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Methods for gene regulatory network inference focus on net-
work architecture identification but neglect model selection and
simulation. We implement an extension to the dynGENIE3 al-
gorithm that accounts for model uncertainty as an R package,
providing users with an easy to use interface for model selection
and gene expression profile simulation. Source code is avail-
able at https://github.com/tianyu-lu/dynUGENE with a detailed
user guide. A webserver with interactive controls is available at
https://tianyulu.shinyapps.io/dynUGENE/.
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Introduction

Complex phenomena such as cell development and apopto-
sis emerge from coordinated dynamics of gene regulatory
networks (GRN). Inferring network structure from data can
be used for hypothesis generation, revealing mechanisms in
cell development and disease (Huang et al., 2009), and mod-
elling network evolution (Crombach and Hogeweg, 2008).
Accurate dynamical models allow us to predict the effects
of network perturbations on biological function, for example
to push cells out of a disease state (Karlebach and Shamir,
2010), or to design synthetic GRNs given the desired dynam-
ics of a network (Hiscock, 2019). The ideal model should be
flexible enough to capture highly nonlinear interactions while
not sacrificing model interpretability and computation time.

We present dynUGENE (dynamical Uncertainty-aware GEne
NEwork inference), an R package that extends the functional-
ity of dynGENIES3, a state-of-the-art method for GRN infer-
ence (Geurts et al., 2018). We build on dynGENIE3 because
it satisfies all three of our model desiderata. Existing exten-
sions include TIMEOR and BENIN which both incorporate
heterogeneous data to improve network inference accuracy
(Wonkap and Butler, 2020; Conard et al., 2020). Here, we
take a different approach and instead account for uncertainty
in dynGENIES3, allowing for stochastic gene expression sim-
ulations and parsimonious model selection. Our extension is
available as an easy to use R package and also as an interac-
tive web server.

Package Design

dynGENIE3 Background. dynGENIE3 poses GRN infer-
ence as a feature selection problem. It first trains random
forests to predict the change in concentration of each species
given the current concentrations of all species. Each interac-
tion from species w; to species x; is associated with an im-
portance score, calculated by the reduction in variance from
using x; to predict the change in ;. The importance score for
an interaction, when normalized, is interpreted as the proba-
bility of that interaction to exist. For a detailed treatment, see
the vignette and (Geurts et al., 2018).

Model Selection. The inferred network can be visualized as
a p X p matrix where the entry [z;, 2] is the importance score
of x; for inferring x; (Fig. 1). However, real GRNs are of-
ten not fully connected and the presence of an interaction is
binary (Mangan et al., 2016). To address this, dtynUGENE
includes a function for model selection based on visualizing
the Pareto front (Mangan et al., 2016). However, we note
that the model at the sharp drop in the Pareto front is not al-
ways the best model (Supplementary Fig. S1). We include
an additional function on the web server where users can
choose which interactions to mask. The masked networks
can then be simulated, allowing for application-specific tun-
ing of model complexity.

Model Simulation. The inferred networks and masked net-
works can be used to simulate gene expression profiles by
numerically solving the system of ordinary differential equa-
tions learned by the random forests. In addition to determin-
istic simulations, we provide an option that accounts for the
uncertainty in the random forests predictions for stochastic
simulations. For stochastic simulations, instead of only tak-
ing the mean of a random forest’s predictions, we sample
from the Gaussian A (i, 0%) where p is the mean and o2 is
the variance of the random forest’s predictions.

Provided Datasets. The dynUGENE package provides four
example time-series datasets: repressilator, stochastic re-
pressilator, Hodgkin-Huxley, and stochastic Hodgkin-Huxley
(Elowitz and Leibler, 2000; Hodgkin and Huxley, 1952).
These datasets were generated from systems of ordinary or
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Fig. 1: Bottom: inferred importance scores on the repressilator dataset for the
16" network in the step-wise column masks plot (Supplementary Fig. S2). Top:
Simulated trajectory using the inferred network.

stochastic differential equations. Details are provided in the
vignette. The package also includes one steady state dataset,
SynTReN300, taken from GRNdata (Bellot et al., 2020).
Users can provide their own data as input following the for-
mat specified in ?inferNetwork.

Discussion

A requirement for dynGENIE3 and dynUGENE is that all
species must be tracked through time. This requirement is
difficult to satisfy in practice as there are often unknown
species in a biological process of interest. Methods that can
identify or approximate latent structure in partially-observed
systems are more appropriate here (Hiscock, 2019). An
omics treatment such as RNA-seq can cover breadth but cur-
rent sequencing techniques require cells to be destroyed, thus
making time series data collection difficult. Non-destructive
sequencing techniques could address this issue.

The implementation of an inferred network as a gene circuit
will require more thought. Even for networks with sparse
interactions, the likelihood of finding a set of genes and pro-
teins that satisfy the interaction strengths and activation or
inhibitory effects is unknown. In fact, whether a species is
an activator or inhibitor is not explicitly given in the interac-
tion matrix. We can address this by posing dynUGENE as a
constrained optimization problem where it is limited to using
only a given set of parts (genes, promoters, ribosome bind-
ing sites, proteins, etc.) thus relating the importance scores
with biological interaction strengths. We leave this for future
work.
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Data and code availability

Source code is available at https://github.com/tianyu-
lu/dynUGENE with a detailed user guide. A
webserver with interactive controls is available at
https://tianyulu.shinyapps.io/dynUGENE/.
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