆(]-,., for 𝑗	 ∈ {6,27}). The concentrations of the two 
model outputs of interest at any time 𝑡 are given by 
 
[𝑝𝑆#]-,)(𝑡) = [𝐷) ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆# ⋅ 𝐷) ⋅ 𝑆#](𝑡) + 2[𝑝𝑆# ⋅ 𝐷) ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆# ⋅ 𝐷) ⋅ 𝑆(](𝑡) 
																						+	[𝑝𝑆# ⋅ 𝐷) ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆#](𝑡),  

(56) 

[𝑝𝑆(]-,)(𝑡) = [𝐷) ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆( ⋅ 𝐷) ⋅ 𝑆(](𝑡) + 2[𝑝𝑆( ⋅ 𝐷) ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆( ⋅ 𝐷) ⋅ 𝑆#](𝑡) 
																						+	[𝑝𝑆( ⋅ 𝐷) ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆(](𝑡), 

(57) 

 
for the HypIL-6 model, and by 
 
[𝑝𝑆#]-,"*(𝑡) = [𝑝𝑆# ⋅ 𝐷"*](𝑡) + [𝐷"* ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆# ⋅ 𝐷"* ⋅ 𝑆#](𝑡) + [𝑆# ⋅ 𝐷"* ⋅ 𝑝𝑆#](𝑡) 
																								+	2[𝑝𝑆# ⋅ 𝐷"* ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆# ⋅ 𝐷"* ⋅ 𝑆(](𝑡) + [𝑆( ⋅ 𝐷"* ⋅ 𝑝𝑆#](𝑡) 
																								+	[𝑝𝑆# ⋅ 𝐷) ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆( ⋅ 𝐷) ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆#](𝑡),  
 

(58) 

[𝑝𝑆(]-,"*(𝑡) = [𝑝𝑆( ⋅ 𝐷"*](𝑡) + [𝐷"* ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆( ⋅ 𝐷"* ⋅ 𝑆(](𝑡) + [𝑆( ⋅ 𝐷"* ⋅ 𝑝𝑆(](𝑡) 
																								+	2[𝑝𝑆( ⋅ 𝐷"* ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆( ⋅ 𝐷"* ⋅ 𝑆#](𝑡) + [𝑆# ⋅ 𝐷"* ⋅ 𝑝𝑆(](𝑡) 
																								+	[𝑝𝑆# ⋅ 𝐷) ⋅ 𝑝𝑆(](𝑡) + [𝑝𝑆( ⋅ 𝐷) ⋅ 𝑝𝑆#](𝑡) + [𝑝𝑆(](𝑡), 
 

(59) 

for the IL-27 model. 
 
Having developed two mathematical models for the stimulation of the experimental system 
with HypIL-6 and IL-27, it was then our objective to parameterise these models making use of 
approximate Bayesian computation sequential Monte Carlo (ABC-SMC). Firstly, a Bayesian 
model selection was carried out to determine which hypothesis (mechanism) of 
internalisation/degradation of receptor molecules is most likely given the data. Once a 
hypothesis was selected, together with the experimental data, the ABC-SMC method allows 
one to obtain posterior distributions for each of the parameter values and initial concentrations 
in the mathematical models. In this way, we can learn about which reactions and parameters 
in the models are causing the differential signaling by pSTAT1 observed when stimulating with 
HypIL-6 and IL-27. The experimental data we used to compare with the mathematical model 
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outputs, was the mean relative fluorescence intensity of total phosphorylated STAT1 and total 
phosphorylated STAT3 in both RPE1 and Th-1 cells (Supp. Figure 5b and 5c). We normalised 
the data to obtain dimensionless values, which can be compared with the mathematical model 
outputs. Firstly, we constructed a linear model for the fluorescence intensity (background 
fluorescence) of antibodies for phosphorylated STAT1 and STAT3 in unstimulated cells. We 
subtracted the value of this linear model at each time point from the corresponding 
fluorescence intensity in HypIL-6 and IL-27 stimulated cells, for each repeat of the experiment 
and each cell type. Denoting by 𝑓 the experimental fluorescence intensity, 𝑓(𝑟, 𝑖, 𝑡𝑝, 𝑗, 𝑑) 
corresponds to the fluorescence intensity for the 𝑟th repeat, 𝑟	 ∈ 𝑅	 = 	 {1,2,3,4} with antibody 
for STAT𝑖, 𝑖	 ∈ 𝐼 = {1,3} at time point  

𝑡𝑝	 ∈ 𝑇𝑃	 = 	 {0		𝑚𝑖𝑛, 5		𝑚𝑖𝑛, 15		𝑚𝑖𝑛, 30		𝑚𝑖𝑛, 60		𝑚𝑖𝑛, 90		𝑚𝑖𝑛, 120		𝑚𝑖𝑛, 180			𝑚𝑖𝑛} 
under stimulation by cytokine IL-𝑗 (HypIL-𝑗 when 𝑗 = 6), with 𝑗 ∈ 𝐽 = {6,27} and in cell type 𝑑 ∈
𝐷 = {RPE1,Th-1}. Each data point 𝑑𝑎𝑡𝑎(𝑟, 𝑖, 𝑡𝑝, 𝑗, 𝑑), to be used in the Bayesian inference and 
Bayesian model selection was then computed as  
 

𝑑𝑎𝑡𝑎(𝑟, 𝑖, 𝑡𝑝, 𝑗, 𝑑) =
𝑓(𝑟, 𝑖, 𝑡𝑝, 𝑗, 𝑑)

𝑓(𝑟, 𝑖, 𝑡𝑝 = 30	𝑚𝑖𝑛, 𝑗 = 27, 𝑑). 

 
To compare the model output, 𝑠𝑖𝑚, with the data, the output was normalised in the same way 
as the data, i.e., 

𝑠𝑖𝑚(𝑖, 𝑡𝑝, 𝑗, 𝑑) =
[𝑝𝑆$]-,.(𝑡𝑝, 𝑑)

[𝑝𝑆$]-,"*(30	𝑚𝑖𝑛, 𝑑)
, 

 
where [𝑝𝑆$]-,.(𝑡𝑝, 𝑑) denotes the total concentration of phosphorylated STAT𝑖 at time 𝑡𝑝 (see 
Equations 56-59) when considering cell type 𝑑. In this way, experimental data and the 
mathematical model outputs are comparable. 
 
The similarity between the model output and the data points is then computed by the 
introduction of a distance measure 𝛿(𝑠𝑖𝑚, 𝑑𝑎𝑡𝑎). Here, this distance measure was chosen as 
a generalisation of the Euclidean distance, where  
 

𝛿/(𝑠𝑖𝑚, 𝑑𝑎𝑡𝑎)" =Z Z ZM𝑠𝑖𝑚(𝑖, 𝑡𝑝, 𝑗, 𝑑) − 𝜇/%0%(𝑖, 𝑡𝑝, 𝑗, 𝑑)N
"

.∈203∈-4$∈5

, 

 
for 𝑑 ∈ 𝐷 = {RPE1,Th-1}, where 𝜇/%0%(𝑖, 𝑡𝑝, 𝑗, 𝑑) is the mean of the four repeats of the data 
and is given by  

𝜇/%0%(𝑖, 𝑡𝑝, 𝑗, 𝑑) =
1
4
Z𝑑𝑎𝑡𝑎(𝑟, 𝑖, 𝑡𝑝, 𝑗, 𝑑)
6

78#

. 

 
To carry out the Bayesian model selection and Bayesian parameter inference, prior beliefs 
about the parameters were firstly defined. Each of the parameters (reaction rates) and initial 
concentrations in the model were sampled from a prior distribution, where the distribution was 
informed by experimental data or values from the literature, when possible. The choice of prior 
distributions is given in Table 2. 
 
Parameter Prior distribution Reference 

𝑟#,)&  107 for 𝑟 ∼ 𝑁(−3,1.5) * 

𝑟#,), 	 107 for 𝑟 ∼ 𝑁(−3.9,1.96) * 

𝑟#,"*&  107 for 𝑟 ∼ 𝑁(−2.34,1.17) * 
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𝑟#,"*,  107 	for 𝑟 ∼ 𝑁(−2.82,1.41) * 

𝑟",$&  for 𝑗	 ∈ {6,27} 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−2, 3) (94) 

𝑟",$,  for 𝑗	 ∈ {6,27} 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−3, 1) (94) 

𝑘$%& ,𝑘$'&  for 𝑖	 ∈ {1,3} 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−7, 1) ** 

𝑘$%, ,𝑘$',  for 𝑖	 ∈ {1,3} 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−2, 1) ** 

𝑞 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−3, 2) Assumed 

𝑑$ for 𝑖	 ∈ {1,3} 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−5,−2) *** 

β. for 𝑗	 ∈ {6,27} 107 for 𝑟 ∼ 𝑈𝑛𝑖𝑓(−5,−1) † 

[𝑅#(0)] 𝑁(12.7,6.35) ‡ 

[𝑅"(0)] 𝑁(33.8,16.9) ‡ 

[𝑆#(0)] 𝑁(300,100) (95) 

[𝑆((0)] 𝑁(400,100) (95) 
Table 2: Prior distributions assigned to each parameter and initial concentration in the model. 
* These distributions are centred around measurements obtained from cell surface receptor 
quantification experiments. ** These distributions were derived based on 𝐾/ values obtained 
from the literature (42). *** These distributions are based on values derived from experimental 
data in which the cells were treated with Tofacitinib. † These distributions were based on 
values derived from experimental data in which the cells were treated with cycloheximide. ‡ 
These distributions were based on computations involving approximate cell sizes and average 
numbers of molecules per cell. 
 
We made use of the prior distributions from Table 2 to then carry out a Bayesian model 
selection to determine which hypothesis is most likely given the RPE1 data for both HypIL-6 
and IL-27 signaling. We ran 10) simulations for each mathematical model (HypIL-6 and IL-27) 
and for each hypothesis, sampling model parameters from their prior distributions. We then 
computed a summary statistic for varying values of 𝛿94:#,∗, the distance threshold between 
the mathematical model and data at which parameters are accepted (or rejected) in the ABC. 
Finally, we computed 𝑓(𝐻<), the number of accepted parameter sets for hypothesis 𝑘, where 
the parameter sets are accepted if they result in a distance value less than or equal to 𝛿94:#,∗, 
the distance threshold. This allowed us to compute the relative probability, 𝑝(𝐻=), for each 
hypothesis, as defined by the following equation 

	

𝑝(𝐻=|δ94:#,∗) =
𝑓(𝐻=|δ94:#,∗)

𝑓(𝐻#|δ94:#,∗) + 𝑓(𝐻"|δ94:#,∗)
, 

 
for 𝑘	 ∈ {1,2}. The results of the model selection analysis for RPE1 are shown in Figure 2d, 
where the relative probability of hypothesis 1 increases as 𝛿94:#,∗ tends to 0, whilst the relative 
probability of hypothesis 2 decreases as a function of 𝛿94:#,∗. We hence concluded that the 
experimental data together with the mathematical models for HypIL-6 and IL-27 signaling 
provide greater support to hypothesis 1 (around 70%) when compared to hypothesis 2 (around 
30%). We note that as the distance threshold, 𝛿94:#,∗, is increased, both hypotheses become 
equally likely, as is to be expected. Given the results of the model selection, the Bayesian 
parameter inference for the mathematical models of HypIL-6 and IL-27 signaling was only 
carried out for hypothesis 1. 
 
We used the ABC, sequential Monte Carlo (ABC-SMC), approach (96), to obtain posterior 
distributions for the parameters in Table 1, making use of the prior distributions in Table 2. All 
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model parameters in Table 1 were estimated for the RPE1 data set. A subset of the 
parameters, which we would expect may vary with cell type, were then estimated for the Th-1 
data set. In particular, the parameters not being estimated for Th-1 were sampled from the 
posterior distributions obtained via the ABC-SMC for RPE1, and those parameters estimated 
separately for Th-1 were: 𝑞, 𝑑#, 𝑑(, 𝛽), 𝛽"*, [𝑅#(0)], [𝑅"(0)], [𝑆#(0)] and [𝑆((0)].  
 
To further validate the two mathematical models of cytokine signaling, we aimed to reproduce 
additional experimental results making use of the posterior parameter predictions from the 
RPE1 data ABC-SMC. Firstly, and in order to replicate the experimental dose response curve 
seen in Supp. Fig. 2a, we run both models using the 106 accepted parameters sets from the 
ABC-SMC for 18 different values of  cytokine concentration, within the range [10,6 – 10"] log 
nM. The results of this analysis are seen in Supp. Fig. 12b. We also modified the mathematical 
models to allow them to describe the IL-27Rα-GP130 chimera experiments (Fig. 3c). In 
particular, a new mathematical model for the chimera experiments was developed as follows: 
it consisted of the ODEs from the IL-27 model which are involved in the formation of the dimer, 
(Equations (23) – (26)) and the ODEs from the HypIL-6 model post-dimer formation (Equations 
(5) – (22)), in which 𝐷) was replaced by 𝐷"*. The ODE for the IL-27 induced dimer in the 
chimera model was as follows 
 
𝑑[𝐷"*]
𝑑𝑡

= 𝑟","*& [𝐶"][𝑅#] − 𝑟","*, [𝐷"*] − 2𝑘#%& [𝐷"*][𝑆#] + 𝑘#%, ([𝑆# ⋅ 𝐷"*] + [𝑝𝑆# ⋅ 𝐷"*])

− 2𝑘(%& [𝐷"*][𝑆(] + 𝑘(%, ([𝑆( ⋅ 𝐷"*] + [𝑝𝑆( ⋅ 𝐷"*]) − β"*[𝐷"*].	
 
We simulated both the original mathematical model of IL-27 and the chimera model using the 
accepted parameter sets from the ABC-SMC. The results can be seen in Supp. Fig. 12a. 
Finally, we focussed on one of the mutant varieties of IL-27Rα, Y613F and sought to 
reproduce the results of Fig.  3b making use of the mathematical model of IL-27 signaling. 
Since the mutation decreases the affinity of STAT1 to IL-27Rα, we fixed the association and 
dissociation rates of STAT1 to the IL-27Rα chain, 𝑘#'&  and 𝑘#', , at values which resulted in a 
high µM affinity. The specific values chosen were 𝑘#'& = 10,> nM-1s-1 and 𝑘#', = 10# s-1 which 
yields an affinity of 10" µM. The rate 𝑘#',  was chosen as approximately the median of the 
posterior distribution for this parameter from the ABC-SMC, and the rate 𝑘#'&  was then 
significantly decreased in order to increase the affinity value. We simulated the mathematical 
model of IL-27 signaling using the 106 accepted parameter sets from the ABC-SMC, but where 
the rates 𝑘#'&  and 𝑘#',  were fixed as described above. The pointwise medians and 95% credible 
intervals of these simulations are plotted in Supp. Fig. 12c, as well as the simulations for the 
WT, without altering any of the parameter values from the posterior distributions. Altering the 
binding affinity of STAT1 to IL-27Rα in this way in the mathematical model allows us to 
generate results which replicate reasonably well, the experimental observations for the Y613F 
mutant in Figure 3b. 
 

Live-cell dual-color single-molecule imaging studies: 

Single molecule imaging experiments were carried out by total internal reflection fluorescence 
(TIRF) microscopy with an inverted microscope (Olympus IX71) equipped with a triple-line 
total internal reflection (TIR) illumination condenser (Olympus) and a back-illuminated electron 
multiplied (EM) CCD camera (iXon DU897D, 512 x 512 pixel, Andor Technology) as recently 
described (38-40). A 150 x magnification objective with a numerical aperture of 1.45 (UAPO 
150 3 /1.45 TIRFM, Olympus) was used for TIR illumination. All experiments were carried out 
at room temperature in medium without phenol red supplemented with an oxygen scavenger 
and a redox-active photoprotectant to minimize photobleaching (97). For Heterodimerization 
experiments of IL-27Ra and GP130 cell surface labeling of RPE1 GP130 KO, co-transfected 
with mXFPe-IL-27Ra and mXFPm-GP130, was achieved by adding aGFP-enNBRHO11 and 
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aGFP-miNBDY647 to the medium at equal concentrations (5 nM) and incubated for at least 5 
min prior to stimulation with IL-27 (20 nM) or HypIL-6 (20 nM). For homodimerization 
experiments with mXFPm-GP130, aGFP-miNBDY647 and aGFP-miNBRHO11 (98) were used for 
cell surface receptor labelling as described above. The nanobodies were kept in the bulk 
solution during the whole experiment in order to ensure high equilibrium binding to mXFP-
GP130. For simultaneous dual color acquisition, aGFP-NBRHO11 was excited by a 561 nm 
diode-pumped solid-state laser at 0.95 mW (~32 W/cm2) and aGFP-NBDY647 by a 642 nm laser 
diode at 0.65 mW (~22 W/cm2). Fluorescence was detected using a spectral image splitter 
(DualView, Optical Insight) with a 640 DCXR dichroic beam splitter (Chroma) in combination 
with the bandpass filter 585/40 (Semrock) for detection of RHO11 and 690/70 (Chroma) for 
detection of DY647 dividing each emission channel into 512x256 pixel. Image stacks of 150 
frames were recorded at 32 ms/frame.  
Single molecule localization and single molecule tracking were carried out using the multiple-
target tracing (MTT) algorithm (99) as described previously (100). Step-length histograms 
were obtained from single molecule trajectories and fitted by two fraction mixture model of 
Brownian diffusion. Average diffusion constants were determined from the slope (2-10 steps) 
of the mean square displacement versus time lapse diagrams. Immobile molecules were 
identified by the density-based spatial clustering of applications with noise (DBSCAN) 
algorithm as described recently (101). For comparing diffusion properties and for co-tracking 
analysis, immobile particles were excluded from the data set. Prior to co-localization analysis, 
imaging channels were aligned with sub-pixel precision by using a spatial transformation. To 
this end, a transformation matrix was calculated based on a calibration measurement with 
multicolour fluorescent beads (TetraSpeck microspheres 0.1 mm, Invitrogen) visible in both 
spectral channels (cp2tform of type ‘affine’, The MathWorks MATLAB 2009a).  
Individual molecules detected in the both spectral channels were regarded as co-localized, if 
a particle was detected in both channels of a single frame within a distance threshold of 
100 nm radius. For single molecule co-tracking analysis, the MTT algorithm was applied to 
this dataset of co-localized molecules to reconstruct co-locomotion trajectories (co-
trajectories) from the identified population of co-localizations. For the co-tracking analysis, only 
trajectories with a minimum of 10 steps (~320 ms) were considered in order to robustly remove 
random receptor co-localizations (39). For heterodimerization experiments of mXFPe-IL-27Ra 
and mXFPm-GP130, the relative fraction of dimerized receptors was calculated from the 
number of co-trajectories relative to the number of IL-27Ra trajectories. GP130 was expressed 
in moderate excess (~1.5-2 fold), so that maximal receptor assembly was not limited by 
abundance of the low-affinity subunit GP130. 
For homodimerization experiments with GP130, the relative fraction of co-tracked molecules 
was determined with respect to the absolute number of trajectories and corrected for GP130 
stochastically double-labelled with the same fluorophore species as follows:  

𝐴𝐵∗ 	= ?@

"×BC !
!"#D×C

#
!"#DE

, 𝑟𝑒𝑙. 𝑐𝑜 − 𝑙𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 = 	 "×?@
∗

(?&@)
  

where A, B, AB and AB* are the numbers of trajectories observed for Rho11, DY647, co-
trajectories and corrected co-trajectories, respectively. 

The two-dimensional equilibrium dissociation constants (𝐾!"!) were calculated according to 
the law of mass action for a monomer-dimer equilibrium: 

Heterodimerization (IL-27Ra+GP130): 
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𝐾!"! =
M[𝐺𝑃130] − (𝛼 × [𝐼𝐿27𝑅𝑎])N × M[𝐼𝐿27𝑅𝑎] − (𝛼 × [𝐼𝐿27𝑅𝑎])N

(𝛼 × [𝐼𝐿27𝑅𝑎])
 

or 

𝐾!"! = [𝐺𝑃130] × j
1
𝛼
− 1k + [𝐼𝐿27𝑅𝑎] × (𝛼 − 1) 

with: 𝛼 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝐼𝐿27	𝑏𝑜𝑢𝑛𝑑	𝐼𝐿27𝑅𝑎	𝑖𝑛	𝑐𝑜𝑚𝑝𝑙𝑒𝑥	𝑤𝑖𝑡ℎ	𝐺𝑃130 

Homodimerization (GP130+GP130): 

  𝐾!"! =
[I]%

[!]
= ([I]&,"[!])%

[!]
 

  𝐾!"! =
K[L4#(M],"×(N×[L4#(M])O%

"×(N×[L4#(M])
 

with: 𝛼 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝐺𝑃130	ℎ𝑜𝑚𝑜𝑑𝑖𝑚𝑒𝑟𝑠	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑡𝑜	[𝐺𝑃130]/2 

 

Where [M] and [D] are the concentrations of the monomer and the dimer, respectively, and 
[M]0 is the total receptor concentration.  
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FIGURE LEGENDS: 
 
Figure 1 Cytokine receptor activation by IL-27 and (Hyp)IL-6: 

a) Cartoon model of stepwise assembly of the IL-27 and HypIL-6-induced receptor 
complex and subsequent activation of STAT1 and STAT3.  

b) Dose-dependent phosphorylation of STAT1 and STAT3 as a response to IL-27 and 
HypIL-6 stimulation in TH-1 cells, normalized to maximal IL-27 stimulation. Data was 
obtained from three biological replicates with each two technical replicates, showing 
mean ± std dev.  

c) Phosphorylation kinetics of STAT1 and STAT3 followed after stimulation with 
saturating concentrations of IL-27 (2nM) and HypIL-6 (20nM) or unstimulated TH-1 
cells, normalized to maximal IL-27 stimulation. Data was obtained from five biological 
replicates with each two technical replicates, showing mean ± std dev.  

d) Top: Phosphorylation kinetics of STAT1 and STAT3 followed after stimulation with 
HypIL-6 (20nM) or left unstimulated, comparing wt RPE1 and RPE1 GP130KO 
reconstituted with high levels of mXFPm-GP130 (=10x [GP130]). Data was normalized 
to maximal stimulation levels of wt RPE1. Left: cell surface GP130 levels comparing 
RPE1 GP130KO, wt RPE1 and RPE1 GP130KO stably expressing mXFPm-GP130 
measured by flow cytometry. Data was obtained from one biological replicate with each 
two technical replicates, showing mean ± std dev. Bottom right: cell surface levels of 
GP130 measured by flow cytometry for indicated cell lines. 

e) Cartoon model of cell surface labeling of mXFP-tagged receptors by dye-conjugated 
anti-GFP nanobodies (NB) and identification of receptor dimers by single molecule 
dual-colour co-localization. 

f) Raw data of dual-colour single-molecule TIRF imaging of mXFPe-IL-27RαNB-RHO11 and 
GP130NB-DY649 after stimulation with IL-27. Particles from the insets (IL-27Ra: red & 
GP130: blue) were followed by single molecule tracking (150 frames ~ 4.8s) and 
trajectories >10 steps (320ms) are displayed. Receptor heterodimerization was 
detected by co-localization/co-tracking analysis. 

g) Relative number of co-trajectories observed for heterodimerization of IL-27Rα and 
GP130 as well as homodimerization of GP130 for unstimulated cells or after indicated 
cytokine stimulation. Each data point represents the analysis from one cell with a 
minimum of 23 cells measured for each condition. *P < 0.05, **P ≤ 0.01,***P ≤ 0.001; 
n.s., not significant. 

h) Stoichiometry of the IL-27–induced receptor complex revealed by bleaching analysis. 
Left: Intensity traces of mXFPe-IL27RαNB-RHO11 and GP130NB-DY649 were followed until 
fluorophore bleaching. Middle: Merged imaging raw data for selected timepoints. Right: 
overlay of the trajectories for IL-27Rα (red) and GP130 (blue). 

 
Figure 2: Mathematical modelling results in RPE1 and Th-1 cells.  

a) Simplified cartoon model of IL-27/HypIL-6 signal propagation layers and coverage of 
the mathematical modelling approach. 

b) Model selection results showing the relative probabilities of each hypothesis, for 
different values of the distance threshold, 𝛿∗, in RPE1 cells. 

c) Pointwise median and 95% credible intervals of the predictions from the mathematical 
model, calibrated with the experimental data, using the posterior distributions for the 
parameters from the ABC-SMC.  
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d) Kernel density estimates of the posterior distributions for the parameters 𝑝	 ∈
{𝑟#,.& , 𝑟#,., , 𝑟",.& , 𝑟",., , 𝑘$%& , 𝑘$%, , 𝑘$'& , 𝑘$', , 𝑞, 𝑑$ , 𝛽. , [𝑅#(0)], [𝑅"(0)], [𝑆#(0)], [𝑆((0)]} in the 
mathematical models where 𝑗	 ∈ {6,27} and 𝑖	 ∈ {1,3}.  
 

Figure 3: IL-27Rα cytoplasmic domain is required for sustained pSTAT1 kinetics. 
a) Representation of the cytoplasmic domain of IL-27Rα with its highlighted tyrosine 

residues Y543 and Y613. 
b) STAT1 and STAT3 phosphorylation kinetics of RPE1 clones stably expressing wt and 

mutant IL-27Rα after stimulation with IL-27 (10 nM, top panels) or after stimulation with 
HypIL-6 (20 nM, bottom panels), normalized to maximal levels of wt IL-27Rα stimulated 
with IL-27 (top) or HypIL-6 (bottom). Data was obtained from three experiments with 
each two technical replicates, showing mean ± std dev. Bottom right: cell surface levels 
variants measured by flow cytometry for indicated IL-27Rα cell lines. 

c) Cytoplasmic domain of IL-27Rα is required for sustained pSTAT1 activation. Left: 
Cartoon representation of receptor complexes. Right: STAT1 and STAT3 
phosphorylation kinetics of RPE1 clones stably expressing wt IL-27Rα and IL-27Rα-
GP130 chimera after stimulation with IL-27 (10 nM, top panels) or after stimulation with 
HypIL-6 (20 nM, bottom panels). Data was normalized to maximal levels for each 
cytokine and cell line. Data was obtained from two experiments with each 2 technical 
replicates, showing mean ± std dev. 

d) Phosphatases do not account for differential pSTAT1/3 activity induced by IL-27 and 
HypIL-6. Left: Schematic representation of workflow using JAK inhibitor Tofacitinib. 
Right: MFI ratio of Tofacitinib-treated and non-treated RPE1 mXFPe-IL-27Rα cells for 
pSTAT1 and pSTAT3 after stimulation with IL-27 (10nM) and HypIL-6 (20nM). Data 
was obtained from two experiments with each two technical replicates, showing mean 
± std dev.  

 
Figure 4: Unique and overlapping effects of IL-27 and HypIL-6 on the phosphoproteome 
of Th-1 cells. 

a) Volcano plot of the phospho-sites regulated (p value £ 0.05, fold change ³+1.5 or £-
1.5) by IL-27 (left) and HypIL-6 (right). Data was obtained from three biological 
replicates. 

b) Heatmap representation (examples) of shared and differentially up- (left) and 
downregulated (right) phospho-sites after IL-27 and HypIL-6 stimulation. Data 
represents the mean (log2) fold change of three biological replicates. 

c) Tyrosine and Serine phosphorylation of selected STAT proteins after stimulation with 
IL-27 (red) and HypIL-6 (blue). *P < 0.05, **P ≤ 0.01,***P ≤ 0.001; n.s., not significant. 

d) pS727-STAT1 and pS727-STAT3 phosphorylation kinetics in Th-1 cells after 
stimulation with IL-27 or HypIL-6, normalized to maximal IL-27 stimulation. Data was 
obtained from three biological replicates with each two technical replicates, showing 
mean ± std dev. 

e) GO analysis “biological processes” of the phospho-sites regulated by IL-27 (red) and 
HypIL-6 (blue) represented as bubble-plots. 

f) Phosphorylation of target proteins associated with STAT3/CDK transcription initiation 
complex after stimulation with IL-27 (blue) and HypIL-6 (red) and schematic 
representation of transcription regulation of RNA polymerase II with identified 
phospho-sites (red flags). 
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Figure 5: Kinetic decoupling of gene induction programs depends on sustained STAT1 
activation by IL-27.  

a) Principal component analysis for genes found to be significantly upregulated (left) or 
downregulated (right) for at least one of the tested conditions (time & cytokine). Data 
was obtained from three biological replicates. 

b) Kinetics of gene induction shared between IL-27 and HypIL-6 (relative to IL-27) for 
upregulated genes (red) or downregulated genes (green). 

c) Kinetics of gene numbers induced after IL-27 and HypIL-6 stimulation for upregulated 
genes (left) and downregulated genes (right). 

d) GSEA reactome analysis of selected pathways with significantly altered gene induction 
in response to IL-27 or HypIL-6 stimulation. Data represents the mean (log2) fold 
change of three biological replicates. 

e) Cluster analysis comparing the gene induction kinetics after IL-27 or HypIL-6 
stimulation. Gene induction heatmaps for example genes as well as induction kinetics 
(mean) are shown for highlighted gene clusters. Data represents the mean (log2) fold 
change of three biological replicates. 
 

Figure 6: IL-27-induced upregulation of IRF1 amplifies induction of STAT1-dependent 
genes 

a) Kinetics of IRF1 protein expression as a response to continuous IL-27 and HypIL-6 
stimulation in Th-1 cells. Data was obtained from three biological replicates with each 
two technical replicates, showing mean ± std dev. Dotted line indicates baseline level. 

b) Kinetics of IRF1 protein expression and siRNA-mediated IRF1 knockdown in RPE1 IL-
27Rα cells stimulated with IL-27 (2nM). Data was obtained from one representative 
experiment with each two technical replicates, normalized to maximal IRF1 induction 
(6h), showing mean ± std dev. 

c) Kinetics of STAT1 (left) and STAT3 (right) phosphorylation after siRNA-mediated IRF1 
knockdown in RPE1 IL-27Rα cells stimulated with IL-27 (2nM). Data was obtained 
from one representative experiment with each two technical replicates, showing mean 
± std dev. 

d) Kinetics of gene induction (STAT1, GBP5, OAS1, SOCS3) followed by RT qPCR in 
RPE1 IL-27Rα cells stimulated with IL-27 (2nM) with and without siRNA-mediated 
knockdown of IRF1. Data was obtained from three experiments with each two technical 
replicates, showing mean ± SEM. 

 
Figure 7: IL-27-induced STAT1 response drives global proteomic changes in Th-1 cells. 

a) Workflow for quantitative SILAC proteomic analysis of Th-1 cells continuously 
stimulated (24h) with IL-27 (10nM), HypIL-6 (20nM) or left untreated.  

b) Global proteomic changes in Th-1 cells induced by IL-27 (left) or HypIL-6 (right) 
represented as volcano plots. Proteins significantly up- or downregulated are 
highlighted in red (p value £ 0.05, fold change ³+1.5 or £-1.5). Significantly altered 
ISG-encoded proteins by IL-27 are highlighted in yellow. Data was obtained from three 
biological replicates. 

c) Venn diagrams comparing unique upregulated (left) and downregulated (right) proteins 
by IL-27 (blue) and HypIL-6 (red) as well as shared altered proteins. ISG-encoded 
proteins are highlighted in yellow. 
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d) Heatmaps of the top 30 up- and downregulated proteins by IL-27 compared to HypIL-
6. Data representation of the mean (log2) fold change of three biological replicates. 

e) Heatmap representation and enrichment plot of proteins identified by GSEA reactome 
pathway enrichment analysis “Cytokine signaling and immune system” induced by IL-
27. Data representation of the mean (log2) fold change of three biological replicates. 

f) Correlation of IL-27 and HypIL-6-induced RNA-seq transcript levels (³+2 or £-2 fc) with 
quantitative proteomic data (³+1.5 or £-1.5 fc). Data representation of the mean (log2) 
fold change of three biological replicates. 
 

Figure 8: Receptor and STAT concentrations determine the nature of the cytokine 
response. 

a) Copy numbers of indicated proteins determined for different T-cell subsets using mass-
spectrometry based proteomics (ImmPRes - http://immpres.co.uk). 

b) Model predictions for varying levels of STAT1 and STAT3 (left panel) or IL-27Rα and 
GP130 (right panel) for phosphorylation kinetics of STAT1 and STAT3. 

c) Gene expression profiles determined by RNAseq analysis comparing indicated genes 
of a cohort of SLE risk patients with a cohort of healthy controls. Data obtained from: 
Proc Natl Acad Sci U S A 115, 12565-12572 . *P < 0.05, **P ≤ 0.01,***P ≤ 0.001; n.s., 
not significant. 

d) Dose-dependent phosphorylation of STAT1 and STAT3 as a response to IL-27 and 
HypIL-6 stimulation in naive and IFNα2-primed (2nM, 24h) Th-1 cells, normalized to 
maximal IL-27 stimulation (ctrl). Data was obtained from four biological replicates with 
each two technical replicates, showing mean ± std dev.  

e) Phosphorylation of STAT1 (left) and STAT3 (right) as a response to IL-27 (2nM, 15min) 
and HypIL-6 (10nM, 15min) stimulation in healthy control (ctrl) and SLE patient CD4+ 
T-cells. Data was obtained from five healthy control donors (5) and six SLE patients. 
*P < 0.05, **P ≤ 0.01,***P ≤ 0.001; n.s., not significant. 

f) Tofacitinib titration to inhibit STAT1 and STAT3 phosphorylation by HypIL-6 (10nM, 
15min) in Th-1 cells (left) and RPE1 cells stably expressing wt IL-27Rα (right). 

 
Supp. Figure 1: 

a) Comparison of dose-dependent phosphorylation (STAT1/3) of purchased IL-27 and 
mIL-27sc in activated CD4+ cells, normalized to maximal MFI levels. Data was 
obtained from one (purchased) or two (mIL-27sc) biological replicates with each two 
technical replicates, showing mean ± std dev.  

b) Schematic workflow of T-cell isolation, TH1 differentiation, fluorescence barcoding and 
gating strategy for high throughput flow cytometry. 

c) Phosphorylation kinetics of STAT1 and STAT3 followed after stimulation with IL-27 
(10nM) and HypIL-6 (20nM) or unstimulated TH1 cells. Data (from Fig. 1c) was 
normalized to maximal MFI levels for each cytokine. Data was obtained from five 
biological replicates with each two technical replicates, showing mean ± std dev.  

d) Phosphorylation kinetics of activated PBMCs (CD4+, CD8+) of STAT1 and STAT3 
followed after stimulation with IL-27 (2nM) and HypIL-6 (20nM) or unstimulated cells. 
Data was normalized to maximal IL-27 stimulation. Data was obtained from two 
biological replicates with each two technical replicates, showing mean ± std dev.  

e) Dose-response experiments in wt RPE1 cells for pSTAT1 (left) and pSTAT3 (right), 
stimulated with IL-27 or HypIL-6, normalized to maximal HypIL-6 stimulation. Data was 
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obtained from one representative experiment with each two technical replicates, 
showing mean ± std dev. 

 
Supp. Figure 2: 

a) Dose-response experiments for pSTAT1 and pSTAT3 comparing RPE1 GP130 KO 
cells (left), wt RPE1 (middle) and RPE1 mXFPe-IL27Ra (right) after stimulation with 
IL-27 or HypIL-6, normalized to maximal HypIL-6 stimulation. Data was obtained from 
one representative experiment with each two technical replicates, showing mean ± std 
dev. 

b) Ligand-induced receptor dimerization: Top panel: Dual-colour co-tracking of IL-27Rα 
and GP130 in the absence (top) and presence (bottom) of IL-27 (20nM). Trajectories 
(150 frames, ~4.8 s) of individual mXFPe-IL27RαNB-RHO11 (red) and GP130NB-DY649 
(blue) and co-trajectories (magenta) are shown for a representative cell. Bottom panel: 
Dual-colour co-tracking of GP130 in the absence (top) and presence (bottom) of 
HypIL-6 (20nM). Trajectories (150 frames, ~4.8 s) of individual mXFPe-IL27RαNB-RHO11 
(red) and GP130NB-DY649 (blue) and co-trajectories (magenta) are shown for a 
representative cell. 

c) Top: Cartoon model of cell surface labeling of mXFP-tagged GP130 by dye-conjugated 
anti-GFP nanobodies (NB) and formation of single-colour homodimers (left) or dual-
colour homodimers (right). Below: Examples for intensity traces of single-colour dual-
step bleaching (left) or dual-colour single-step bleaching (right). Insets show raw data 
for selected timepoints and corresponding trajectories. 

d) Top: comparison of diffusion coefficients (D) for mXFPe-IL-27RαNB-RHO11 (red) and 
mXFPmGP130NB-DY649 (blue) in presence and absence of IL-27 stimulation (20nM), as 
well as co-trajectories after IL-27 stimulation (magenta). Bottom: comparison of 
diffusion coefficients for mXFPm-GP130NB-RHO11 (red) in presence and absence of 
HypIL-6 stimulation (20nM), as well as co-trajectories after HypIL-6 stimulation 
(magenta). Each data point represents the analysis from one cell with a minimum of 
23 cells measured for each condition. *P < 0.05, **P ≤ 0.01,***P ≤ 0.001; n.s., not 
significant. 

 
Supp. Figure 3: 

a) Reactions involving ligand binding and dimerization in the HypIL-6 model.  
b) Reactions involving ligand binding and dimerization in the IL-27 model.  
c) Reactions involving the STAT molecules  (𝑆. 	𝑓𝑜𝑟	𝑗 ∈ 	{1,3}) in the HypIL-6 model.  
d) Reactions involving the STAT molecules (𝑆. 	𝑓𝑜𝑟	𝑗 ∈ 	{1,3}) in the IL-27 model.  
e) Reactions involving receptor internalisation/degradation in the HypIL-6 model. Here 

𝐻1 = 𝛽) and 𝐻2 = 𝛾)([𝑝𝑆1] + [𝑝𝑆1]).  
f) Reactions involving receptor internalisation/degradation in the IL-27 model. Here 𝐻1 =

𝛽"* and 𝐻2 = 𝛾"*([𝑝𝑆1] + [𝑝𝑆1]).  
g) Dephosphorylation of (𝑆. 	𝑓𝑜𝑟	𝑗 ∈ 	{1,3})	in the cytoplasm. This reaction occurs in both 

models.  
h) Key for the molecules in the reactions. 

 
Supp. Figure 4: 

a) STAT1 (left) and STAT3 (right) phosphorylation kinetics of RPE1 clones stably 
expressing wt IL-27Rα after stimulation with IL-27 or after stimulation with HypIL-6 
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normalized to maximal IL-27 stimulation. Data was obtained from three experiments 
with each two technical replicates, showing mean ± std dev. 

b) Dose-response experiments for pSTAT1 (left) and pSTAT3 (right) in RPE1 cells stably 
expressing wt IL-27Rα or tyrosine-mutants after stimulation with IL-27, normalized to 
maximal stimulation of wt IL-27Rα. Data was obtained from one representative 
experiment with each two technical replicates, showing mean ± std dev. 

 
Supp. Figure 5: 

a) Dose-response experiments for pSTAT1 (left) and pSTAT3 (right) in RPE1 cells stably 
expressing wt IL-27Rα or IL-27Ra-GP130 chimera after stimulation with IL-27. Data 
normalized to maximal stimulation of wt IL-27Rα. Data was obtained from one 
representative experiment with each two technical replicates, showing mean ± std dev. 

b) STAT1 (left) and STAT3 (right) phosphorylation kinetics in RPE1 IL-27Rα cells 
stimulated with IL-27 or HypIL-6 with and without JAK inhibition by Tofacitinib. Data 
was normalized to maximal IL-27 stimulation. Data was obtained from two experiments 
with each two technical replicates, showing mean ± std dev. 

c) STAT1 (left) and STAT3 (right) phosphorylation kinetics in Th-1 cells stimulated with 
IL-27 or HypIL-6 with and without JAK inhibition by Tofacitinib. Data was normalized 
to to maximal IL-27 stimulation. Data was obtained from two biological replicates with 
each two technical replicates, showing mean ± std dev. 

d) MFI ratio of Tofacitinib-treated and non-treated Th-1 cells for pSTAT1 (left) and 
pSTAT3 (right) after stimulation with IL-27 (10nM) and HypIL-6 (20nM). Data was 
obtained from two biological replicates with each two technical replicates, showing 
mean ± std dev. 

 
Supp. Figure 6: 

a) STAT1 (left) and STAT3 (right) phosphorylation kinetics in RPE1 IL-27Rα cells 
stimulated with IL-27 or HypIL-6 with and without pretreatment with cycloheximide 
(CHX). Data was normalized to to maximal IL-27 stimulation. Data was obtained from 
two experiments with each two technical replicates, showing mean ± std dev. 

b) STAT1 (left) and STAT3 (right) phosphorylation kinetics in TH1 cells stimulated with 
IL-27 or HypIL-6 with and without pretreatment with cycloheximide (CHX). Data was 
normalized to to maximal IL-27 stimulation. Data was obtained from two biological 
replicates with each two technical replicates, showing mean ± std dev. 

 
Supp. Figure 7: 

a) Workflow for quantitative SILAC phospho-proteomic analysis of TH-1 cells stimulated 
(15min) with IL-27 (10 nM), HypIL-6 (20 nM) or left untreated. 

b) Schematic representation of the main GO terms regulated by IL27 as inferred from our 
p-proteomics studies. Red represents downregulated p-sites and blue represents 
upregulated p-sites upon IL27 stimulation of human primary Th-1 cells. 

c) Schematic representation of the main GO terms regulated by HyIL6 as inferred from 
our p-proteomics studies. Red represents downregulated p-sites and blue upregulated 
p-sites upon HyIL6 stimulation of human primary Th-1 cells. 

 
Supp. Figure 8: 
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a) Venn diagrams comparing the numbers of unique upregulated (left) and 
downregulated (right) phospho-sites by IL-27 (blue) and HypIL-6 (red) as well as the 
number of shared phospho-sites. 

b) List of most strongly altered phosphosites (downregulated: green; upregulated: red) in 
response to IL-27 (left) or HypIL-6 (right). 

c) GO analysis “cellular location” and “UP keywords” of the phospho-sites regulated by 
IL27 (red) and HypIL-6 (blue) represented as bubble-plots. 

d) Phosphorylation of target proteins related to Treg functions and schematic 
representation of their activity on T-cells. 

 
Supp. Figure 9: 

a) Kinetics of gene induction in Th-1 cells induced by IL-27 represented as volcano plots. 
Genes significantly up- or downregulated are highlighted in red (p value £ 0.05, fold 
change ³+2 or £-2). Data was obtained from three biological replicates. 

b) Kinetics of gene induction in Th-1 cells induced by HypIL-6 represented as volcano 
plots. Genes significantly up- or downregulated are highlighted in red (p value £ 0.05, 
fold change ³+2 or £-2). Data was obtained from three biological replicates. 

c) Kinetics of gene induction in Th-1 cells induced by HypIL-6 represented as volcano 
plots. Genes identified to be significantly up- or downregulated by IL-27 are highlighted 
in red (p value £ 0.05, fold change ³+2 or £-2). Data was obtained from three biological 
replicates. 

 
Supp. Figure 10: 

a) Gene induction kinetics represented as pie-charts, separated for upregulated genes 
(top panel) and downregulated genes (bottom panel). 

b) Kinetics of ISG induction (examples) as heatmap representation comparing IL-27 with 
HypIL-6 (top) and GSEA reactome pathway enrichment “IFN signaling” for genes 
induced by IL-27 after 6h (bottom). Data represents the mean (log2) fold change of 
three biological replicates. 

c) Heatmaps of the top 30 up- and downregulated genes by IL-27 compared to HypIL-6 
for 1h, 6h and 24h. Data represents the mean (log2) fold change of three biological 
replicates. 

d) Kinetics of IRF1 protein expression as a response to continuous IL-27 and HypIL-6 
stimulation in Th-1 cells. Data was obtained from three biological replicates with each 
two technical replicates, showing mean ± std dev. 

 
Supp. Figure 11: 

a) Pie charts of proteomic changes (unique & shared) for upregulated (left) and 
downregulated (right) proteins in response to IL-27 or HypIL-6 stimulation in Th-1 cells. 

b) Left: GSEA reactome pathway enrichment analysis “Interferon signaling” for proteins 
induced by IL-27. Middle: heatmap representation pathway-associated proteins 
comparing IL-27 with HypIL-6 stimulation. Data represents the mean (log2) fold change 
of three biological replicates. Right: Localization of the identified proteins in context to 
the data distribution of IL-27-induced proteomic changes. Pathway-associated 
proteins are highlighted for IL-27 (blue) and HypIL-6 (red) as well as non-significant 
data distribution (grey). 
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c) Left: GSEA reactome pathway enrichment analysis “Cytokine signaling and immune 
system” for proteins induced by IL-27. Middle: heatmap representation pathway-
associated proteins comparing IL-27 with HypIL-6 stimulation. Data represents the 
mean (log2) fold change of three biological replicates. Right: Localization of the 
identified proteins in context to the data distribution of IL-27-induced proteomic 
changes. Pathway-associated proteins are highlighted for IL-27 (blue) and HypIL-6 
(red) as well as non-significant data distribution (grey). 

d) Average Intensity distribution of untreated proteomic data. Top up- and downregulated 
proteins (≥ +4x or ≤ -4x change) altered by IL-27 (left) or HypIL-6 (right) stimulation are 
indicated. 

 
Supp. Figure 12: 

a) Pointwise median and 95% credible intervals of the WT and chimera mathematical 
models, using the posterior distributions for the parameters from the ABC-SMC.  

b) Dose response curve in RPE1 using the posterior distributions from the ABC-SMC and 
varying the concentrations of HypIL-6 and IL-27 in the model. 

c) Pointwise median and 95% credible intervals of the WT mathematical model and 
simulations of a mutant model with 𝑘#'& = 10,> nM-1 s-1 and 𝑘#', = 10M s-1, using the 
posterior distributions for the parameters from the ABC-SMC for the other parameters.  

 
Supp. Figure 13: 

a) Fold induction of total STAT1 and STAT3 levels in Th-1 measured by flow cytometry. 
Data was obtained from two biological replicates.  

b) Total levels of STAT1 and STAT3 measured in CD4+ by flow cytometry for healthy 
control (ctrl) and Lupus patients (SLE). Data was obtained from five (ctrl) and six (SLE) 
biological replicates. *P < 0.05, **P ≤ 0.01,***P ≤ 0.001; n.s., not significant. 

c) Ratio of pSTAT1 and pSTAT3 after IL-27 (15min, 2nM) or HypIL-6 (15 min, 10nM) 
stimulation measured in CD4+ by flow cytometry for healthy control (ctrl) and Lupus 
patients (SLE). Data was obtained from five (ctrl) and six (SLE) biological replicates 
normalized to mean ratio of healthy control samples. 

d) Tofacitinib titration to inhibit STAT1 and STAT3 phosphorylation by IL-27 (2nM) in Th-
1 cells (left) and RPE1 cells stably expressing wt IL-27Rα (right). 
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Supp. Movie 1: 
Single-molecule co-tracking as a readout for dimerization of cytokine receptors. Cell surface 
labelling of mXFPe-IL-27Rα by eNBRHO11 (left, top) and mXFPm-GP130 by mNBDY649 (left, 
bottom) after stimulation with IL-27 (20nM). In the overlay of the zoomed section of both 
spectral channels (mXFPe-IL-27RαRHO11: Red, mXFPm-GP130DY649: Blue), yellow lines 
indicate co-locomotion of IL-27Rα and GP130 (≥ 10 steps). Acquisition frame rate: 30 Hz, 
Playback: real time. 
 
Supp. Movie 2: 
Dynamics of IL-27-induced receptor assembly. Formation of a single-molecule heterodimer of 
mXFPe-IL-27RαRHO11 (Red) and mXFPm-GP130DY649 (Blue) in presence of IL-27. Yellow lines 
indicate co-locomotion of IL-27Rα and GP130 (≥ 10 steps). Acquisition frame rate: 30 Hz, 
Playback: real time with break at time of receptor dimerization. 
 
Supp. Movie 3: 
Ligand-induced heterodimerization of IL-27Rα and GP130. Overlay of the two spectral 
channels (mXFPe-IL-27RαRHO11: Red, mXFPm-GP130DY649: Blue) in absence (left) or 
presence (right) of IL-27 (20nM). Yellow lines indicate co-locomotion of IL-27Rα and GP130 
(≥ 10 steps). Acquisition frame rate: 30 Hz, Playback: real time. 
 
Supp. Movie 4: 
Ligand-induced homodimerization of GP130. Overlay of the two spectral channels (mXFPm-
GP130RHO11: Red, mXFPm-GP130DY649: Blue) in absence (left) or presence (right) of HypIL-6 
(20nM). Yellow lines indicate co-locomotion of IL-27Rα and GP130 (≥ 10 steps). Acquisition 
frame rate: 30 Hz, Playback: real time. 
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GSEA pathway reactome: Interferon signalling
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