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Abstract
The non-linear progression of new infection numbers in a pandemic poses challenges to 

the evaluation of its management. The tools of complex systems research may aid in attaining 

information that would be difficult to extract with other means. To study the COVID-19 pandemic, 

we utilize the reported new cases per day for the globe, nine countries and six US states through 

October 2020. Fourier and univariate wavelet analyses inform on periodicity and extent of change. 

Evaluating time-lagged data sets of various lag lengths, we find that the autocorrelation function, 

average mutual information and box counting dimension represent good quantitative readouts for 

the progression of new infections. Bivariate wavelet analysis and return plots give indications of 

containment versus exacerbation. Homogeneity or heterogeneity in the population response, 

uptick versus suppression, and worsening or improving trends are discernible, in part by plotting 

various time lags in three dimensions. The analysis of epidemic or pandemic progression with the 

techniques available for observed (noisy) complex data can aid decision making in the public 

health response.
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Introduction
The spread of infectious diseases depends on pathogen factors (virulence), host factors 

(immunity), and – on the population level – on countermeasures taken by the community. Such 

measures cover a broad spectrum of possible engagements, and they may be highly 

consequential for the course of an epidemic or a pandemic [1]. The analysis of acute infectious 

progression in a society is critical for gauging the effectiveness of public health responses, but it 

is made difficult through the non-linear nature of the underlying process. Conventional 

approaches of reductionist research or common linearization techniques are not meaningfully 

applicable.

Various strategies have been employed to account for the complexity of infectious 

propagation. The spread of COVID-19 has been modeled with machine learning [2], networks of 

compartments [3] and cellular automata [4]. Power laws have been inferred [5]. Such 

investigations are of value, even though they are inevitably based on idealizing assumptions. In 

addition to modeling approaches, the analysis of actually observed data is of critical importance. 

The numbers in such data sets are noisy, and they are eminently non-linear (also described as 

“complex data” or “observed chaotic data” [6]). Complex systems research has made techniques 

and algorithms available to extract information from observed non-linear data series.

The manifestations of the COVID-19 pandemic have varied widely among geographic 

areas, when compared across countries [3,7,8] as well as across US states [9], depending on 

when the virus reached them, what the population characteristics were at the time of onset, and 

what actions were taken in response to the infectious spread. Here, we set out to investigate 

underlying patterns. We apply basic tools of complex systems research to compare the spread of 

COVID-19 in distinct countries, characterized by their varying approaches to the pandemic, from 

its beginning stages through early or late October 2020. Further, we compare various regions 

within the USA, which has left major decisions to the individual states. Patterns are discernible in 

Fourier and wavelet analyses. Order can be detected in time-lagged plots. Therefrom, quantitative 

measurements are obtainable, including autocorrelation, average mutual information, fractal 

dimension, and embedding dimension, which inform on the pandemic progression.
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Methods
Source data: Here we analyze the new infections per day, either as absolute numbers or as rates 

per 10,000 inhabitants. The source data utilized for the present analysis came from Bing COVID-

19 Tracker (www.bing.com/covid). 

Fourier spectrum and univariate wavelet analysis: Fourier analysis evaluates the spectral density 

by relative numbers of new infections (case rates per 10,000 inhabitants) versus frequency or 

versus period. Wavelet analysis does not assume stationarity in the time-series. Thus, it allows 

the study of localized periodic behavior. In particular, we look for regions of high-power in the 

frequency-time plot. The calculations for wavelet analyses of new infections were done in R. In 

WaveletComp, the null hypothesis, that there is no periodicity in the series, is tested via p-values 

obtained from simulation, where the model to be simulated can be chosen from a range of options 

[10]. The algorithm analyzes the frequency structure of uni- or bivariate time series using the 

Morlet wavelet. The time series to be analyzed was standardized, after detrending, in order to 

obtain a measure of the wavelet power, which is relative to unit-variance white noise and directly 

comparable to results of other time series. Detrending is accomplished using polynomial 

regression. Where indicated, all graphs are normalized to the same y-axis scale.

Bivariate wavelet analysis: We conducted bivariate analysis of lagged data (t versus t+7 or t+14 

or t+21) for joint periodicity. The concepts of cross-wavelet analysis provide tools for comparing 

the frequency contents by two time series as well as for drawing conclusions about their 

synchronicity at certain periods and across certain ranges of time. While cross-wavelet power 

corresponds to covariance in the time domain, wavelet coherence is a time-series measure similar 

to correlation. Two waves are coherent if they have a constant relative phase. The bivariate 

analysis results include the cross-wavelet power plot, the wavelet coherence plot, the average 

power plot and the phase difference image. The cross-wavelet power and coherence plot contain 

arrows showing the area of significant joint periods (significance level = 0.05). The direction of 

these arrows indicating the direction of phase differences. Up-right pointing arrows indicate that 

the two series are in phase and x(t) series leads, while down-right pointing arrows indicate the 

two series are in-phase and x(t+n) series leads. Similarly, up-left pointing arrows express that the 

two series are out of phase and x(t+n) series leads, while down-left pointing arrows express that 

the two series are out of phase and x(t) series leads. The arrows are only plotted within white 

contour lines indicating significance at the 10% level. A more explicit global view of the phase 

difference can be produced with (π/2, π) and (-π, - π /2) for out of phase and (-π /2, π /2) for in-
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phase. The time-averaged cross-wavelet power provides a summarized view on the shared 

periods, the corresponding power and the statistical significance. Cross-wavelet plots may mark 

areas significant due to one series swinging widely, rather than two series sharing a joint period. 

To avoid this false positive readout, it is more appropriate to examine wavelet coherence plots, 

like the coefficient of correlation. It has a value range between 0 and 1 and it shows statistical 

significance only in areas where the two series actually share jointly significant periods.

Return plots: From the total numbers of new infections, we generated return plots with increasing 

lags, plotting daily changes x(t+1), …, x(t+7) versus x(t) and weekly changes x(t+14), …, x(t+49) 

versus x(t). Short time lags tend to cluster around the 45o angle, whereas increasing time delays 

reveal the structure of the oscillations. When graphed in 3 dimensions, these diagrams can aid in 

reconstructing the underlying attractor.

Autocorrelation: A time series sometimes repeats patterns or has other properties, whereby 

earlier values display some relation to later values. The autocorrelation statistic (serial correlation 

statistic) measures the degree of that affiliation as it refers to linear dependence. The magnitude 

of its dimensionless number reflects the extent of similarity. The formula for autocorrelation Rm is 

comprised of terms for autocovariance and variance

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝑎𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑅𝑚 =  

1
𝑁  ∑N―m

t=1 (𝑥𝑡 ― 𝑥)(𝑥𝑡+𝑚 ― 𝑥)
1
𝑁  ∑N

t=1 (𝑥𝑡 ― 𝑥)2

Autocorrelation coefficients range from -1 to +1, with +1 indicating perfect synchrony and -1 

reflecting exact mirror images. An absence of any correlation yields Rm = 0.

Box counting dimension: The dimension of a fractal is best described as a non-integer. The 

dimension is a quantitative measure for the evaluation of geometric complexity by objects. A 

general relationship assumes

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∝  
log (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠)

log ( 1
𝑠𝑐𝑎𝑙𝑒 𝑠𝑖𝑧𝑒 )

Here, the characteristic of dimension is that it specifies the rate, at which the number of increments 

varies with scale size. We calculated the box counting dimension after binning into 16 x 16 

squares of 2-dimensional return plots with various lags.
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Average mutual information: The average mutual information (ami) represents a non-linear 

correlation function, which indicates how much common information is shared by the 

measurements of x(t) and x(t+n). The average mutual information was calculated with the mutual 

function R package tseriesChaos. It estimates the mutual information index for a specified number 

of lags. The joint probability distribution function is estimated with a simple bi-dimensional density 

histogram.

Embedding dimension: Here by R package nonlinearTseries, we first use the timeLag function to 

decide the optimal time lag 𝜏 based on the average mutual information and then by the 

estimateEmbeddingDim function to assess the optimal embedding dimension m. Then the optimal 

set of regressors related to x(t) is x(t- 𝜏), …, x(t-(m-1) 𝜏), x(t- m 𝜏).
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Results
1. Comparison across Countries

Across countries, a wide spectrum of measures was taken to curb the spread of SARS-

CoV2. This resulted in a range of very different progression curves when graphing the numbers 

of new infections over time (Figure 1). India, Brazil, Sweden, Italy and the United States have 

been considered as hard-hit for their own internal reasons. France, Germany, over a long period 

Poland, and South Korea had tighter control and a less aggressive spread. All curves display 

close to linear ramp-up phases, followed by more or less irregular oscillations. The levels of 

success at suppressing the new infection rates diverged among countries, and several are 

experiencing a second peak.

Wavelet methodology aids in studying periodic phenomena in time series, particularly in 

the presence of potential frequency changes over time. For cross-country evaluations, all graphs 

were plotted on the same scale (Figure 2A). Each country was also plotted on its own scale 

(Figure 2B). The univariate analysis of the time course for the countries under study shows 

prominence of the recent upswing in France (heat intensity on the right margin of the graph). By 

contrast, there is comparatively more successful management by Italy, Germany, Poland and 

South Korea through October 2020. India, Brazil, Sweden, and the United States display cyclical 

fluctuations of various durations, none of which have been contained. A period of 7 days is 

prominent in the fluctuations of most countries, which may reflect real cyclicity or weekly reporting 

habits. The worldwide data are displayed in Figure S1.

For cross-country comparisons, we converted the new infection total numbers to new 

infection rates by relating them to 10,000 members of the population (Figure 3A). Similarly, 

complex systems can be analyzed with Fourier analysis. We first plotted Fourier power spectra 

versus frequency for the rates of new infections (Figure 3B). Spectral density range (high in Brazil, 

low in South Korea) and frequency distribution provide a readout for infectious spread. The 

spectral density of the normalized rates (identically scaled y-axes) (Figure 3C) confirmed good 

management of the pandemic spread in Germany, Poland, and South Korea (and to some degree 

in Italy). Despite the progressive increase in the numbers of infections in India, on a population 

basis, control has apparently not been lost through October 2020. By contrast, the power spectra 

for Brazil, Sweden, and France are reflective of potentially adverse developments. The United 

States display an anomaly with a periodic behavior that has a prominent cycle around 100 days.
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To gain a better understanding of the dynamics, with which disease spread occurs, we 

investigated progressive numbers of new infections in comparison to their increasing time lags. 

This approach may reveal periodicities or aid in the visualization of attractors. Expectedly, short 

time delays were associated with little change. With a lag time of about 7 days onward, distinct 

patterns emerged among countries. According to bivariate wavelet analysis for time-delayed data 

series (including the cross-wavelet power plot, wavelet coherence plot, average power plot and 

phase difference image), Italy, Germany and South Korea shared significantly joint periods of 1- 

2 months in the comparison x(t) versus x(t+7). South Korea has comparatively high power and 

significant shared periods around 3 weeks at the early stage and later the significant shared 

periods are also 1-2 months. The remaining countries all have segments of shorter periods 

(around 7 days) and longer periods shared. For India, Brazil, France, USA and Poland, the shared 

7-day period only appear significant in the later part of the series. Similar results are observed in 

the analyses for x(t) versus x(t+14) and x(t) versus x(t+21). The phase difference plots show that 

in the shared longer periods, x(t) are mostly in phase with x(t+7), while they gradually become out 

of phase in x(t) versus x(t+14) and x(t) versus x(t+21), thus making longer lags more 

discriminating and informative (Figure 4A and Figure S2A,B). A reduction in cross-wavelet power 

levels is apparent in Italy, Germany and South Korea. Poland and France are experiencing recent 

increases. India, Brazil and the USA have had protracted periods of high cross-wavelet power 

levels. Containment is associated with longer periodicity in the distribution of cross-wavelet power. 

This is the case for South Korea, Germany and Italy. High cross-wavelet power around a 

periodicity of 7 days is reflective of poor control.

To generate informative return plots, we utilized 3 dimensions, which allows for the 

visualization of two lags from x(t) (or a from a later start point) and may reveal the pattern of an 

attractor. In this depiction, a rapid increase or decrease in new infections is reflected in a close-

to straight line, oscillations generate a near-toroid attractor, while successful management shrinks 

the torus and moves it closer to the origin. Initially, we evaluated multiple time delays. Most 

discriminating were x(t)/x(t+7)/x(t+14), x(t+3)/x(t+7)/x(t+14), and x(t+5)/x(t+14)/x(t+28) (Figure 

4B). The progressive increase in new cases over the time period in India is reflected in a 

predominantly linear curve on each scale. The wide fluctuations in Brazil generate a largely 

disordered appearance. Disorder is also apparent in Sweden. France initially managed the 

pandemic well, but is experiencing a dramatic upswing, which obscures order. Cyclical patterns, 

suggesting the outlines of attractors, are apparent in USA, Italy, Germany, and South Korea 

(where most data points are concentrated near the origin). Poland initially displayed a well-
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contained attractor, but the recent substantial upswing in new infections is reflected in a linear 

progression from there (for separate analyses of the two phases, see Figure S3). We also 

calculated the embedding dimensions for the lagged data (Figure 4C). Germany has the highest 

embedding dimension of 10, followed by Poland with 9. Several countries have an embedding 

dimension of 7, including Brazil, Sweden, USA and South Korea. Italy and France have the 

embedding dimension equal to 5. India is unusual due to its longer lag period of 24 days. When 

the lag period is set at 7 days, the embedding dimension of India is also equal to 7. For the 

worldwide data, the calculated embedding dimension is 7 with a time lag of 1 (not shown).

 

The autocorrelation of two data strings with short time lags is expected to be high 

(approaching 1.0) because there is little opportunity for dramatic change (high infection rates on 

day t likely produce similarly high numbers on the consecutive day t+1, while low numbers are 

followed by few new infections on the next day). Autocorrelation may remain high for extended 

lags in the initial ramp-up and at the oscillatory stage, depending on the regularity of the 

fluctuations. A society that succeeds in curbing the disease spread will leave the highly correlated 

initial ramp-up and consecutive oscillatory phases, thus displaying a gradual decrease in values 

at the longer lags. The decline in the autocorrelation numbers of progressively lagged data by 

country appeared to be reflective of the stringency, with which the pandemic was addressed 

(Figure 5A). From a lag of 6 onward, Poland and South Korea have substantially declining values 

(although due to the recent steep upswing in new infections, Poland deviates from the trend at 

very long lags), Germany shows a dramatic lowering at a lag of 21 and above. By contrast, India 

and Brazil stay uniformly high. So do the global numbers, which are inherently heterogeneous.

The average mutual information reflects information shared by the measurements of x(t) 

and x(t+n). Expectedly, it declines with increasing lag. Poland starts with a relatively low value 

(1.15 at t versus t+1) and shows a rapid decrease with longer lag. It then stays around at a low 

level of 0.15 from lags of 21 to 49 days. France displays a gradually decreasing trend with the 

average mutual information starting at 1.60 and ending at 0.34 at the lag of 49 days. India shows 

a similar pattern as France but with much higher average mutual information (due to the constant 

uptick in numbers), ranging between 2.61 and 1.37. Four other countries, including Germany, 

USA, Sweden and Brazil, all express relatively flat average mutual information values, staying 

around levels of 2.20 for the USA and Brazil, 1.5 for Germany, and 1.3 for Sweden. Reflecting 

progressively improved control, Italy and South Korea also have decreasing trends, but much 

flatter at 1.96-1.36 for Italy and 1.26 to 0.66 for South Korea, respectively (Figure 5B). 
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A rapid increase in new infections is reflected in a small fractal dimension (practically 

approximated by the box counting dimension with values between 1 and 2) of the 2-dimensional 

return plots with progressive lags. Intermediate phases are characterized by higher fractal 

dimensions (approaching 2), depending on the nature of the oscillations. Conversely, successful 

management through the reduction in new infections should be reflected in a contraction of the 

attractor on the return plot, which is assessable through the box counting dimension. A trend is 

displayed in the comparisons from shorter to longer lag periods. Distinct management strategies 

across different countries generate a heterogeneous pattern worldwide, rendering the fractal 

dimension high regardless of the lag in x(t+n) versus x(t) plots. Steep increases in new infections 

(Poland, India) have dimensions close to 1. Intermediate phases are characterized by higher 

numbers. Successful fights against the pandemic (South Korea) are causative for declining size 

dimensions with increasing lag (Figure 5C).

2. Comparison across US States
Within the USA, individual states have encountered a rather wide range of progression 

phenotypes in the spread of new COVID-19 infections (Figure 6). This is due to variations in 

international connectedness and population density (reflected in the early peaks in the 

Northeastern states New York and Massachusetts), holiday travel (Florida), policy decisions and 

other factors. 

Wavelet analysis of new infections (one scale across all states) shows good control (right 

side of the graph) after initial affliction (left area) for Massachusetts and New York, which having 

had early spikes in new infections have achieved good success in containment. Through the 

observation period, control has not been maintained in Ohio. The periodicity in individual states 

(each on their own scales) is poorly defined, except for Florida and Ohio, where 7 days yield a 

prominent signal (Figure 7A,B).

We normalized the new infection numbers to rates by relating them per 10,000 inhabitants 

(Figure 8A). Figure 8B shows the periodogram for the 6 states under investigation with 

frequencies between 0 and 0.10 (the graph is almost flat for the higher frequencies). There exist 

clear heterogeneous patterns in the comparison among these states. New York and 

Massachusetts display steadily decreasing spectral density values from the longest period to 

around 1-2 weeks (corresponding to a frequency range around 0.07-0.14). Florida and Texas 
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share similar patterns with a few low spikes in their periodograms after the first 3 highest ones. 

The graph for California flattens out after the lowest three frequencies, with the longest period 

(the whole series) having the highest value. Ohio’s pattern is quite unique with fluctuating values 

from the longest periods through around 5-6 weeks.  The Fourier power spectrum for the infection 

rates (Figure 8C) indicates similar periodic patterns as in the periodograms of Figure 8B. These 

patterns are less prominent due to the adjustment to the same y-axis scale (the scale reflects the 

magnitude of the positive rates, the shape shows the evolution of the disease).

We conducted bivariate wavelet analysis on the time-lagged data (Figure 9A and Figure 

S4). The shared synchronicity segments between x(t) and x(t+n) can be grouped into shorter 

periods (around 7 days) and longer periods (approximately 3 weeks, 1 month, 2 months).  New 

York does not display substantial joint short periods. Ohio and Texas mainly have correlation at 

the end of the series around the 7-day period. Massachusetts experiences joint periodicity around 

the 7-day period at the early stage of the series. Florida and California have joint periods in the 

middle of the observation time frame. The levels of average cross-wavelet power are higher in 

states with poor control (x-axes scales for Florida, Ohio). The peak power shifts toward higher 

periodicity with improved control (y-axes scales for New York, Massachusetts). The return plots 

in 3 dimensions, utilizing the same time lags as for the countries, seemed to reflect contraction of 

the attractor in Massachusetts, cyclicity in New York, Florida and California, no containment in 

Texas, and an ejecting diagonal in Ohio which may reflect exacerbation (Figure 9B). The 

embedding dimensions varies among states, such that the most contained states (New York, 

Massachusetts) have the lowest embedding dimension (Table 1).

The autocorrelation for return plots of increasing lags show a progressive decline in the 

numbers of New York and Massachusetts, which implemented strong containment measures 

after having been afflicted early. The values decline less steeply for Texas and California. Ohio 

displays an anomaly with increasing values for very long lags. The state, while not heavily afflicted 

on a per capita basis, never achieved containment, only a stationary level, and has since 

experienced another wave (Figure 10A). Up to a maximum lag of 49 days, the average mutual 

information for the 6 US states under study ranges between 1.0 and 2.0. Overall, all states show 

a slightly decreasing pattern except for California, which is relatively leveled at a value of 2.0 

(Figure 10B). Unexpectedly, the box counting dimension (Figure 10C) is less discerning than it 

was for the evaluation across countries. This may be due to the much lower power conveyed by 

smaller population sizes. 
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Discussion
In the present investigation we find that the analysis tools for observed complex data can 

aid in the interpretation of pandemic spread across communities. Difficulties in analyzing the non-

linear patters of infectious disease spread may be tamed by applying the tools of complex systems 

research. The approach can reveal patterns, where a simple time course of new cases does not. 

Further, non-linear analysis allows the study into various facets of the process, depending on 

whether the starting data are new cases, hospitalizations, deaths or other readouts. Maps can be 

generated and evaluated for their fractal dimensions [11]. The operational approximation of 

Lyapunov exponents may be meaningful, although they were largely uninformative for the present 

study (Supplemental Figure S5).

Among the countries analyzed, South Korea has had the most successful control of the 

pandemic spread according to low intensity in univariate wavelet analysis, low spectral density 

range in Fourier analysis, low spectral density of the normalized rates, a reduction in cross-

wavelet power levels according to bivariate wavelet analysis and longer periodicity in the 

distribution of cross-wavelet power. Further, declining box counting dimensions, autocorrelation 

values with increasing time lag, and decreasing trends (at a low slope) in average mutual 

information confirm containment. Cyclical patterns in return plots, suggesting the outlines of 

attractors, are apparent and most data points are concentrated near the origin of the graph. 

Germany exhibited good management through October 2020 according to univariate wavelet 

analysis, spectral density in the power spectrum of the normalized rates, a reduction of cross-

wavelet power levels in bivariate wavelet analysis, longer periodicity in the distribution of cross-

wavelet power, a dramatic lowering of autocorrelation values at a lag of 21 and above, and 

relatively flat average mutual information values, staying around levels of 1.5. Cyclical patterns in 

return plots suggest the outlines of an attractor. Good control by Italy consecutive to the early 

impact and through October 2020 is reflected in low intensity and fluctuation when applying 

univariate wavelet analysis, in a reduction of cross-wavelet power levels for bivariate wavelet 

analysis of time-delayed data, longer periodicity in the distribution of cross-wavelet power, and 

decreasing trends (at a low slope) in average mutual information. Cyclical patterns in return plots, 

suggesting the outlines of an attractor, are apparent. Poland had two distinct phases. By 

univariate wavelet analysis and density in the power spectrum of normalized rates, there was 

indication of good management through October 2020. According to bivariate wavelet analysis 

for time-delayed data series and return plots, the recent substantial upswing in new infections is 

reflected, which also results in box counting dimensions close to 1. From a lag of 6 onward, Poland 
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has substantially declining autocorrelation values, although due to the recent steep upswing in 

new infections, the trend reverses at very long lags. The average mutual information starts with a 

relatively low value (1.15 at t versus t+1) and shows a rapid decrease with longer lag, staying 

level from lags of 21 to 49 days. In the United States, univariate wavelet analysis displays cyclical 

fluctuations of various durations, none of which have been contained. According to bivariate 

wavelet analysis for time-delayed data series, there have been protracted periods of high cross-

wavelet power levels. Cyclical patterns in return plots, suggesting the outlines of attractors, are 

apparent. The USA expresses relatively flat average mutual information values, staying around 

levels of 2.20. In France, univariate wavelet analysis of the time course shows prominence of the 

recent upswing (heat intensity on the right margin of the graph), the power spectrum is reflective 

of potentially adverse developments. The second wave of infections is apparent in bivariate 

wavelet analysis and in the obscured order in return plots. France displays a gradually decreasing 

trend of average mutual information. India expresses cyclical fluctuations of various durations in 

univariate wavelet analysis, none of which have been contained. On a population bases, the 

spectral density suggests that control has not been lost through October 2020. Bivariate wavelet 

analysis shows protracted periods of high cross-wavelet power levels, return plots reflect the 

progressive increase in new cases over the time period in a predominantly linear curve on each 

scale, box counting dimensions are close to 1, and autocorrelation values stay uniformly high with 

increasing time lag. India displays a gradually decreasing trend of average mutual information. 

Brazil experiences cyclical fluctuations of various durations in univariate wavelet analysis, none 

of which have been contained. By Fourier analysis, the spectral density range is high. The power 

spectrum is indicative of potentially adverse developments. According to bivariate wavelet 

analysis, there have been protracted periods of high cross-wavelet power levels. In return plots, 

the wide fluctuations generate a largely disordered appearance. The autocorrelation values stay 

uniformly high. Brazil expresses relatively flat average mutual information values, staying around 

levels of 2.20. Sweden shows cyclical fluctuations of various durations in univariate wavelet 

analysis, none of which have been contained. The power spectrum is reflective of potentially 

adverse developments. In return plots, disorder is apparent. Sweden expresses relatively flat 

average mutual information values.

Prima facie, the curves of new infections versus time for three Western European 

countries, France, Italy, and Germany, appear similar. Complex systems analysis reveals the 

upswing in France to be much more perilous than the increases in the curves of new infections 

by the other two countries. The management of infectious spread also requires improvements in 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.425544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425544
http://creativecommons.org/licenses/by/4.0/


the United States, Sweden and Brazil. The selection of the observation period can dramatically 

influence the results. Poland was initially very successful in containing the pandemic, but then 

experienced a substantial upswing. Analyzing these two phases individually or in conjunction 

yields very different data sets, which inform about distinct aspects of the infectious progression.

The fluctuations of new infections in an epidemic or a pandemic pose challenges to the 

evaluation whether a decline reflects true containment (“rounding the corner”) or just the calm 

before another wave. The readouts of non-linear systems analysis can aid in making such a 

distinction. A complex occurrence that experiences containment will strive toward a point attractor 

in phase space and move toward the origin. Such a progression is represented in a declining 

fractal dimension, and the transition from fluctuations (often associated with a torus attractor) 

toward limitation of new cases is expected to reduce the autocorrelation.

One constraint of complex systems analysis is the need for large data sets. In this regard, 

the availability of about 230 data points (daily new cases March through October 2020) for each 

geographic area in this study is somewhat low. The robustness of pertinent studies increases with 

larger data sets over time. Reporting errors could have a non-trivial impact, and may be reflected 

in the frequent occurrence of a peak at 7 days in the spectral analysis (possibly indicating weekly 

totals). This problem can be addressed by utilizing moving averages. The homogeneity or 

heterogeneity in management by the community under study determines the noise level. The 

worldwide numbers of new infections have a lot of background due to varying patterns across 

countries. 
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Tables and Figures

Figure 1: Time-Course of Disease Spread by Country. Numbers of new cases, x(t), per day 

versus time (t, indicating the date). Shown are the curves for (top to bottom, left to right) the globe, 

India, Brazil, Sweden, Italy, USA, France, Germany, Poland, and South Korea. Note the different 

scales of the y-axes.

Figure 2: Univariate Wavelet Analysis. Cross-Wavelet Power Spectrum in the Time-Period 

Domain. The x-axis (index) displays the time progression, whereas the y-axis depicts the length 

of the period. White contour lines indicate significance of periodicity on the 0.1 level for probability 

of error. Lines represent the ridge of cross-wavelet power. The color bar reveals the power 

gradient. A) All countries on the same scale. B) Each country on its own scale.

Figure 3: Fourier Analysis. A) New Infection Rates. Daily reported new numbers of infections 

divided by 10,000 inhabitants. The x-axis shows the calendar date. B) Power Spectrum. Fourier 

power spectra versus frequency for. new infections per 10,000 inhabitants per day in each of 9 

countries. C) Normalized Power Spectrum. Spectral density (y-axis) versus period (in days) for 

infection rates per 10,000 inhabitants (x-axis). The curve shows the smoothed spectral density 

estimates. All y-axes have the same scale.

Figure 4: Time-Lagged Data Analysis. A) Bivariate Wavelet Analysis. Shown are cross-

wavelet power plot, wavelet coherence plot, average power plot and phase difference image (from 

left to right in each row) Time-lagged data were used for x(t)/x(t+14) (for the lags x(t)/x(t+7) and 

x(t)/x(t21) see Figure S2). White contour lines indicate significance for joint periodicity, black 

arrows depict the phase difference in the areas with significant joint periods. The solid red dots 

on the average power plot (the third from the left) depict significant joint periods at a probability of 

error of 0.1. Where shown, the color bars reveal the ranges of cross-wavelet power levels. B) 
Return Plots in 3 Dimensions. Time-lagged return plots in 3 dimensions are shown, from left to 

right, for x(t)/x(t+7)/x(t+14), x(t+3)/x(t+7)/x(t+14), and x(t+5)/x(t+14)/x(t+28). Each country of 

interest has its own row. C) Embedding Dimension. The plots show how Cao’s algorithm uses 

2 functions in order to estimate the embedding dimension from the time series (the E1(d) and 

E2(d) functions), where d denotes the dimension.

Figure 5: Readouts of Complexity for Lagged Data on COVID-19 Spread by Country. A) 
Autocorrelation. Bar graph of the autocorrelation in COVID-19 spread with each bar color 
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representing a different country. The selected time lags are indicated on the x-axis, all are 

calculated versus x(t). B) Average Mutual Information. Bar graph of average mutual information 

in COVID-19 spread with each bar color representing a different country. The selected time lags 

as indicated on the x-axis are all calculated versus x(t). C) Fractal Dimensions. Box counting 

dimensions are calculated for 2-dimensional return plots of increasing lags, x(t+7) versus x(t) 

through x(t+35) versus x(t). 9 countries are evaluated, and the worldwide numbers are shown on 

the left. Poland is represented twice, over the entire evaluation period through 12 October 2020 

(which contains a steep incline) and over the shorter phase of containment through 18 September 

2020 (cont. = contained period).

Figure 6: Time-Course of Disease Spread for Individual US States. Numbers of new cases, 

x(t), per day versus time (t, indicating the date). Shown are the curves for (top to bottom, left to 

right) Massachusetts, New York, Florida, Texas, California, and Ohio. 

Figure 7: Univariate Wavelet Analysis. Wavelet power spectrum in the time-period domain. 

Contour lines indicate significance of periodicity with 0.1 significance level. Black lines indicate 

the ridge of wavelet power. The color bar reveals the power gradient. A) All states on the same 

scale. B) Each state on its own scale.

Figure 8: Fourier Analysis. A) New infection Rates. Daily reported new numbers of infections 

divided by 10,000 inhabitants (infection rates). The x-axis shows the calendar date. B) Power 
Spectrum. Periodogram plot on the series of the new infection rates. The x-axis is the frequency 

(per day) and the y-axis represents the spectral density. The y-axis ranges vary among graphs.  
C) Normalized Power Spectrum. Spectral density versus period (in days) for infection rates. All 

y-axes have the same scale.

Figure 9: Time-Lagged Data Analysis by US State. A) Bivariate Wavelet Analysis. Shown 

are cross-wavelet power plot, wavelet coherence plot, average power plot and phase difference 

image (from left to right on each row) Time-lagged data were used for x(t)/x(t+14) (for the lags 

x(t)/x(t+7) and x(t)/x(t21) see Figure S4). White the contour lines indicate significance of joint 

periodicity, black arrows indicate the phase difference in the areas with significant joint periods. 

The solid red dots on the average power plot (the third from the left) reflect significant joint periods 

at a significance level of 0.1.  B) Return Plots in 3 Dimensions. Time-lagged return plots in 3 
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dimensions are shown, from left to right, for x(t)/x(t+7)/x(t+14), x(t+3)/x(t+7)/x(t+14), and 

x(t+5)/x(t+14)/x(t+28). Each state under investigation has its own row. 

Figure 10: Readouts of Complexity for Time-Lagged Data by U.S. State. 6 US states have 

been evaluated. A) Autocorrelation. Bar graph of the autocorrelation in COVID-19 spread with 

each bar color representing a different US state. The selected time lags are indicated on the x-

axis, all are calculated versus x(t). B) Average Mutual Information.  Bar graph of average mutual 

information in COVID-19 spread with each bar color representing a different state. The selected 

time lags are indicated on the x-axis, all are calculated versus x(t). C) Fractal Dimensions. Box 

counting dimensions are calculated for 2-dimensional return plots of increasing lags, x(t+7) versus 

x(t) through x(t+35) versus x(t).

Table 1: Embedding Dimension for Time-Lagged Data by U.S. State. Embedding dimensions 

were calculated according to Cao’s algorithm, which uses 2 functions in order to estimate the 

embedding dimension from the time series. The table shows the calculated time lags and 

embedding dimensions for each U.S. state under study.
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Supplement

Figure S1: Power Spectrum and Univariate Wavelet Analysis for Worldwide New 
Cases. A) Wavelet analysis and model fit (minimum power level: 0, significance level: 0.05,
only coi: false, only ridge: false). B) Fourier analysis.

Figure S2: Bivariate Wavelet Analysis by Country. The graphs represent cross-wavelet power 

plot, wavelet coherence plot, average power plot and phase difference image (from left to right on 

each row) Time-lagged data were used for x(t)/x(t+7) (A) and x(t)/x(t21) (B). White contour lines 

depict joint significance of periodicity. Black arrows reflect the phase difference in the areas with 

significantly joint periods. The solid red dots on the average power plot (the third from the left) 

indicate significantly joint periods at a probability of error 0.1. The color bars reveal the cross-

wavelet power levels.

Figure S3: Return Plots in 3 Dimensions for Poland. New infections per day. Top) Entire 
Observation Period. 10th March 2020 through 7th November 2020. Middle) Contained Phase. 
Partial time frame through 18th September 2020. Bottom) Exacerbating Phase. Partial time 

frame from 1st September 2020.

Figure S4: Bivariate wavelet analysis by US state. The graphs display cross-wavelet power 

plot, wavelet coherence plot, average power plot and phase difference image (from left to right on 

each row) Time-lagged data were used for x(t)/x(t+7) (A) and x(t)/x(t21) (B). White contour lines 

indicate significance of joint periodicity. Black arrows indicate the phase difference in the areas 

with significantly joint periods. The solid red dots on the average power plot (the third from the 

left) indicate significance at a level of 0.1.

Figure S5: Evolution of Lyapunov exponents over time. For a discrete mapping x(t+1) = F(x(t)) 

we calculate the local expansion of the flow by considering the difference of 2 trajectories. The 

Lyapunov characteristic exponent can be approximated as
𝜆 ≈ ln (|𝑥𝑛+1 ― 𝑦𝑛+1|/|𝑥𝑛 ― 𝑦𝑛|)

for 2 points xn,yn close to each other on the trajectory 

[https://www.math.tamu.edu/~mpilant/math614/Matlab/Lyapunov/LorenzSpectrum.pdf]. The 

changes of Lyapunov exponents are presented for the return plots of lags x(t+6) versus x(t), 

x(t+14) versus x(t), x(t+21) versus x(t), and x(t+35) versus x(t). A) Countries. Shown are ranges 

over 250 days. B) US States. Shown are ranges over 200 days. Mass. = Massachusetts.
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