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Abstract 

A primary goal of metabolomics is to identify all biologically important metabolites. One powerful 

approach is liquid chromatography-high resolution mass spectrometry (LC-MS), yet most LC-MS 

peaks remain unidentified. Here, we present a global network optimization approach, NetID, to 

annotate untargeted LC-MS metabolomics data. We consider all experimentally observed ion peaks 

together, and assign annotations to all of them simultaneously so as to maximize a score that 

considers properties of peaks (known masses, retention times, MS/MS fragmentation patterns) as 

well network constraints that arise based on mass difference between peaks. Global optimization 

results in accurate peak assignment and trackable peak-peak relationships. Applying this approach 

to yeast and mouse data, we identify a half-dozen novel metabolites, including thiamine and taurine 

derivatives. Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies 

existing metabolomic knowledge and global optimization to annotate untargeted metabolomics data, 

revealing novel metabolites.  
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Introduction 

Metabolomics provides a snapshot of small-molecule concentrations in a biological system. In so 

doing, it reflects the integrated impact of genetics and the environment on metabolism. One 

important role of metabolomics is annotating previously unknown or underappreciated metabolites. 

For example, metabolomics facilitated identification of 2-hydroxyglutarate as an oncometabolite, 

eventually leading to the development of inhibitors of 2-hydroxyglutarate synthesis as anticancer 

agents1,2. Metabolomics also contributed to identification of a diversity of natural products3,4 and 

disease biomarkers5.  

A common experimental strategy in metabolomics is liquid chromatography-high resolution mass 

spectrometry (LC-MS). LC-MS metabolomics measures thousands of ion peaks, of which hundreds 

are associated with known metabolites. A much greater number of peaks, however, still remain 

unannotated. The standard approach to peak annotation is to compare exact mass and either 

retention time or MS/MS fragmentation pattern to authenticated standards. To facilitate such 

comparisons, extensive chemical databases have been developed (e.g. METLIN6, HMDB7, MoNA8, 

KEGG9, Pubchem10, ChEBI11 and NIST12), with software tools available for automated peak picking and 

database comparison. Modern software also includes features for annotating peaks arising from 

isotopes and adducts of known metabolites, based on co-elution and characteristic mass differences 

(e.g. XCMS13,14, GNPS15, MS-DIAL16, MZmine17, and CAMERA18). Such peaks seem to account for at 

least half of non-background LC-MS features19,20. Despite this progress, a great number of unknown 

peaks remain, and figuring out their identities is a primary challenge in the field. 

One promising approach is network analysis, capitalizing on peak-peak relationships to increase 

annotation scope and accuracy. Connections can be drawn based on similar responses across 

experiments and/or MS2 similarity. Such connections can arise either through biochemical activities 

or mass spectrometry phenomena, such as isotopes, adducts, or in-source fragments. While distinct 

metabolites typically separate chromatographically, ions connected through mass spectrometry 

phenomena co-elute. Workflows employing the concept of molecular connectivity have been used 

to build networks (e.g., GNPS21,22, CliqueMS23, MetDNA24, BioCAn25, and IPA26), and are showing 

increasing utility for annotating metabolomics data in diverse contexts. For example, GNPS has been 

used broadly in identifying natural products. 

Existing algorithms generally focus on metabolite peaks with MS2 spectra available, using MS2 

spectral data as the main annotation driver. This is an effective strategy for annotating high 

abundance peaks with informative MS2 spectra, such as major secondary metabolites. It is less 

effective, however, for many low abundance metabolomics peaks, due to poor quality or less 

informative MS2 spectra. We accordingly set out to develop a network algorithm for annotating the 

breadth of metabolomics peaks, capitalizing on available MS2 spectra but including also low 
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abundance peaks lacking MS2 spectra. Effective incorporation of peaks without MS2 spectra required 

making yet better use of peak-peak relationships to enhance annotation accuracy, which we achieved 

through the computational approach of global optimization: not dealing with peak annotation one-

by-one, but instead all at once to take full advantage of the entire available information. This global 

optimization strategy had not previously been applied in the context of molecular networking 

analysis. 

To this end, we present the algorithm “NetID”. Similar to existing network analysis approaches, nodes 

are experimentally observed non-background ion peaks and connections are mass differences 

between peaks. We explicitly distinguish connections due to biotransformations (“biochemical 

connections” linking two metabolites) from those due to mass spectrometry phenomenon (“abiotic 

connections” linking isotopes, adducts, and fragments to the metabolites from which they are 

derived). Peak annotation occurs in a single global optimization step, based on linear programming, 

that enforces a single formula assignment for each experimentally observed ion peak. Using this 

approach, we can annotate roughly 80% of untargeted metabolomics peaks, with a majority being 

isotopes and adducts of known metabolites. Through these efforts, we provide likely formulae for 

several hundred novel metabolites, and confirm the identities of half-dozen species not currently in 

metabolomics databases.  

Results 

NetID algorithm 

NetID involves three computational steps: initial annotation, scoring, and optimization (Figure 1).  

The workflow starts with a peak table that contains a list of peak m/z, RT, intensity, and (when 

available) associated MS2 spectra, with background peaks removed by comparing to a process blank 

sample. Each peak defines a node in the network. In the initial annotation phase, we match every 

experimentally measured node m/z to formulae in the HMDB database. Peaks matching to HMDB 

formula within 10 ppm are annotated as seed nodes, from which we extend edges to build the 

network.  

Edges connect two nodes via gain or loss of specific chemical moieties (atoms). The atom differences 

can occur either due to metabolism (biochemical connection) or due to mass spectrometry 

phenomena (abiotic connections). For example, a difference of H2 suggests an oxidation/reduction 

relationship and defines a biochemical edge. A difference of Na-H suggests sodium adducting and is 

a type of abiotic edge (adduct edge). Other atom differences define other types of abiotic 

connections (isotope or fragment edges). Most atom differences are specific to biochemical, adduct, 

isotope, or fragment edges, but a few occur in multiple categories. For example, H2O loss can be 

either biochemical (enzymatic dehydration) or abiotic (in-source water loss). By integrating literature 

and in-house data, we assembled a list of 25 biochemical atom differences and 59 abiotic atom 
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differences which together define all connections in the network (Supplementary Table 1, 2). Using 

these lists, starting from the seed nodes, we draw all feasible edges such that (i) Δm/z between the 

connected nodes matches the atom mass difference and (ii) only co-eluting peaks are connected by 

abiotic edges. Through the edge extension process, possible formulae are assigned to nodes outside 

the initial seeds. A few rounds of edge extension suffice to give thorough coverage. Due to finite mass 

measurement precision, a single node may be assigned multiple contradictory formulae, which are 

resolved at the optimization step (see Methods).  

NetID then scores every node and edge annotation. Node annotations are scored based on precision 

of m/z match to the molecular formula, precision of retention time match to known metabolite 

retention time and (when the relevant information is available) quality of MS2 spectra match to 

database structure. In addition, there is a bonus for matching to formula in HMDB and a penalty for 

breaking basic chemical rules (Seven Golden Rules for filtering molecular formulae27). Biochemical 

edges receive a positive score for MS2 spectra similarity match between the connected nodes, and 

are otherwise unscored. Abiotic edges are scored based on precision of co-elution with the parent 

metabolite, connection type (adduct, isotope, etc.), and features specific to the connection type, such 

as expected natural abundance for isotope peaks (see Methods). The overall impact is to assign high 

scores to annotations that effectively align the experimentally observed ion peaks with prior 

metabolomics knowledge.  

With a score assigned for each potential node and edge annotation, we formulate the global network 

optimization problem as that of maximizing the network score with linear constraints that each node 

and edge has a single unique annotation and that these are consistent (e.g. peaks connected by H2 

edge must have formula differing by 2H). Such optimization is readily performed by linear programing 

with a typical runtime of hours in R on a personal computer, and results in an optimal and consistent 

network annotation.  

Global network optimization 

As an example of the utility of global network optimization, where all peaks and connections are 

simultaneously considered to enhance annotation accuracy, we present an example network 

containing five peaks (Figure 2A). We first match experimental measurements to the database, 

annotating node a and node b as seed nodes adenosine monophosphate (AMP, C10H14N5O7P) and 

adenosine (C10H13N5O4), respectively. We also identify five possible connections between the five 

nodes. Two alternative networks are generated by extending annotations. In the left network, node 

c is annotated as adenosine HCl adduct (C10ClH14N5O4), whereas in the right network, node c is 

annotated as a putative metabolite (C9H14N5O5P) resulting from CO2 loss from AMP. Node d is 13C 

isotope of node c in both networks. Node e is annotated as 37Cl isotope of node c in the left network, 

and is unannotated in the right network because there is no Cl atom in the parent molecule. 
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The left network has higher total node and edge annotation scores than the right network, and thus 

is selected by NetID. This selection makes sense to an experienced mass spectroscopist: the 37Cl 

isotope signature in node e indicates that node c should contain Cl. The power of NetID is that it 

automatically captures such logic, and uses the power of global computational optimization to extend 

such inferences across the network in an automated manner.  

To test the NetID workflow, we applied it to both yeast and liver datasets, in both positive and 

negative ionization mode (Figure 2B, 2C). Considering the example of negative mode yeast data with 

a total of 5,588 non-background peaks, in the initial annotation step, roughly 1,600 potential 

formulae were assigned to 1,400 peaks, with about 200 peaks receiving multiple formula annotations. 

These nodes were connected by just over 50,000 potential edges. Edge extension expanded coverage 

to over 5,000 nodes with an average of twelve potential formulae each, highlighting the importance 

of scoring and network optimization to assign proper formulae. After scoring node and edge 

annotations, global network optimization settled on about 4,800 unique node annotations. About 20% 

of the annotated peaks were metabolites, 14% were putative novel metabolites, and the rest were 

mass spectrometry phenomena, such as adducts, fragments, isotopes. Nodes were connected by 

about 10,000 edges, roughly evenly split between biochemical and abiotic connections (Figure 2C, 

Supplementary Fig. 1A). More than 90% of annotated nodes fell into a single dominant connected 

network (Supplementary Fig. 1B), reflecting most peaks being connected to core metabolism. About 

15% of peaks, however, remained unannotated. These unannotated peaks likely reflect deficiencies 

in our lists of allowed atom differences, including additional forms of mass spectrometry phenomena. 

For example, manual examination of the unconnected peaks revealed a dozen nickel adducts of 

known compounds (Supplementary Table. 3). Importantly, the annotated peaks included several 

hundred novel metabolite formulae (Supplementary Fig. 2, Supplementary Data 1). Collectively, 

these provide a wealth of opportunities for metabolite discovery.  

Thiamine-derived metabolites 

NetID optimization provided not only a list of putative metabolites, but also connections linking these 

putative metabolites to known metabolites. In the yeast metabolomics dataset, we found three 

putative metabolites that have total ion current > 105, connected in a subnetwork around thiamine. 

Their formulae are C12H16N4O2S (thiamine+O), C14H20N4O2S (thiamine+C2H2O) and C14H18N4O2S, 

(thiamine+C2H4O) (Figure 3A). While not found in HMDB, thiamine+O is documented in METLIN as a 

thiamine oxidation product, so we focused on the other two potential thiamine derivatives.  

MS/MS spectra of the putative thiamine+C2H2O and thiamine+C2H4O contained characteristic 

thiamine fragments. Both contained a classical pyrimidine fragment, with thiamine+C2H2O also 

containing an acetylated pyrimidine fragment, leading to a probable structure (Figure 3A,B). The 

structural assignment is further supported by the presence of an unmodified thiazole fragment. In 
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contrast, thiamine+C2H4O lacked a classical unmodified thiazole fragment, instead showing a 

thiazole+C2H4O fragment (and a fragment with further water loss) (Figure 3A,B).  

Isotope tracing experiments further confirm these two peaks contain thiamine. When fed [U-
13C]glucose as sole carbon source, yeast synthesize thiamine de novo, resulting fully labeled thiamine 

species, with carbon counts matching the NetID formula assignments (Figure 3C). Adding unlabeled 

thiamine to the [U-13C]glucose culture media, yeast uptake the unlabeled thiamine, resulting in 

unlabeled thiamine and M+2 labeled thiamine+C2H2O and thiamine+C2H4O species. Although 

discovered in yeast, these are conserved metabolites, found also in mammalian samples (Figure 3D).  

Acetylation is one of the 25 biochemical atom transformations allowed in NetID. The addition of 

C2H4O is much less common biochemically, and was captured in NetID as two steps, acetylation 

followed by reduction. Accordingly, we looked into thiamine metabolism to explore how 

thiamine+C2H4O might be produced. Thiamine pyrophosphate is an important cofactor in pyruvate 

dehydrogenase (PDH, the entry step to TCA cycle) (Figure 3E). The de-pyrophosphorylation product 

of thiamine intermediate in PDH reaction yields thiamine+C2H4O matches the proposed 

thiamine+C2H4O structure (Figure 3F).  

Based on this biochemical route, we realized that analogous products could be formed by α-

ketoglutarate dehydrogenase (thiamine+C4H6O3) and branched-chain keto acid dehydrogenase 

(thiamine+C4H8O) (Figure 3F). Peaks at both of these exact masses were also experimentally observed, 

with isotope labeling results supporting their being thiamine-derived metabolites (Supplementary 

Fig. 3). Thus, NetID enabled the discovery of four novel thiamine-derived metabolites.    

 

N-glucosyl-taurine 

We similarly carried out NetID annotation of a mouse liver dataset. We observed multiple putative 

metabolite peaks linked to taurine, by apparent glucosylation (+C6H10O5), palmitylation (+C16H30O) 

and transamination (+O-NH3) (Figure 4A). The latter two, while missing in HMDB, were found in 

METLIN: N-palmitoyl taurine (C18H37NO4S) and sulfoacetaldehyde (C2H4O4S). To elucidate the 

structure of the putative taurine glucosylation product (C8H17NO8S), we chemically synthesized N-

glucosyl-taurine. Synthetic N-glucosyl-taurine matched the retention time and MS/MS fragmentation 

pattern of the observed C8H17NO8S peak (Figure 4B,C). In liver samples of mice infused with [U-
13C]glucose, C8H17NO8S appeared in M+6 form, suggesting active synthesis of the N-glucosyl-taurine 

from circulating glucose (Figure 4D). N-glucosyl-taurine was not observed in yeast extract but was 

detected in multiple mouse tissues. Quantitation using the synthetic standard shows that liver has 

the highest level of glucosyl-taurine at ~170 μM (Figure 4E, Supplementary Fig. 4). This ranks among 

the few dozen most abundant liver metabolites. 
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Discussion 

The advent of LC-MS metabolomics revealed tens of thousands of metabolite peaks not matching 

known formulae, raising the possibility that the majority of metabolites remained to be discovered. 

While the biosphere likely contains many novel metabolites, it has been increasingly recognized that 

most peaks in typical untargeted metabolomics studies do not arise from novel metabolites, but 

rather mass spectrometry phenomena. The goal of comprehensively annotating untargeted 

metabolomics peaks with molecular formulae has, however, remained elusive. 

One promising strategy for peak annotation involves building molecular networks where nodes are 

LC-MS peaks (with associated molecular formulae) and edges are atom transformations linking the 

peaks. Here we advance this strategy by combining metabolomics knowledge with computational 

global optimization. We explicitly differentiate biochemical connections reflecting metabolic activity 

and abiotic connections arising from mass spectrometry phenomena. By formulating the peak 

annotation challenge as a linear program, we identify an optimal network in light of all observed 

peaks. Rather than weeding out peaks from mass spectrometry phenomena like adducts and natural 

isotopes, this approach takes advantage of the information embedded in them. It further provides 

traceable peak-peak relationships, which illuminate the basis for assigned formulae and suggest 

candidate structures.  

Applying this approach to untargeted LC-MS data from yeast and liver samples, we assign formulae 

to roughly three-quarters of all non-background peaks. In each of positive and negative mode, the 

annotated peaks cover about 1000 known metabolites, with on average more than four mass peaks 

for every metabolite (e.g. M+H plus three adduct or isotope peaks). This leaves a couple thousand 

unannotated peaks from each LC-MS run. Based on the observed ratio between peaks and 

metabolites, this likely correspond to hundreds (but not thousands) of unidentified metabolites. This 

number may actually be less, due to novel adducts (e.g. nickel adducts, which we discovered via 

careful examination of the unannotated peaks) or other mass spectrometry phenomena. Importantly, 

this approach has already generated likely formulae for many hundreds of putative novel metabolites 

(Supplementary Fig. 2, Supplementary Data 1), including a half-dozen for which we assign structures 

(Figure 3, 4).  

A key benefit of molecular network-based annotation is the ability to assimilate steadily new 

information21,22. Each newly identified metabolite provides an additional anchor point for optimizing 

the network. Other data types can be seamlessly added. For example, compound class categorization 

based on MS/MS data28 or retention time prediction29 can be added to score nodes. Labeling 

similarity upon feeding different isotope-labeled nutrients could potentially be added to score edges. 

Global optimization, integrating all new information comprehensively with prior knowledge to arrive 

at optimal annotations, is novel and potentially transformative for the field more broadly. The cycle 
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of careful experimentation and focused computational method developments holds the potential to 

identify most unknown metabolites over the coming decade, providing a robust blueprint of the 

metabolome (Figure 5).   
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Methods 
Yeast metabolomics sample preparation and isotope labeling 

S. cerevisiae strain FY4 was grown for at least 10 generations in minimal essential media containing 

0.4% [U-12C] or [U-13C] glucose and 10 mM ammonium sulfate with or without 0.4 mg/L thiamine 

hydrochloride30. Then, in mid-exponential phase, 5 mL culture broth (OD600 = 0.80) was filtered and 

metabolites were extracted using 1 mL extraction buffer (40:40:20:0.5 

acetonitrile:methanol:water:formic acid), followed by adding 88 μL neutralization buffer (15% 

NH4HCO3). The extracts were kept at -20℃ for at least15 min to precipitate protein before 

centrifuging at 16,000 g for 10 min. The supernatant was used for LC–MS analysis.  

Murine metabolomics sample preparation and intravenous infusion experiment 

Animal studies followed protocols approved by the Princeton University Institutional Animal Care 

and Use Committee. Twelve-month-old female wild-type C57BL/6 mice (The Jackson Laboratory, Bar 

Harbor, ME) on normal diet were sacrificed by cervical dislocation and tissues quickly dissected and 

snap frozen in liquid nitrogen with precooled Wollenberger clamp. Frozen samples from liquid 

nitrogen were then transferred to −80°C freezer for storage. To extract metabolites, frozen liver 

tissue samples were first weighed (~ 20 mg each) and transferred to 2 mL round-bottom Eppendorf 

Safe-Lock tubes on dry ice. Samples were then ground into powder with a cryomill machine (Retsch, 

Newtown, PA) for 30 seconds at 25 Hz, and maintained at cold temperature using liquid nitrogen. For 

every 25 mg tissues, 922 uL extraction buffer (as above) was added to the tube, vortexed for 10 

seconds, and allowed to sit on ice for 10 minutes. Then 78 L neutralization buffer was added and 

the samples vortexed. The samples were allowed to sit on ice for 20 minutes and then centrifuged at 

16,000 g for 25 min at 4°C. The supernatants were transferred to another Eppendorf tube and 

centrifuged at 16,000 g for another 25 min at 4°C. The supernatants were transferred to glass vials 

for LC-MS analysis. A procedure blank was generated identically without tissue, which was used later 

to remove the background ions. 

Detailed methods for intravenous infusion of mice have been described previously31. Briefly, in vivo 

infusions were performed on 12–14-week-old C57BL/6 mice pre-catheterized in the right jugular vein 

(Charles River Laboratories). Mice were kept fasted for 6 h and then infused for 2.5 h with [U-
13C]glucose (200 mM, 0.1 L/min/g). The mouse infusion setup (Instech Laboratories) included a 

tether and swivel system so that the animal had free movement in the cage. Venous samples were 

taken from tail bleeds. At the end of the infusion, the mouse was euthanized by cervical dislocation 

and tissues were collected and extracted as above. Serum metabolites were extracted by adding 100 

l methanol to 5 L of serum and centrifuging for 20 min. The supernatant was used for LC–MS 

analysis.  

LC-MS and LC-MS/MS  
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LC separation was achieved using a Vanquish UHPLC system (Thermo Fisher Scientific) with an 

Xbridge BEH Amide column (150×2mm, 2.5 µm particle size; Waters). Solvent A is 95:5 water: 

acetonitrile with 20 mM ammonium acetate and 20 mM ammonium hydroxide at pH 9.4, and solvent 

B is acetonitrile. The gradient is 0 min, 90% B; 2 min, 90% B; 3 min, 75%; 7 min, 75% B; 8 min, 70%, 9 

min, 70% B; 10 min, 50% B; 12 min, 50% B; 13 min, 25% B; 14 min, 25% B; 16 min, 0% B, 20.5 min, 0% 

B; 21 min, 90% B; 25 min, 90% B. Total running time is 25 min at a flow rate of 150 µl/min. LC-MS 

data were collected on a Q-Exactive Plus mass spectrometer (Thermo Fisher) operating in full scan 

mode with a MS1 scan range of m/z 70-1000, and resolving power of 160,000 at m/z 200. Other MS 

parameters are as follows: sheath gas flow rate, 28 (arbitrary units); aux gas flow rate, 10 (arbitrary 

units); sweep gas flow rate, 1 (arbitrary units); spray voltage, 3.3 kV; capillary temperature, 320°C; S-

lens RF level, 65; AGC target, 3E6 and maximum injection time, 500 ms.  

To demonstrate the utility of inclusion of MS2 data for NetID analysis, 1479 and 803 MS2 spectra 

were obtained for selected peaks with intensity > 105 in positive and negative ionization mode 

respectively from a previous liver dataset32. Targeted MS2 spectra were collected using the PRM 

function at 25 eV HCD energy with other instrument setting being, resolution 17500, AGC target 106, 

Maximum IT 250 ms, isolation window 1.5 m/z. 

 

Glucosyl-taurine synthesis  

Glucosyl-taurine synthesis was carried out following previous literature reports with slight 

modifications33. In brief, dry methanol was obtained by distillation of HPLC-grade methanol (Fisher; 

HPLC grade 0.2 micron filtered) over CaH2 (Acros Organics; ca. 93% extra pure, 0-2 mm grain size). A 

flame-dried round-bottom flask equipped with a reflux condenser and stir bar was charged with 2.0 

g taurine (Alfa Aesar; 99%), 3.1 g D-glucose (Acros Organics; ACS reagent), and 80 mL of dry methanol. 

This mixture was sonicated under an inert atmosphere for 30 minutes before being returned to the 

manifold for the reaction. To the fine-suspension of taurine and glucose in dry methanol at room 

temperature, 4.0 mL 5.4 M sodium methoxide in methanol (Acros Organics) was added via glass 

syringe. At this point, the suspension began to dissolve and after 30 minutes, gave a clear and 

colorless solution. The solution was stirred vigorously under an inert atmosphere for 72 hours, which 

resulted in a faint peach-colored solution. This solution was chilled to 0 ˚C, and ~200 mL of absolute 

ethanol (200 proof) was added and precipitation was allowed to occur at this temperature for 30 

minutes. Solvent was then removed by filtration over a glass filter (medium porosity), and washed 

with ~100 mL of absolute ethanol, affording a fine pale-yellow powder (2.4 g; crude material).  

NMR experiment was carried out to validate the structure of synthesized N-glucosyl-taurine. 

Selective TOCSY experiments using DIPSI2 spin-lock and with added chemical shift filter34 were run 

on a Bruker Avance III HD NMR spectrometer equipped with a custom-made QCI-F cryoprobe (Bruker, 

Billerica, MA) at 800 MHz and at 295.2K controlled temperature. The sample was dissolved in DMSO-
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d6. The spectra shown on the plots are results of 200 ms SL mixing, 8 scans each. Data processing 

(MNova v.14, Mestrelab Research S.L., Santiago de Compostela, Spain) included zero filling, 1 Hz 

Gaussian apodization, phase- and baseline correction. NMR analysis suggests that the final crude 

material contains 5.2% N-glucosyl-taurine and unreacted substrates (Supplementary Figure 5).  

 

NetID algorithm 

I. Data preparation and input  

LC-MS raw data files (.raw) were converted to mzXML format using ProteoWizard35 (version 

3.0.11392). El-MAVEN (version 7.0) was used to generate a peak table containing m/z, retention time, 

intensity for peaks. Parameters for peak picking were the defaults except for the following: mass 

domain resolution is 10 ppm; time domain resolution is 15 scans; minimum intensity is 1000; 

minimum peak width is 5 scans. The resulting peak table was exported to a .csv file. Redundant peak 

entries due to imperfect peak picking process are removed if two peaks are within 0.1 min and their 

m/z difference are within 2 ppm. Background peaks are removed if its intensity in procedure blank 

sample is > 0.5-fold of that in biological sample.  

The m/z of the remaining peaks are recalibrated by applying an absolute m/z adjustment factor 

εabsolute (independent of measured m/z) and a relative m/z adjustment factor εrelative (linearly 

dependent on measured m/z). For each peak i the recalibrated values im/z, adjusted are computed as 

𝑖 / , = 𝑖 / , × (1 + 𝜀 ) + 𝜀                 (1) 

The εrelative and εabsolute values are fit via linear regression using measured m/z values of selected 

known metabolite ion peaks and their calculated m/z. That is, for each of these known metabolite k, 

we have equations 

𝑘 / , = 𝑘 / , × (1 + 𝜀 ) + 𝜀                (2) 

LC-MS/MS data were extracted from the mzXML files using lab-developed Matlab code. MS2 spectra 

may contain interfering product ions from co-eluting isobaric parent ions. These interfering product 

ions were removed by examining the extracted ion chromatogram (EIC) similarity between the 

product ions in MS2 data and the parent ion in MS1 data. A Pearson correlation coefficient of 0.8 was 

used as a cutoff to retain those product ions that has similar EIC as the parent ion. The cleaned MS2 

data were exported to Excel files for further processing.  

Structures, formulae, m/z and MS2 spectra of metabolites were obtained from the Human 

Metabolome Database (HMDB, version 4.0), and retention times of selected metabolites were 

determined through running authentic standards using the above-mentioned LC-MS method.  
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NetID algorithm requires three types of input files: a peak table (in .csv format) recording m/z, 

retention time, intensity for peaks; an atom difference rule table (in .csv format) containing a list of 

25 biochemical atom differences and 59 abiotic atom differences which together define all 

connections in the network (Supplementary Table 1, 2), and metabolite information files containing 

structure, formula, m/z and MS2 spectra of HMDB metabolites and retention time of selected 

metabolites under different LC conditions. Exemplary peak table from the yeast dataset, atom 

difference rule table and HMDB metabolite information file are provided in Supplementary Data 2. 

II. Initial annotation of nodes and edges in the network 

The first step of NetID algorithm is to make an initial annotation for seed nodes, determine possible 

annotations for other nodes, and determine edges in the network. Each peak is a node in the network. 

We compare the experimentally measured m/z for each node to those of all metabolite formulae in 

the HMDB database. When the m/z difference is within 10 ppm, candidate formulae and HMDB IDs 

are assigned to the node, and this node is defined as a primary seed node. A primary seed node can 

contain more than one candidate formulae and HMDB IDs if all are within the m/z difference range. 

Edges connect two nodes via gain or loss of specific atoms. We assembled a list of 25 biochemical 

atom differences and 59 abiotic atom differences which together define all connections in the 

network (Supplementary Table 1, 2). Let each of these differences be denoted by Di. For each node 

u, if there is a node v such that the difference in the measured m/z of the nodes matches one of the 

those in the list of atom mass differences, we add an edge between u and v. That is, if um/z and vm/z 

are the experimentally measured m/z for the peaks corresponding to nodes u and v respectively 

(assuming vm/z > um/z for simplicity), then there is an edge between these nodes if there is some 

difference Di such that  

| 𝑣 / − 𝑢 / − 𝐷  | < 𝑣 / × 10 ppm                      (3) 

If Di is an abiotic difference, in order to add an edge, it is additionally required that the retention time 

between two nodes should be within 0.2 min. That is, if uRT and vRT are the retention times for u and 

v respectively, then it is required that   

| 𝑣 − 𝑢  | < 0.2 min                             (4) 

For each node, its candidate formulae set will expand due to propagating formulae from its 

neighboring nodes through edge atom differences. For example, when applying the atom difference 

of edge (u, v) on the formula assigned to primary seed node u, we can derive a new candidate formula 

for the connected node v. If the derived formula’s calculated m/z is within 5 ppm of node v’s 

measured m/z, then a new candidate formula is added for node v. Iterating the process to all 

candidate formulae of node u through edge (u, v) will further expand candidate formulae for node v.  
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We apply the above extension process to formulae of all primary seed nodes through atom difference 

edges, and these new candidate formulae can themselves be used for another round of extension. 

Note that a primary seed node will be treated as the rest of nodes during the subsequent rounds of 

extension, and may as well be assigned with new formulae.  

To avoid duplicated efforts in the extension process, we allow formulae of primary seed nodes and 

biotransformed formulae thereof to be extended through both biotransformation and abiotic atom 

difference edges, and do not allow abiotic candidate formulae be further extended through 

biotransformation atom difference edges. The default extension process includes two rounds of 

biotransformation edge extensions and three rounds of abiotic edge extensions.  

III. Scoring node annotations 

NetID then scores every candidate node and edge annotation assigned in the initial annotation step. 

The node scoring system aims to assign high scores to annotations that align observed ion peaks with 

known metabolites based on m/z, retention time, MS/MS, and/or isotope abundances.  

Let the set of candidate annotation for node u be denoted as {𝑎 … 𝑎 … 𝑎 }. For each node u and 

each of its candidate annotation 𝑎 , let S(u, 𝑎 ) denotes the score of candidate annotation 𝑎  for 

node u. Different scoring components for candidate node annotations are defined as below:  

(a) Sm/z(u, 𝑎 ) is negative when measured m/z differs from the calculated m/z of assigned molecular 

formula. A larger ppm difference between calculated formula m/z and measurement m/z results to 
lower scores. The default scale factor is -0.5. Let 𝑎 , /  be the calculated formula m/z of annotation 

𝑎 , and 𝑢 /  be the measured m/z of node u, then               

S / (𝑢, 𝑎 ) = −0.5 ×  𝑢 / − 𝑎 , /   / 𝑢 / × 10              (5) 

(b) SRT(u, 𝑎 ) is positive if the measured RT for the peak corresponding to node u matches to a known 

standard. A smaller difference between known and measured RT results in a higher score. Let 𝑎 ,  

is the known RT of annotation 𝑎 , and 𝑢  be the measured RT of node u, then               

S (𝑢, 𝑎 ) = 1 −  𝑢 − 𝑎 ,  , if  𝑢 − 𝑎 ,  < 0.5 min 

Otherwise, S (𝑢, 𝑎 ) = 0                               (6) 

(c) SMS2(u,  𝑎  ) is positive if the measured MS2 spectrum of node u matches the database MS2 

spectrum of annotation 𝑎 . A dot product scoring function is used to score the MS2 spectra 

similarity24. The intensities of the fragment ions in the MS2 spectra are rescaled so that the highest 

fragment ion is set to 1. MS2 spectra are represented as W = [relative intensity of MS2 ions]n[m/z 

value]m, with n = 1, m = 0. Dot product (DP) and score for MS2 match (SMS2(u, 𝑎 )) are defined as 

below.  
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𝐷𝑃 =
∑

∑  × ∑
                                (7) 

S (𝑢, 𝑎 ) = DP, if DP > 0.5 

Otherwise S (𝑢, 𝑎 ) = 0                           (8) 

(d) Sdatabase(u, 𝑎 ) is positive if the annotated formula 𝑎  exists in HMDB. We give a positive score to 

a primary seed node annotation if that annotated formula exists in HMDB.  

S (𝑢, 𝑎 ) = 0.5, if 𝑎  in HMDB 

Otherwise, S (𝑢, 𝑎 ) = 0                           (9) 

(e) Smissing_isotope(u, 𝑎 ) is negative if an isotopic peak is missing. We penalize a formula annotation if it 

passes the intensity threshold (default at 5x104) but does not have isotopic peaks of specified 

elements. The default isotope being evaluated is 37Cl. Any other elements, such as 13C or 18O, can be 

included by users.  

S _ (𝑢, 𝑎 ) = −1, if isotopic peak is missing 

Otherwise S _ (𝑢, 𝑎 ) = 0                        (10) 

(f) Srule(u,  𝑎  ) is negative if annotation 𝑎   violates basic chemical rules. We strongly penalize 

formulae that violate basic chemical rules, including a negative RDBE (ring and double bond 

equivalents), and unlikely element ratios in metabolites (O/P < 3, O/Si < 2).  

S (𝑢, 𝑎 ) = −10, if chemical rules are violated 

Otherwise, S (𝑢, 𝑎 ) = 0                           (11) 

(g) Sderivative(u, 𝑎 ) is positive if the annotation 𝑎  is derived from a parent peak p with an annotation 

h that has high score Sparent(p, h), which is calculated by summing up scores in (a)-(f) for S(p, h). 

S (𝑢, 𝑎 ) = S (𝑝, ℎ) − 0.5                       (12) 

S (𝑝, ℎ) = S / (𝑝, ℎ) + S (𝑝, ℎ) + S (𝑝, ℎ) + 

S (𝑝, ℎ) + S _ (𝑝, ℎ) + S (𝑝, ℎ)    (13) 

This is particularly helpful in annotating abiotic peaks. For example, annotation of glutamate sodium 

adduct will be given a positive Sderivative when its parent node is annotated as glutamate with high 

Sparent score. 

A final score S(u, 𝑎 ) for each candidate annotation 𝑎  of node u is calculated by summing scores in 

(a)-(g).  
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S(𝑢, 𝑎 ) = S / (𝑢, 𝑎 ) + S (𝑢, 𝑎 ) + S (𝑢, 𝑎 ) + S (𝑢, 𝑎 ) + 

S _ (𝑢, 𝑎 ) + S (𝑢, 𝑎 ) + S (𝑢, 𝑎 )            (14) 

Note that for each node u, we have one of candidate “annotations” that corresponds to no 

annotation being chosen for that node. The node score for this null annotation is 0 at default, and 

can be set at a negative value to promote choosing actual annotations.  

IV. Scoring edge annotations (biological, adduct, isotope) 

The edge scoring system aims to assign high scores to edge annotations that correctly capture 

biochemical connections between metabolites (based on MS2 spectra similarity) and abiotic 

connections between metabolites and their mass spectrometry phenomena derivatives, such as 

isotopes and adducts. Biochemical, isotope, and adduct edge annotations are the most common 

types, and other less common abiotic connection types are then described in the subsequent section.  

Suppose we consider two nodes u and v that are connected by an edge (u, v). For each pair of nodes 

u and v such that there is an edge (u, v), let the set of candidate formula for node u and v be denoted 

as {𝑎 … 𝑎 … 𝑎 } and {𝑏 … 𝑏 … 𝑏 }, respectively, and let the set of candidate atom differences for 

edge (u, v) be {𝐷 … 𝐷 … 𝐷 }. Let S(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 ) be the score of choosing candidate formula 𝑎  

for node u, candidate formula 𝑏  for node v and candidate atom difference 𝐷  for edge (u, v). Note 

that S(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 ) is set to be 0 if atom difference 𝐷  does not represent the formula difference 

of 𝑎  and 𝑏 . 

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0, if 𝑎 − 𝑏 ≠ 𝐷  

Different scoring components for candidate edge annotations are defined as below: 

(h) When node u and v have experimental measured MS2 spectra, SMS2_similarity(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷  ) is 

defined for a biochemical edge, and is a positive score if two connected nodes u and v have MS2 

similarity, given the formula difference of 𝑎  and 𝑏  matches the atom difference defined by 𝐷 . 

SMS2_similarity is determined using the dot product (DP), as described in previous section, and reverse 

dot product (DP_R), which evaluates the neutral ion loss similarity in the MS2 spectra24. A reverse 

MS2 spectrum is represented as R = [relative intensity of MS2 ions]n[parent m/z – measured m/z 

value]m, with n = 1, m = 0. 

DP =
∑

∑  × ∑
                           (15) 

DP_R =
∑

∑  × ∑
                          (16) 

S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = max (DP, DP_R), if max(DP, DP_R) > 0.3 
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Otherwise, S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0                    (17) 

(i) Sco_elution(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷  ) is defined for an abiotic edge, and is a negative score if the RT of two 

connected nodes differ more than a threshold (0.05 min), given the formula difference of 𝑎  and 𝑏  

matches the atom difference defined by 𝐷 . 

S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = −5 × |𝑢 − 𝑣 |, if |𝑢 − 𝑣 | ≥ 0.05 min 

Otherwise, S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0                           (18) 

(j) Stype(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 ) is defined for all edges, given the formula difference of 𝑎  and 𝑏  matches 

the atom difference defined by 𝐷 , and is a non-negative score depending on the connection type 

of edge, which is defined by 𝐷 , including biotransformation, adduct, isotope and fragment 

(Supplementary Table 1, 2). The magnitude of scores reflects the empirical confidence in the 

annotation type when certain atom differences occur, and can be adjusted based on personal use.  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0, if 𝐷  ϵ biotransformation 

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0.5, if 𝐷  ϵ adduct  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 2, if 𝐷  ϵ isotope 

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0.3, if 𝐷  ϵ fragment                   (19) 

(k) For each 𝐷 ϵ isotope, Sisotope_intensity(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 ) is defined for isotope edge (u, v) where 𝑏  is 

the isotopic derivative of 𝑎  with atom difference of 𝐷 , and is a negative score if the measured 

isotope peaks deviate from expected natural abundance. The score for an isotope edge depends on 

how likely the ratio of measured and expected isotopic intensity (Ratioisotope) is observed in an 

empirical normal distribution N 1, σ . Isotopes of all elements included in the atom difference 

table are evaluated.  

Ratio =
 / 

    ( , , ) 
                    (20) 

S (𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 ) = 𝑙𝑜𝑔
𝜇 = Ratio N 1, σ

𝜇 = 1 N 1, σ
       (21) 
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σisotope is empirically defined as below, so that when measured isotope intensity is close to 

detection limit, a larger σisotope (a widened distribution, which is more tolerant to discrepancy) will 

be used.  

σ = 0.2 + 10 ( )                      (22) 

A final edge annotation score S(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 ) for choosing candidate formula 𝑎  for node u, 

candidate formula 𝑏  for node v and candidate atom difference 𝐷  for edge (u, v) is calculated by 

summing scores in (h)-(k), if other less common abiotic connection types are not considered (see 

next section).  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 + S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 + 

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 + S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷          (23) 

V. Additional abiotic edge types  

LC-MS metabolomics may include additional abiotic relationships. In orbitrap data, these include 

oligomers, multi-charge species, heterodimers, in-source fragments of known or unknown 

metabolites36, and ringing artifact peaks surrounding high intensity ions20,37. These relationships were 

included in NetID as additional edge types, which are evaluated for all m/z pairs within a predefined 

RT range (0.2 min).  

(l) Oligomer and multi-charge species. An oligomer/multi-charge edge is assigned between two nodes 

u and v, if their m/z satisfy 

|𝑣 / − n × 𝑢 / | < 𝑢 /  × 10 ppm, n ϵ {positive integers}        (23) 

(m) Heterodimer. Heterodimer peak (node v) may be observed when one abundant metabolite (node 

u) forms ion cluster with other ion species (node t). We examine nodes that have intensity above 105, 

and assign a heterodimer edge between two nodes u and v if their m/z difference satisfy 

|( 𝑣 / − 𝑢 / ) − 𝑡 / | < 𝑢 / × 10 ppm                   (24) 

(n) In-source fragments. Fragmentation peaks may be observed when one abundant metabolite 

breaks up into fragments during the ionization process.  

Database MS2 of known metabolites can be used to identify known ion fragmentation peaks36. If 

candidate annotation 𝑏   of node v is annotated with a HMDB ID associated with database MS2 

spectrum, and m/z of node u matches to a fragment m/z in 𝑏 ’s MS2 spectrum, then a database 

fragment edge will connect such two nodes. That is, 
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𝑢 /  ϵ Database MS2 spectrum of candidate annotation 𝑏  of node v       (25) 

Measured MS2 spectra can be used to identify unknown ion fragmentation peaks. If node v is 

associated with a measured MS2 spectrum, and m/z of another node u matches to a fragment m/z 

in the MS2 spectra, then an experiment fragment edge will connect such two nodes. That is, 

𝑢 /  ϵ Measured MS2 spectrum of node v                    (26) 

(o) Ringing artifacts. Ringing peaks are artifact peaks (node v) often observed on both sides of the 

m/z of an intense ion peak (node u) in Fourier-transformed MS instrument including orbitrap. We 

examine nodes that have intensity above 106, and assign a ringing artifact edge between two nodes 

if two nodes satisfy 

50 ppm < | 𝑣 / − 𝑢 /  | / 𝑢 / < 1000 ppm 

𝑢  / 𝑣 > 50                         (27) 

Scoring of these additional abiotic edges follow the same rules described in the “Scoring edge 

annotations” section with additional Stype defined as below.  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0.5, if 𝐷  ϵ oligomer or multi-charge  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0, if 𝐷  ϵ heterodimer  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 0.3, if 𝐷  ϵ database MS2 fragment  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 1, if 𝐷  ϵ measured MS2 fragment  

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = 2, if 𝐷  ϵ ringing artifacts                   (28) 

A final edge annotation score S(𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷  ) for choosing candidate formula 𝑎   for node u, 

candidate formula 𝑏  for node v and candidate atom difference 𝐷  for edge (u, v) is calculated by 

summing scores in (h)-(o). 

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 = S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 + S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 + 

S 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷 + S _ 𝑢, 𝑣, 𝑎 , 𝑏 , 𝐷          (29) 

VI. Global network optimization using linear programing 
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Using scores assigned for each candidate node and edge annotation, our goal is to find annotations 

for each node so as to maximize the sum of the scores across the network under the constraints that 

each node is assigned a single annotation, and that the network annotation is consistent. We use 

linear programming to solve this optimization problem optimally, as described next.  

For each node u and each of its candidate formula 𝑎 , we define a node binary decision variable 

𝑥 ,  to denote whether candidate formula 𝑎  is selected as the annotation for node u. That is,  

𝑥 , = 1, if node u is annotated with formula 𝑎  

Otherwise, 𝑥 , = 0                            (28) 

We define a binary decision variable 𝑐 , , , ,  to denote whether candidate formulae 𝑎  and 𝑏  

are chosen for nodes u and v , and the candidate atom difference 𝐷  corresponds to the formula 

difference of candidate formulae 𝑎  and 𝑏  of the connected nodes u and v. That is,  

𝑐 , , , , = 1, if 𝑎  and 𝑏  are chosen for nodes u and v respectively, and 𝑎 − 𝑏 = 𝐷  

Otherwise, 𝑐 , , , , = 0                          (29) 

We constrain the optimization so that each node has a single annotation, and an edge exists and only 

exist if the atom difference of that edge annotation matches the formula difference of nodes. As a 

result, the node and edge binary variables should satisfy  

∑ 𝑥 , = 1                                 (30) 

𝑐 , , , , ≤ 𝑥 ,  , 𝑐 , , , , ≤ 𝑥 ,                     (31) 

𝑐 , , , , ≥ 𝑥 , +  𝑥 , −  1                        (32) 

For all variables defined above, we add the constraints that they are either 0 or 1.  

With each candidate node and edge annotation being scored, the objective for the optimization is to 

find values for all variables 𝑥 ,   and 𝑐 , , , ,  so as to maximize the sum of all node scores and 

edge scores in a network while satisfying the constraints.  

Maximize: ∑ 𝑥 ,  × S(𝑢, 𝑎)  +  ∑ 𝑐 , , , , × S(𝑢, 𝑣, 𝑎, 𝑏, 𝐷)           (32) 

The optimization result provides a string of binary numbers that denote if a candidate node or edge 

annotation is selected for the global optimal network. IBM ILOG CPLEX Optimization Studio (Version 

12.8.0 or later) is used to solve the linear programing problem. A cplexAPI package for R is used to 
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call CPLEX optimization function in an R environment. For the yeast datasets and using the above 

scoring parameters, optimization finishes within an hour on a standard laptop. Depending on the 

number of peaks in data tables, the entries in the atom difference tables, and the parameters 

involved in scoring, runtimes during internal testing ranged from minutes to 48 h.  

Code availability 

NetID was developed mainly in R, and used a mixture of IBM ILOG CPLEX Optimization Studio, 

Matlab and Python. NetID code is available for non-commercial use in github at 

https://github.com/LiChenPU/NetID, under the GNU General Public License v3.0. A ShinyR app is 

provided to visualize the network results from NetID in a local environment, along with a detailed 

user guide and example files (Supplementary Note 1, Supplementary Data 2).  
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Figure legends 

Figure 1. A global network optimization approach for untargeted metabolomics data annotation 

(NetID). The input data are LC-MS peaks with m/z, retention times, intensities and optional MS2 

spectra. The output is a molecular network with peaks (nodes) assigned unique formulae and 

connected by edges reflecting atom differences arising either through enzymatic reaction 

(biochemical connection) or mass spectrometry phenomenon (abiotic connection). Peaks are 

classified as “metabolite” (M+H or M-H peak of formula found in HMDB), “putative metabolite” 

(formula not found in HMDB but with biochemical connection to a metabolite), or “artifact” (only 

abiotic connection to a metabolite). NetID algorithm involves three steps. Initial annotation first 

matches peaks to HMDB formulae. These seed annotations are then extended through edges to 

cover most nodes, with the majority of nodes receiving multiple formula annotations. Each node and 

edge annotation are then scored based on match to known masses, retention times, and MS/MS 

fragmentation patterns. Global network optimization maximizes sum of node scores and edge scores, 

while enforcing a unique formula for each node and unique transformation relationship for each edge. 

Figure 2. Utility of global network optimization. (A) An example network demonstrating the value 

of the global optimization step in NetID. Node a and node b match HMDB formulae and are 

connected by an edge of phosphate (HPO3). Node c can be connected to either node a or node b 

through mutually incompatible annotations, resulting in two different candidate networks. The table 

below the two candidate networks shows the annotations and scoring criteria for each, with the left 

network preferred for more good node and edge annotations. (B) Visualization of the optimal 

network obtained from negative mode LC-MS analysis of Baker’s yeast, containing 4851 nodes and 

9699 connections. Metabolite and putative metabolite peaks are in green and artifact peaks in purple. 

(C) Summary table of NetID annotations of negative and positive mode LC-MS data from Baker's yeast 

and mouse liver.  

Figure 3. NetID reveals thiamine-derived metabolites in yeast. (A) Subnetwork surrounding 

thiamine. Nodes, connections, and formulae are direct output of NetID. Boxes with structures were 

manually added. (B) MS2 spectra of thiamine, thiamine+C2H2O, and thiamine+C2H4O, with proposed 

structures of the major fragments. (C) Labeling fraction of thiamine and its derivatives, in [U-
13C]glucose with and without unlabeled thiamine in the medium. (D) The thiamine derivatives are 

also found in mouse tissues and urine. (E) Proposed mechanism for formation of thiamine+C2H4O. 

Pyruvate dehydrogenase (PDH) decarboxylates pyruvate, and adds the resulting [C2H4O] unit (in red) 

to thiamine. (F) The same enzymatic mechanism occurs in oxoglutarate dehydrogenase (OGDH) and 

branched-chain α-ketoacid dehydrogenase complex (BCKDC), and generates thiamine+C4H6O3 and 

thiamine+C4H8O respectively.  
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Figure 4. NetID discovers mammalian taurine derivatives. (A) Subnetwork surrounding taurine from 

mouse liver extract data. Nodes, connections, and formulae are direct output of NetID. Boxes with 

structures were manually added. (B) LC-MS chromatogram of N-glucosyl-taurine standard and the 

putative glucosyl-taurine from liver extract. (C) MS2 spectrum of glucosyl-taurine peak from liver 

extract (top), and synthetic N-glucosyl-taurine standard (bottom). (D) Isotope labeling pattern of 

putative glucosyl-taurine in mice, infused via jugular vein catheter for 2 h with [U-13C]glucose. (E) 

Absolute N-glucosyl-taurine concentration in murine serum and tissues.  

Figure 5. NetID applies global optimization for metabolomics data annotation and metabolite 

discovery.  
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Figure 1. A global network optimization approach for untargeted metabolomics data annotation (NetID). The input data are 

LC-MS peaks with m/z, retention times, intensities and optional MS2 spectra. The output is a molecular network with peaks 

(nodes) assigned unique formulae and connected by edges reflecting atom differences arising either through enzymatic reaction 

(biochemical connection) or mass spectrometry phenomenon (abiotic connection). Peaks are classified as “metabolite” (M+H or 

M-H peak of formula found in HMDB), “putative metabolite” (formula not found in HMDB but with biochemical connection to a 

metabolite), or “artifact” (only abiotic connection to a metabolite). NetID algorithm involves three steps. Initial annotation first 

matches peaks to HMDB formulae. These seed annotations are then extended through edges to cover most nodes, with the 

majority of nodes receiving multiple formula annotations. Each node and edge annotation are then scored based on match to 

known masses, retention times, and MS/MS fragmentation patterns. Global network optimization maximizes sum of node scores 

and edge scores, while enforcing a unique formula for each node and unique transformation relationship for each edge. 
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Figure 2. Utility of global network optimization. (A) An example network demonstrating the value of the global optimization 

step in NetID. Node a and node b match HMDB formulae and are connected by an edge of phosphate (HPO3). Node c can be 

connected to either node a or node b through mutually incompatible annotations, resulting in two different candidate networks. 

The table below the two candidate networks shows the annotations and scoring criteria for each, with the left network preferred 

for more good node and edge annotations. (B) Visualization of the optimal network obtained from negative mode LC-MS analysis 

of Baker’s yeast, containing 4851 nodes and 9699 connections. Metabolite and putative metabolite peaks are in green and 

artifact peaks in purple. (C) Summary table of NetID annotations of negative and positive mode LC-MS data from Baker's yeast 

and mouse liver.  
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Figure 3. NetID reveals thiamine-derived metabolites in yeast. (A) Subnetwork surrounding thiamine. Nodes, connections, and 
formulae are direct output of NetID. Boxes with structures were manually added. (B) MS2 spectra of thiamine, thiamine+C2H2O, 
and thiamine+C2H4O, with proposed structures of the major fragments. (C) Labeling fraction of thiamine and its derivatives, in 
[U-13C]glucose with and without unlabeled thiamine in the medium. (D) The thiamine derivatives are also found in mouse tissues 
and urine. (E) Proposed mechanism for formation of thiamine+C2H4O. Pyruvate dehydrogenase (PDH) decarboxylates pyruvate, 
and adds the resulting [C2H4O] unit (in red) to thiamine. (F) The same enzymatic mechanism occurs in oxoglutarate 
dehydrogenase (OGDH) and branched-chain α-ketoacid dehydrogenase complex (BCKDC), and generates thiamine+C4H6O3 and 
thiamine+C4H8O respectively.  
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Figure 4. NetID discovers mammalian taurine derivatives. (A) Subnetwork surrounding taurine from mouse liver extract data. 

Nodes, connections, and formulae are direct output of NetID. Boxes with structures were manually added. (B) LC-MS 

chromatogram of N-glucosyl-taurine standard and the putative glucosyl-taurine from liver extract. (C) MS2 spectrum of glucosyl-

taurine peak from liver extract (top), and synthetic N-glucosyl-taurine standard (bottom). (D) Isotope labeling pattern of putative 

glucosyl-taurine in mice, infused via jugular vein catheter for 2 h with [U-13C]glucose. (E) Absolute N-glucosyl-taurine 

concentration in murine serum and tissues.  
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Figure 5. NetID applies global optimization for metabolomics data annotation and metabolite discovery.  
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