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Abstract 

Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) 
analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by 
eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to 
be included in the analyzed data set. Currently, however, even the most sophisticated model based or 
machine learning algorithms require user supervision, meaning the subjectivity problem is not removed 
but rather incorporated into the algorithm’s initial training steps and then repeatedly applied to the 
imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that 
recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and 
quantification. The approach incorporates an optical flow algorithm component to self-label cell and 
background pixels for training, followed by the extraction of additional feature vectors for the automated 
generation of a cell/background classification model. Because it is self-trained, the software has no user-
adjustable parameters and does not require curated training imagery.  The algorithm was applied to 
automatically segment cells from their background for a variety of cell types and five commonly used 
imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted 
light and interference reflection microscopy (IRM).  The approach is broadly applicable in that it enables 
completely automated cell segmentation for long-term live cell phenotyping applications, regardless of 
the input imagery’s optical modality, magnification or cell type.   
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Introduction 

Live cell phenotyping is an information rich experimental approach, capable of providing mechanistic 
insights into cell biology1,2, guiding drug development3 and elucidating disease pathologies4,5. The wealth 
of information available from live cell microscopy results from the fact that there are numerous optical 
modalities that can be integrated within a given experiment – from fluorescence imaging which provides 
spatio-temporal information on specific signaling pathways and organelles to label-free techniques such 
as phase contrast and differential interference contrast (DIC) which enable the visualization of whole 
cellular morphologies and dynamics. Each of these modalities provides its own outcome measures which 
can be viewed as static snapshots or dynamic variations within the four-dimensional space of x, y, z and 
time6. 

However, compared to genotyping -  its synergistic partner technique - live cell phenotyping remains a far 
more subjective science. The generation of genomic sequencing data and its analysis can now be achieved 
autonomously by employing a combination of robotics and microfluidics for sample preparation and 
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machine learning algorithms for data collection and interpretation.  In contrast, the extraction of 
quantitative information from live cell imagery by manual means is still commonplace in live cell 
microscopy, a fact which speaks to the human visual system’s adeptness at detecting small changes and 
low contrast features with high fidelity. But with automated live cell microscopes now able to collect high 
resolution imagery for days on end, the resulting data files can quickly grow to tens of gigabytes, leaving 
the analyst with an overwhelming amount of imagery to work through.7 Furthermore, if the analyst is not 
blinded to the experimental design, unconscious bias can creep into the data extraction process. 

Enter computational algorithms capable of extracting the relevant outcome variables from the imagery in 
an automated fashion.8-10 Broadly speaking, the algorithms are often classified as model based approaches 
(e.g. Cell Profiler)11, and machine learning algorithms, (e.g. U-Net, ilastik)12-14. Neither approach is 
completely autonomous when it comes to cell segmentation: model-based approaches require the 
manual tuning of multiple parameters, while machine learning requires the user provide curated data 
from which the algorithm is trained. Once tuned or trained, the software is able to process far more 
imagery than could be achieved manually - but there is still a human-in-the-loop. It is just that the manual 
contribution has been moved to the front end for training purposes and is then continuously reapplied by 
the algorithm. Algorithms that are tuned or trained at the onset can problematically miss relevant features 
as the cellular phenotypes or background characteristics evolve, inadvertently skewing the analysis.  For 
instance, variations in label intensity (e.g. photobleaching, quenching) or new morphological features that 
were not present during the initial training (e.g. differentiation, mitosis, blebbing) can go undetected if 
not retrained with a freshly curated data set or parameters that capture the offending features. In the 
same way, temporal variations in the background illumination intensity or homogeneity can also result in 
improper cell segmentation.7 Especially concerning is that the user-supervised training process is 
inherently subjective in nature and can cause unconscious biases to be effectively baked in to the 
extracted data by the training process.  To optimize objectivity and efficiency, an essential goal is to 
develop software that can accept imagery from any optical modality, labeled or unlabeled, and extract 
the cellular features of interest without input from the user. 

As participants in a synthetic biology real-time reproducibility project administered by U.S. Defense 
Advanced Research Projects Agency (DARPA), referred to as Independent Verification & Validation (IV&V),  
we have recently experienced all of these algorithmic limitations and how they can result in large amounts 
of data either being incorrectly segmented, subjectively segmented, or left unanalyzed due to time 
constraints.15 The program involves a wide range of cell types (amoeboid to eukaryotic) from multiple cell 
biology laboratories; multiple imaging modalities – both fluorescent and label free; and objective 
magnifications ranging from 10X to 100X. The cumbersome process of retraining supervised machine 
learning software to match this variety of conditions proved impractical and a human-in-the loop training 
step was deemed too subjective. The challenge then was to develop a completely automated 
segmentation algorithm for live cell microscopy applications.  In particular, the image analysis software 
should be ‘self-supervised’, meaning it trains itself to classify cells versus background and then regularly 
updates this training so that it can adapt to evolving intensities and morphologies.  The software was 
required to segment a variety of cell types from live cell imagery given the most common imaging 
modalities as inputs - phase contrast, transmitted light, DIC, fluorescence and interference reflection 
microscopy (IRM) – and to do so without user-adjustable parameters or user-selected training imagery.  
It was additionally required that the generated models adapt to changing cell phenotypes and lighting 
conditions for long-term imaging applications (hours to days).   

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425773


Methods 

To replace more manual model based and machine learning training approaches for segmenting cells with 
an automated, self-supervised algorithm, we took advantage of the one phenotypic feature which is 
present in live cell microscopy no matter what the modality: motion. From the nanoscale diffusion of 
proteins and vesicles to the migration of cells that are tens of microns in length, the ever present dynamics 
captured by live cell microscopy make it ideal for applying optical flow (OF) algorithms designed to identify 
not just spatial intensity features in a given frame but also the variation or ‘flow’ of those features from 
frame to frame. The central assumption in optical flow algorithms is that the overall image intensity will 
remain constant if the time difference between frames is reasonably small.16  This leads to the following 
time-derivative constraint equation: 
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where 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) is the in-plane image intensity at time 𝑡𝑡, 𝑢𝑢 and 𝑣𝑣 being the optical flow in the x and y 
directions, respectively. The methods used to solve this constraint equation are matched with the imaging 
goal, such as reducing jitter in imagery taken from helicopters, aligning medical imagery or, in the case of 
this study, cell motion segmentation. In testing a range of optical flow algorithms for cell segmentation, 
we found the Farnebäck method to be the most robust due to its sensitivity to object deformation – a 
natural fit for cells which are morphologically variable.17,18  

OF assumptions may or may not be met for fluorescence time-lapse imagery applications in which 
extended time intervals are sometimes employed to avoid phototoxicity or photobleaching.6,19 For this 
reason, it was important that our technique be co-validated with label free techniques such as transmitted 
light and phase contrast which are minimally invasive. Overlays of less frequently accumulated 
fluorescence imagery with cells segmented using a label-free imaging channel is then straightforward.  
Furthermore, there has been an increased appreciation for the morphological information label-free 
approaches can provide as a result of algorithmic-based phenotyping.20-22  

Our approach to self-supervised learning and automated model generation begins with utilizing the 
Farnebäck OF method as a means of classification bootstrapping (Fig 1). Typical segmentation strategies  
involve utilizing static information in a single image at time frame (t), which can have difficulty 
distinguishing ‘cell’ from ‘background’ pixels  in a generalizable manner (Fig 1a). In contrast, our approach 
begins with an OF calculation based on images from consecutive time frames (t-1, t). This enables us to 
leverage the ubiquitous nature of intracellular motion and build a dynamics-based feature vector: pixels 
with the highest flow are automatically labeled as ‘cell’ pixels, those with the lowest flow are automatically 
labeled as ‘background’ pixels, and those that do not fit either category remain unlabeled (Fig 1b,c). We 
note that this automatic self-labeling is broadly applicable in that it is not dependent on principles of any 
specific optical modality, cell type, or phenotype.  

The OF-based self-labeling approach outputs a set of ‘cell’ and ‘background’ labeled pixels which are then 
used to generate additional entropy and gradient feature vectors at each time point. These static feature 
vectors are used to train and generate a classifier model which, in the final step, is applied to all pixels in 
the image for cell segmentation. The algorithm is written in stand-alone MATLAB script and utilizes 
functions from the Image Processing, Statistics and Machine Learning, and Computer Vision Toolboxes.  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425773


 

Fig. 1 Overview of the optical flow self-labeling strategy. (a) The vast majority of cell segmentation techniques utilize 
single image frames and the static information contained within as means to distinguish ‘cell’ from ‘background’, 
oftentimes represented in a histogram. The self-supervised algorithm utilizes optical flow as a means to self-label 
pixels in an automated fashion. (b) Due to the prevalence of intracellular dynamics in time-lapse live cell imagery, 
optical flow can be calculated for each pair of consecutive images (𝑡𝑡 − 1, 𝑡𝑡). The optical flow can then be represented 
as vectors associated with each pixel (right). (c) The magnitude of the optical flow then offers a means to distinguish 
cells from their background, as shown in the bivariate histogram which co-plots the pixel intensity of a single image 
at t to the optical flow vector magnitudes calculated between consecutive images (𝑡𝑡 − 1, 𝑡𝑡). Pixels with the highest 
flow can be automatically labeled ‘cell’ (left of the green dashed line) and those with the lowest flow can be labeled 
‘background’ (right of the yellow dashed line).  Pixels that do not meet either criteria remain unlabeled, while the 
self-labeled pixels are used to create a training data set for classification. Time increment: 600 sec, scale bar = 20 
µm. 

 

The self-supervised training approach is illustrated in Fig 2 using time lapse DIC imagery of multiple (top) 
and a single highlighted (bottom) MDA-MB-231 cell. From the raw imagery (Fig 2a,b), many portions of 
individual cells appear to blend in with the background. However, when the OF self-labeling strategy is 
applied, the algorithm automatically identifies pixels with high flow magnitude, highlighted as green pixels 
(Fig 2c,d), which are selected as having the highest probability of correctly being labeled ‘cell’. To 
automatically label the background, the algorithm over segments, that is, a liberal (low) OF threshold is 
employed which captures motion from not only the cell but also from nearby background pixels as well.  
The algorithm sets these pixel values to zero and labels the pixels in which no significant motion was 
detected as ‘background’ (Fig 2c,d yellow pixels). Once labeled ‘cell’ or ‘background’ in this unsupervised 
manner by OF (dynamic features from image pair (𝑡𝑡 − 1, 𝑡𝑡) ), entropy and gradient feature vectors (static 
features from image at t)  are generated for each of these training pixels using their local neighborhood 
of pixels (S.I., Fig S2). These additional feature vectors are then used train and generate a Naïve Bayesian 
classifier model which is applied to the entire image in a pixel-wise fashion. The information gained from 
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the entropy and gradient feature vectors enables pixels which were left unlabeled in the OF training steps 
(Fig 2c,d grey pixels) to be classified. The contrast enhanced image (Fig 2b) and model-generated 
segmentation (Fig 2f, teal pixels) show that the algorithm is able to segment the cell with high fidelity (DIC 
image/segmented boundary overlay, Fig 2g). Importantly, this labeling, training and classifying procedure 
occurs recursively on each successive pair of (𝑡𝑡 − 1, 𝑡𝑡) images, enabling the classifier model to adapt to 
changing backgrounds and phenotypes.  By using optical flow to label the highest flow pixels as ‘cells’ and 
lowest flow pixels as ‘background’, the labeling process has become automated (or ‘self-supervised’) and 
no manual inputs or training images are needed. 

For extremely low contrast imagery there can be too few training pixels labeled ‘cell’ for robust 
segmentation to occur given the initial OF threshold setting.  In such cases, the algorithm calculates the 
entropy associated with ‘cell’ pixels and iteratively reduces the OF threshold until the associated ‘cell’ 
entropy feature vector is well distinguished from that of the ‘background’ entropy feature vector.  

 

Fig. 2 Overview of the automated self-supervised learning algorithm. a. The contrast enhanced DIC image of several 
and b a single highlighted MDA-MB-231 cell illustrates the range of intensities inherent within the cells. (20X 
objective).  c. & d. Unsupervised learning via OF: high threshold OF is used to select only those pixels exhibiting the 
highest flow magnitudes and labels them as ‘cell’ (green pixels). Similarly, low threshold OF is used to identify pixels 
with a much wider range of flow magnitudes than the high flow regime. The lowest flow magnitude pixels are 
labelled ‘background’ (yellow pixels). Pixels that exhibit OF in between these regimes remain unlabeled (gray pixels). 
e. & f. Supervised learning via self-labeled training data. The self-labeled pixels (green and yellow) are then used to 
generate static feature vectors, which are in turn used to train the classifier model.  g. The blue outline is the resulting 
segmentation which outlines all pixels classified by the OF trained model as ‘cell’ and is also overlaid on the image 
in b. This process is repeated at every time step, thereby using the most recent imagery to update the training data. 
Scale bar: 25 µm (20X objective, time increment: 300 sec). 

 

Results 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425773


The Fig 3 imagery shows the generality of this approach and also demonstrates how the self-supervised 
algorithm additionally automates commonly required manual inputs such as size filtering and hole filling. 
The segmented cells were processed from imagery acquired from a range of cell types, imaging modalities, 
magnifications and time increments (S.I. Table S1). The OF algorithm enabled a straightforward approach 
to automated size filtering which is a common user adjustable parameter in supervised machine learning 
approaches. To accomplish this, a stand-alone application of OF was applied to the imagery which lacked 
the added steps of self-tuning and model building described above. While some cell features are missed, 
this simpler, faster approach was found to be more than precise enough to estimate average cell size and 
to exclude much smaller objects, thus automating the size filtering process.  Because extraneous debris 
often lacked the motion of the live cells, this debris was also automatically labeled as background by the 
OF algorithm. Fig 3a and b demonstrate the self-supervised code’s ability to size filter, while also adapting 
to cell types of differing sizes, by comparing the segmentation of human fibroblasts (10X, phase contrast) 
to those of the much smaller Dictyostelium amoeboid cells (10X, transmitted light), respectively. 
Extraneous debris features in the Hs27 imagery (Fig 3a, white arrows) are correctly identified as 
‘background’, even though similar in size and intensity to the Dictyostelium cells of Fig 3b.  The background 
inhomogeneities observed in Fig 3a and 3b, which could potentially be mislabeled as ‘cell’, are correctly 
identified because they remain relatively constant from frame 𝑡𝑡 − 1 to frame 𝑡𝑡. The segmentation results 
of the MDA-MB-231 cells (10X, phase contrast) in Fig 3c illustrates the algorithm’s ability to adapt to a 
wide range of phenotypes, from rounded Fig 3c(i) to spread Fig 3c(ii), which is enabled without need for 
user input by continuously retraining the model on consecutive image pairs. The current instantiation of 
the software does not attempt to separate cells that are touching or close enough to be segmented as a 
single object. Well-developed approaches such as watershed transforms23 and levelset methods24 can be 
employed for such purposes.   

The algorithm works robustly for a range of optical modalities and magnifications as shown in Figs 3d-f.  
Figs 3d and 3e are segmentation results from IRM imagery (40X, Hs27 cell) and DIC imagery (20X, MDA-
MB-231).  As a fluorescence imaging example, a self-supervised segmentation of a GFP-actin labeled A549 
cell at 100X magnification is shown in Fig 3f. As an additional option, OF can be applied not only as an 
algorithm labeling element, but also a measurement tool, as shown in the Fig 3f vector plot. The plotted 
OF vectors (blue) display the magnitude and direction of the measured GFP labelled actin flow between 
frames. Such measurements have been shown to be useful for quantifying intracellular protein and 
calcium signaling dynamics.25-27  
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Fig. 3 Self-supervised segmentation for a range of cell types, microscope modalities, time resolutions and 
magnifications. a. phase contrast of Hs27 fibroblasts (10X objective, time increment: 1200 sec) b. transmitted light 
of Dictyostelium (10X objective, time increment: 60 sec)  c. phase contrast of MDA-MB-231 (10X objective, time 
increment: 600 sec)  d. IRM image of a single Hs27 cell (40X objective, time increment: 600 sec) e. DIC image of MDA-
MB-231 cells (20X objective, time increment: 120 sec ) f. fluorescence image of a single lifeAct (GFP-actin conjugate) 
transfected A549 cell (pseudo-colored) with the associated optical flow vector plot (100X objective, time increment: 
10 sec).  Insets i, ii, iii highlight boxed image regions. White arrows point to examples of debris that was correctly 
labelled ‘background’ due either to lack of motion or automated size filtering. Images have been contrast enhanced 
to highlight low contrast features and background inhomogeneities. DIC image (e) was additionally enhanced with a 
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sharpen filter to highlight interference induced shadowing of cell features. Scale bars: a, b, c: 50 µm; d, e: 25 µm; f: 
10 µm. 

Hole filling, another often required manual input for model-based and machine learning algorithms, has 
also been automated by this approach.  Common examples of when hole filling input is required include 
fluorescent labels that do not penetrate the nucleus or, for label-free microscopy modes such as phase 
contrast, large spread cells in which the algorithm has a difficult time associating the interference 
enhanced cell edges with the enclosed lamellipodia. We found that motion within cells was ubiquitously 
detected by OF, regardless of imaging modality or whether imaging the cell membrane, nucleus or 
cytoplasm. Because motion detection was far more common than not for a given pixel within an area 
labeled ‘cell’, a fixed morphological blurring tool (circular with a radius of 5 pixels) was found to robustly 
hole fill regardless of cell type or microscope configuration. The calculated cell area was found to be 
invariant for a range of blurring tool radii (Fig S2). In all cases, the use of optical flow to identify motion 
and the 5 pixel radius blurring tool was sufficient to correctly fill in the cell.   

By re-training on every pair of consecutive images the self-supervised algorithm remains accurate 
throughout long-term imaging applications, despite changes in background or cell phenotypes. This allows 
for a rich behavior of dynamic morphology and migration to readily be collected and analyzed – a key 
point given the known inter-relationship between cellular shape and function.2,28,29 Furthermore, the 
emerging role that not just cell shape, but cell shape dynamics play in fundamental biological processes is 
becoming increasing clear.30  

Fig 4 demonstrates how such quantitative morphological information is readily mined in a long-term 
imaging application. Fig 4a-c shows the tracking of several MDA-MB-231 cells segmented via the self-
supervised approach under 10X phase contrast microscopy on cRGD functionalized gold coverslips.31 Fig 
4a shows the labeled tracks of the cells’ centroids over the course of 400 minutes, with the corresponding 
initial and final image shown in Figs 4b,c. The cell associated with track 2 undergoes mitosis at 
approximately 320 minutes, creating two new tracks (5 and 6) for the daughter cells. Because the self-
supervised approach automatically re-trains continuously on consecutive frame pairs, the morphological 
changes from Fig 4b to Fig 4c are quantified with high fidelity, as can be seen by plotting the segmented 
boundaries as a function of time (Fig 4d).   
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Fig. 4 Tracking of MDA-MB-231 cells under 10X phase contrast microscopy and time evolution of cell 
morphology through mitosis. a. The resulting tracks of multiple segmented cells from a single field of view 
over the course of 400 minutes b. corresponding images at times t = 0 min and c. 400 min. Track 2 
undergoes mitosis resulting in tracks 5 and 6 of the daughter cells (blue line). d. (left) Time evolution of 
segmented morphology of track 2 (black) with the centroid of each shape denoted by an open circle until 
mitosis, after which the track splits into 5 (green) and 6 (blue), with the cell separation event denoted by 
a single red open circle. d. (right) selected images showing raw data overlapped with the self-supervised 
segmentation throughout mitosis event. (10X objective, time increment: 600 sec) Scale bar: 100 μm. 
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Discussion & Conclusions 

There are numerous advantages to this self-supervised machine learning approach. The most obvious is 
that because the training data is generated by tracking motion, the approach can be used with any live 
cell imaging microscopy technique, whether labeled or label-free. Also unique is the use of the optical 
flow labeled pixels to self-supervise the building of a classifier model, which in turn is modular with regards 
to the incorporated feature vectors. While we have employed only two feature vectors in this current 
instantiation of the classification code (gradient and entropy), there are many additional image features 
that can be added based on the application.  We have also shown that the incorporation of OF enables 
the straightforward automation of morphological operations such as size filtering and hole filling, 
eliminating the need for manually tuning these parameters. 

The automation described here is markedly different from machine learning approaches that require user 
assisted training. The most time consuming aspect of model-based tuning and machine learning 
approaches is the training process. The process is one of trial and error, requiring retraining if the model’s 
performance is not deemed adequate. The complete automation of both the training and segmentation 
algorithms not only saves time but also removes the chances of unconscious bias from entering the 
training process. Because the training is conducted recursively with each new image, evolutions in 
phenotype and background structure over extended time periods are accounted for without the need for 
preprocessing. 

The sum of all these advantages is segmentation under a wide range of magnifications, time resolutions, 
cell types and optical modalities that is both automated and robust. This results in the ability to track cells 
for hours or days and quantify a range morphological and phenotypic features without the need for user 
input, thus having broad applicability throughout live cell microscopy. The crux of the introduced self-
supervised approach relies upon using the dynamic information embedded in each pixel – motion 
characterized via optical flow – as an elegant means to self-label cells versus background in time-lapse 
imagery. While cellular dynamics has long been appreciated as information rich with regards to 
understanding cell function, our approach demonstrates that it also provides the means for robust 
segmentation – a foundational step for achieving quantitative and objective live cell analysis. 
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