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Abstract

Cell-free DNA (cfDNA) measured via liquid biopsies provides a way for minimally-invasive

monitoring of tumour evolutionary dynamics during therapy. Here we present liquidCNA,

a method to track subclonal evolution from longitudinally collected cfDNA samples based

on somatic copy number alterations (SCNAs). LiquidCNA utilises SCNA profiles derived

through cost-e↵ective low-pass whole genome sequencing to automatically and simulta-

neously genotype and quantify the size of the dominant subclone without requiring prior

knowledge of the genetic identity of the emerging clone. We demonstrate the accuracy

of liquidCNA in synthetically generated sample sets and in vitro and in silico mixtures

of cancer cell lines. Application in vivo in patients with metastatic lung cancer reveals

the progressive emergence of a novel tumour sub-population. LiquidCNA is straightfor-

ward to use, computationally inexpensive and enables continuous monitoring of subclonal

evolution to understand and control therapy-induced resistance.
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Introduction

Liquid biopsies, primarily the analysis of cell free DNA (cfDNA) present in blood samples,

o↵er the potential for regular longitudinal and minimally invasive monitoring of cancer

dynamics [1, 2, 3, 4, 5, 6, 7]. Circulating cfDNA is released into the blood via apoptosis or

necrosis of cells. Tumour-derived cfDNA in the blood is detectable from tumours as small

as 50 million cells [8], it shows correlation with disease stage [9, 10], and o↵ers the same

diagnostic potential as tissue-based biopsies [7]. cfDNA is an aggregate of DNA shed from

multiple locations and multiple malignant cells across the body and hence a single sample

can provide a comprehensive overview of systemic disease. Consequently, cfDNA is an

exceptional resource for non-invasive tracking of tumour composition and for monitoring

response to therapy or clinical relapse.

Typically, cfDNA analysis has focused on the detection of driver gene single nucleotide

variants (SNVs), with the size of mutation-bearing clones inferred from the relative se-

quencing read count at the mutation site. For instance, in high-grade serous ovarian cancer

(HGSOC) the frequency of TP53 mutation in cfDNA is a measure of tumour burden and

is predictive of treatment response [11]. In colorectal cancer, KRAS mutation frequency

in cfDNA is predictive of response to anti-EGFR therapy [4].

Somatic copy number alterations (SCNAs) are widespread in cancers [12, 13, 14],

and have been used extensively to track tumour composition and dynamics over time

[15, 16, 17, 18]. SCNAs can be detected in cfDNA without prior knowledge of the tumour

SCNA profile, through measurement of the relative number of reads mapping within ‘bins’

spaced across the genome [19]. Relative di↵erences in read count between bins can be

sensitively detected even when the total read count is low [20, 21, 22], meaning that

SCNAs can be detected with a fraction of the sequencing depth required for SNV detection.

Therefore SCNA profiling o↵ers a high-throughput and cost-e↵ective means to evaluate

cfDNA samples [23, 24, 25, 26, 27, 28].

Whilst measuring clone sizes based on the frequency of SNVs is straightforward, de-

riving quantitative information on the proportion of tumour population that carries a

particular SCNA is challenging. Tumour cells are not the only contributors to the cfDNA

pool, and an SCNA can in theory change the copy number to any non-negative integer

value. Thus total read count per bin is a noisy compound function of the relative tumour

cell contribution to the total cfDNA pool, and the specific copy number of the alteration.

Here we present a new method to identify and track tumour subclonal evolution based

solely on measurement of SCNAs from longitudinal cfDNA samples. Our algorithm, named

liquidCNA, firstly determines the contribution of tumour DNA to the total cfDNA pool

(i.e. cellularity/purity) and then uses SCNA data to characterise and quantify the size of

the most pervasive (putatively resistant) subclone emerging or contracting over time. The

e�cacy of the method is demonstrated using synthetic datasets, in vitro cell line mixtures,

and in vivo via longitudinal analysis of cfDNA from lung cancer patients undergoing

targeted treatment.
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Results

Emergent subclone tracking from copy number information

First, we derive a mathematical definition of the problem of tracking an emergent (pu-

tatively resistant) tumour subclone from longitudinal cfDNA samples, typically taken

throughout the course of treatment. We consider a tumour cell population undergoing

continuous evolution characterised by two cell types, ancestral tumour cells (A) and an

emerging subclone (S). We assume that liquid biopsies contain DNA originating from an-

cestral and subclonal tumour cells, as well as contaminating DNA from normal cells (N).

The proportion of DNA arising from cells of the emergent subclone within the tumour

is expressed by the subclonal-ratio, ri, while the overall proportion of tumour-originating

DNA is termed the purity or tumour fraction of the sample, denoted by pi.

We consider that the copy number (CN) profile of each sample has been measured

– for example using low-pass whole genome sequencing (lpWGS) – and so the genome

can be divided into segments, contiguous regions of constant CN. Each measured segment

CN in sample i (Cj
i ) is the combination of each cell population’s CN at the jth genomic

location (2 for normal cells and C(A) and C(S) for ancestral and subclonal tumour cells,

respectively), weighted by the proportions of the three populations (Fig. 1).

Cj
i = 2 + pi

�
(1� ri)C(A)j + riC(S)j � 2

�
. (1)

We assume that each segment can fall into one of three categories depending on its

CN in ancestral and subclonal tumour cells. Clonal alterations (and unaltered segments)

are at the same CN in both tumour populations, and their measured CN is only a↵ected

by the purity of a sample. Subclonal segments represent SCNAs that are unique to the

emerging subclone. Their measured CN is influenced by the subclonal-ratio of a sample,

as well as sample purity. Finally, segments that do not follow either of these patterns –

due to uncertain measurements or ongoing instability – are termed unstable. Our aim is

to estimate the underlying purity and subclonal-ratio, pi and ri, from longitudinal CN

measurements of clonal and subclonal segments (Fig. 1).

Estimation of subclonal-ratio

Estimation is carried out in three steps (Fig. 2a and Methods). First, the purity of

each sample is assessed using the distribution of segment CN values. We assume that the

majority of segments have integer CN in all tumour cells, hence the distribution is expected

to have distinct peaks at regular intervals of pi, corresponding to clonal segments with CN

of 1, 2, 3, etc. (Fig. 2b). We derive the purity estimate as the value that minimises the

squared error between observed and expected peaks (Fig. 2c). The inferred purity values

are used to correct the segment CN values, thus estimating the tumour-specific CN of each

segment.

LiquidCNA does not require a mainly diploid tumour genome (i.e. major peak at

CN= 2) to derive correct estimates, but will derive erroneous conclusions if the CN values
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– as measured by the CN quantification software, e.g. QDNAseq [19] – are incorrectly

centred (e.g. major peak is defined as copy number 2, but the true value is copy number

3). To control for this an initial manual check of the CN profile is recommended prior to

applying liquidCNA and renormalisation to the correct ploidy if required.

Next, for every segment we compute the change in CN, �CN, between each sample

and a baseline sample that is assumed to have negligible proportions of the emerging

(putatively resistant) subclone – for example a sample taken upon diagnosis or before

start of therapy. �CN values naturally highlight subclone-associated segments altered in

non-baseline samples, as these segments display markedly positive (CN gain compared to

baseline) or negative (CN loss) values (Fig. 2d). From these �CNs we then establish

the set of segments that are subclonal and the sample ordering that reflects increasing

subclonal proportions. To do this, we examine each possible order of samples, classifying

each segment as clonal (if the variance of its �CNs across samples is below a pre-defined

threshold), subclonal (if it shows monotone change in �CN value along the order of the

samples - i.e. if the �CNs are consistent with an emerging subclone) or unstable (if it

does not correlate with sample order) according to that order (Fig. 2e). The order with

the highest proportion of segments classified as subclonal is selected, and these subclonal

segments are used for downstream computation of tumour composition (Fig. 2f). The

methodology ensures that the dominant subclone associated with the most pervasive SC-

NAs is evaluated and that subclonal-ratio inference is robust to segments with unstable

CN.

Finally, we compute the relative and absolute subclonal-ratio of each sample using the

identified set of subclonal segments. Relative subclonal-ratios are defined as the median

ratio of segment �CNs compared to the sample with the maximum subclonal proportion

(Fig. 2g). The absolute subclonal-ratio is computed based on the assumption that sub-

clonal segment CN values correspond to distinct SCNAs that di↵er between ancestral and

subclonal cells. The subclonal-ratio of sample i is therefore derived as the shared mean

(ri) of a mixtures of Gaussian distributions with constrained means �ri,+ri, etc., fitting

the �CN distribution of subclonal segments (Fig 2h). We also provide the 95% confidence

interval of the absolute subclonal-ratio estimate based on the shared variance of the fitted

Gaussians (Fig 2i).

LiquidCNA outputs both relative and absolute subclonal-ratio measures, since for most

applications the relative value holds su�cient information on how the subclonal (putative

resistant) population changes between time-points. Relative proportions are also less

susceptible to the measurement noise in the measured segment CNs, while a combination

of low subclonal proportion and high sequencing noise can cause the fitting of absolute

subclonal-ratio estimates to fail to converge.

Synthetic mixed populations

We first evaluated the performance of liquidCNA using synthetic datasets where input

values of subclonal proportion and purity were known. We generated synthetic datasets
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characteristics matching typical longitudinal measurements of patients. In order to simu-

late imperfect measurements, we added varying levels of normally distributed measurement

noise (defined by the dimensionless parameter �) to bin-wise CN values (Fig. 3a-c and

Methods).

We evaluated the accuracy of the purity estimation on 250 synthetic samples (Fig. 3d),

and found that purity p could be estimated within 2% of the true tumour fraction in 90%

of samples at noise levels �  1. The error on the purity estimation was greater when the

noise was increased (Fig. 3e), and was most pronounced in samples with high noise and

low tumour fraction. Consequently, we restricted our subsequent analysis to only cases of

higher purity (pi � 0.1).

Next, we derived subclonal-ratios using purity-corrected CN profiles on the higher

purity subset of synthetic mixtures. We set a threshold to filter out clonal segments (see

Fig. 2e) such that at least 10 segments were retained and the proportion of retained

segments classified as subclonal was maximal following segment classification. Fig. 3f

shows the true and estimated subclonal-ratios for 50 synthetic experiments. Overall, we

found that subclonal-ratio was estimated with ⇠ 5% error, and the accuracy was influenced

by measurement noise (Fig. 3g). Relative subclonal-ratios (calculated compared to the

sample with highest subclonal proportion) were estimated with higher accuracy (error

⇠ 3%, Fig. S1a-b). We found that computing absolute subclonal-ratios in a two-step

process from these values yielded similar results to direct estimation by fitting a Gaussians

mixture model, and provided an estimate even in cases where the direct estimation did

not converge (Fig. S1c and Methods). The proportion of unstable segments, unlike noise,

had little e↵ect on the estimation accuracy (Fig. S2).

Mixtures of ovarian cancer cell lines

Next, we evaluated liquidCNA on real data derived from in vitro mixtures of two paired

high grade serous ovarian cancer (HGSOC) cell lines [29] (see Method and Table S1).

HGSOC cells were ideally suited for this evaluation as high levels of chromosomal insta-

bility are a hallmark of the disease [30, 31]. We anticipated that liquidCNA will be most

applicable for the tracking of subclonal evolution in malignancies with high CNA burden

[26].

We divided a population of OVCAR4 cells into two aliquots, and the first aliquot was

untreated and classified as ‘sensitive’. In a process described in detail by Hoare et al. [29],

cells from the second aliquot were cultured so that they evolved resistance to platinum-

containing chemotherapy and thus were termed ‘resistant’. In addition to the high SCNA

burden inherited from the ancestral sensitive cell line, resistant cells acquired new SCNAs

during the in vitro evolution of resistance (Figure 4a).

We then mixed, in varying known proportions, the genomic DNA extracted from the

two cell lines, with sensitive cells representing the ancestral and resistant cells the emerging

subclonal population. The mixtures were further diluted with DNA from blood samples of

healthy volunteers assumed to have a diploid genome; this modelled the e↵ect of normal
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contamination in patient samples (Table S1). These DNA mixtures were sequenced to

mean depth 1.3x and composite SCNA profiles were generated (see Methods). In addition,

we generated further in silico mixtures by sampling and mixing genome-aligned reads from

sequencing data from each of the three cell types sequenced individually. In these mixtures,

we controlled the total number of reads per sample to study the e↵ect of variable read

depth and associated measurement noise.

First, we used liquidCNA to estimate the purity of in vitro mixed samples (samples

S0-S5). The purity of each sample was estimated to be lower than the theoretical mixing

proportion (Fig. 4b). In the in silico mixed samples, we found that there was a strong

linear relationship between estimated and true purity (Fig. 4c). The underestimation of

purity in the samples might be explained by our definition of theoretical purity in the in

vitro and in silico mixing procedure (respectively defined as proportion of DNA weight

versus the proportion of read counts). A highly aneuploid genome will likely have a higher

weight than a diploid genome, therefore mixing of equal weights results in a higher pro-

portion of normal genomes than expected. Our purity estimates were in agreement with

observed peaks of the CN distribution (Fig. S3a), further confirming that there was no

bias in the estimation. By fitting a linear model to the estimates, the theoretical tumour

fraction could be fully recovered, as illustrated by the ‘corrected’ estimates of samples

S0-S5 (Fig. 4b). The number of reads (sequencing depth) did not systematically influ-

ence the accuracy of estimating tumour fraction, but purity estimates of samples with low

tumour fraction were noisier at low read depth (Fig. 4c). In summary, liquidCNA pro-

vided an accurate estimate for purity values when true purity was above 10%. Decreased

measurement accuracy below 10% purity is consistent with our observations on synthetic

data and is similar to reported limitations of other methods quantifying tumour fraction

from lpWGS cfDNA [24, 20, 22]. Therefore, for samples below 10% predicted purity, we

advise to discard the sample from downstream analysis, although low-purity samples may

be usable if a very accurate purity estimate can be derived by other means.

Next, we inferred the subclonal-ratio for cell line mixtures using purity-corrected �CN

values, with sample S0 used as the baseline sample for both in vitro and in silico sample

sets. We could correctly order cell line mixtures according to subclonal-ratios without any

a priori information (Fig. S3b), and both absolute subclonal-ratio and relative subclonal

changes were estimated on average within 2% and 3% of the true subclonal percentage

(Fig. 4d,f). In particular, we noted that samples S4 and S3 were accurately estimated

as having an equal subclonal-ratio, despite originating from di↵erent biological replicates

with di↵erent tumour purity, which was reflected in the small confidence intervals of their

estimates. We also note that even though there were no truly unstable segments in this

dataset as measurements were not taken over time, three non-clonal segments were clas-

sified as such, probably due to higher noise in their measured CN value.

Using datasets of randomly selected in silico samples with 50 million reads, we con-

firmed that our algorithm could accurately infer the subclonal-ratio of samples, in partic-

ular when considering relative proportions (Fig. 4e,g). Although the estimation quality
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decreased with lower read counts (Fig. S4), in most cases the estimated absolute and

relative subclonal-ratio was within 15% and 10% of the true subclonal proportion, re-

spectively. Furthermore, we found that cases with high estimation error were typically

caused by low-purity samples, which could be easily identified and removed without a

priori information, as demonstrated in Fig. S5.

Using the known theoretical mixing values of tumour-DNA content – instead of data-

derived estimates – to derive purity-corrected CN values increased the estimation error,

especially in low read count samples (Fig. S6). This finding emphasises that non-diploid

genomes might bias alternative measurement methods and internal consistency in the

method of deriving sample characteristics (purity and subclonal-ratio) is crucial when

assessing the dynamics of the subclonal population.

Subclonal analysis of patient samples

We used liquidCNA to analyse emergent subclones in longitudinal cfDNA samples from pa-

tients with non-small cell lung cancer (NSCLC) undergoing therapy, as previously reported

by Chen and colleagues [24]. The liquid biopsies were collected as part of the FIGARO

study (GO27912, NCT01493843), a randomised phase II trial designed to evaluate the

e�cacy of pictilisib, a selective inhibitor of phosphatidylinositol 3 kinase [32]. Pictilisib

or placebo was given in combination with standard chemotherapy regimen which was de-

termined based on the subtype of NSCLC. Blood samples were taken at baseline (day 1

of the first treatment cycle) and at 6-week intervals up to the end of treatment (EOT).

DNA was isolated from the plasma of liquid biopsies and sequenced using lpWGS to an

average depth of 0.5x, as described in details in [24].

Chen et al. [24] identified several SCNAs in EOT samples that were absent at baseline

and described several genes within these regions that might be associated with resistance.

We sought to apply liquidCNA to these cases to corroborate their observations, and further

to quantify the size of emergent subclones over time in these patients.

We obtained the lpWGS data (fastq files) and performed CN profiling (see Methods) on

patients with cfDNA samples from �3 time-points (n = 32). We identified three patients

(1306, 2760 and 3209) whose sample series fulfilled the following criteria: (i) had a cfDNA

sample taken on the first day of therapy with purity above ⇠20%; (ii) and had at least

two non-baseline samples with purity above ⇠20%. Patients 1306 and 3209 were in the

experimental arm of the study, while patient 2760 was assigned to the control arm; and

all three patients have progressed during the course of the trial.

We ran liquidCNA on data from the three selected patients (discarding samples with

purity below 10% (Fig. S7)) and examined the genomic segments that liquidCNA identified

as subclonal relative to baseline samples (Fig. 5).

While we observed a good overlap with the CNs previously reported to be associated

with subclonal evolution through therapy (Figures 5 and S8 of [24]), we also found a few

segments that were missed or additionally identified by liquidCNA. The original study

focused on the comparison of pre- and post-treatment and highlighted SCNAs occurring
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between the first and last time-points. As our analysis put equal focus on all time-points,

it classified some of the previously identified segments as unstable if the CN progression

was not consistently with subclone evolution. Furthermore, some segments were too small

to pass our initial filtering. On the other hand, liquidCNA was able to identify subclonal

segments which were at an abnormal CN in the baseline sample, and subsequently showed

diploid CN or a further gain/loss in subclonal tumour cells. For example, in the samples

from Patient 1306, whilst liquidCNA identified subclonal SCNAs on chromosomes 2, 6

and 8 that overlapped with the findings of the original study; it also detected additional

subclonal changes on chromosomes 17 and 18. However, we did not observe the previously

described focal loss on chromosome 7 (harbouring the gene MLL3 ), probably due to its

small size. Overall, we identified 10, 12 and 17 subclone-associated SCNAs in patients

1306, 2760 and 3209, respectively. A further 6 segments in patient 2760 were classified

as non-clonal but ’unstable’ as the CN over time was not consistent with the pattern

defined by the emerging subclone. As samples from patient 2760 had lower purity, these

inconsistent CN changes might have resulted from measurement noise.

We found that the emerging subclone accounted for 10 to 30% of the tumour derived

DNA in the cfDNA in the three patients evaluated. Patient 2760 showed evidence of

a subclonal proportion consistently around 30%, which could be explained by samples

from this patient taken at later time-points. Samples from patient 3209 obtained at 18

weeks and end of therapy contained below 20% DNA derived from subclonal tumour cells

(Fig. 5). Patient 1306, on the other hand, showed a contracting subclone that reduced in

proportion from 20% presence at week 18 to <10% at the end of therapy. In case the total

population size was known – which might be accessible from additional measurements of

the tumour-associated cfDNA pool –, the tumour subclone fractions established here could

also be converted into growth rates to enable future predictions of the tumour dynamics.
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Discussion

We present liquidCNA, a computational algorithm to infer longitudinal subclonal dynam-

ics using copy number measurements. Our algorithm performs simultaneous analysis of

several longitudinal samples to identify sample purity, subclonal SCNAs and the abun-

dance of an emerging subclone. LiquidCNA distinguishes between SCNAs that are associ-

ated with the emerging subclone and those showing unstable behaviour, and consequently

is not confounded by uncertain CN measurements.

We validate our method both on synthetic SCNA datasets, and in vitro and in silico

mixtures of two ovarian cancer cell lines. We successfully infer the proportion of the

dominant subclone in all of the above datasets, with good accuracy across a range of

sample qualities defined by the noise level or sequenced reads. In patients with lung cancer,

liquidCNA applied to lpWGS data derived from longitudinal liquid biopsies (cfDNA) shows

the emergence of subclones during therapy and identifies genomic regions associated with

the emergent tumour cells.

We demonstrate that liquidCNA can identify and quantify emerging subclones from

cfDNA samples, therefore enabling tracking of tumour subclone evolution through the

course of therapy. Deciphering the evolutionary trajectory of cancer can aid prognostic

and therapeutic decision-making and further our understanding of therapy-induced drug

resistance [33]. Measuring the dynamics of tumour composition is particularly crucial

for prospective monitoring during an adaptive therapy regime aiming to control resistant

subclones [34, 35, 36]. Furthermore, the proportion of cfDNA that is tumour-derived

(what we term ’purity’) in itself is a promising biomarker for determining initial therapy

response and prognosis [5, 37], as well as for tracking tumour progression during and after

therapy [2, 10, 6, 24].

We note that there are limitations in our liquidCNA method. Since our inference relies

on heterogeneous copy number profiles and subclone-specific SCNAs, we cannot analyse

cancer (sub)types with very low chromosomal instability, for example microsatellite un-

stable tumours. Conversely, extremely high levels of ongoing instability might bias our

analysis due to the lack of stable subclone-associated SCNA profile, and therefore liq-

uidCNA is not suitable for oligo-metastatic disease if spatially separate metastases carry

distinct karyotypes. Furthermore, the accuracy of our estimation reduces at low purity

(below 10%). However, a tumour fractions above this regime were observed in a sub-

stantial number of patients, especially in late stage disease where liquidCNA can o↵er

the largest benefit, [24, 20, 6, 9, 22, 38]. In addition, recent studies have shown that the

unique fragment length of tumour-derived cfDNA can be utilised to enrich for tumour

purity either experimentally or bioinformatically [39, 40, 41]. Finally, liquidCNA tracks a

single dominant subclone associated with the largest set of subclone-specific SCNAs, and

if there are multiple smaller subclones (with less or no associated SCNAs), these will be

ignored by the algorithm.

In summary, we provide a robust tool to derive quantitative information about dy-
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namic changes in clonal composition from SCNA measurements derived from cfDNA.

LiquidCNA enables real-time non-invasive tracking of subclonal tumour evolution, which

can provide new insights into the evolution of SCNAs and the dynamical emergence of

therapy-associated resistance.
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Figure 1: Schematic of copy number measurements. The first panel shows the SCNA

profile of ancestral (in yellow) and subclonal (in red) tumour cells. At di↵erent sampling

time-points, the overall tumour SCNA profile is a mixture of these profiles (second panel),

influenced by the composition of tumour-derived DNA depicted on the pie-charts. Clonal,

subclonal and unstable segments are indicated in yellow, red and blue, respectively. Note

that the CN of clonal segments remains the same. In the liquid biopsies taken at each

time-point, contamination from normal cells leads to ’flattened’ measured SCNA profiles

(last panel) due to normal cells having a neutral karyotype. This contamination a↵ects

the CN of each segment. Our aim is to estimate purity (pi) and subclonal-ratio (ri) based

on clonal and subclonal SCNAs.

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2021.01.05.425414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425414
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1

2

3

1.0 0.5 0.0 0.5 1.0
ΔCN in Sample4

Nu
m

be
r o

f s
eg

m
en

ts

0.0

0.2

0.4

0.6

Sample2 Sample3 Sample4 Sample5

Su
bc

lo
na

l-r
at

io

0

1

2

3

1.5 2.0 2.5 3.0
Segment CN

De
ns

ity

0.00

0.05

0.10

0.15

0.1 0.2 0.3 0.4
Purity estimate

Er
ro

r o
f f

it

b c

d

Ordered samples

clonal/normal unstable subclonale

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

0.0

0.5

1.0

1.5

Se
gm

en
t 

CN

Segment CN
distribution

Purity
p1, p2, …

Purity-corrected
segment CNs

baseline sample

Segment
classification

Maximal

Relative subclonal-ratio
r1,N, r2,N, …

0.25

0.50

0.75

1.00

Sample2 Sample3 Sample5
Su

bc
lo

na
l-r

at
io

 c
om

pa
re

d 
to

 S
am

pl
e4

0

1

2

Sample1 Sample2 Sample3 Sample5 Sample4

CN

a

Sample
order

0

1

2

Sample1 Sample3 Sample2 Sample4 Sample5

Se
gm

en
t 

CN

Score: 1 (16%)

Order 24

Order 3

Order 2

Order 1

Optimal: Order 3 (Score = 17)

Order 3f g

subclone sample

Subclonal-ratio
r1, r2, …

Optimal subclonal-ratio: 0.65
h i

Subclonal
segments

ΔCN compared to

Figure 2: Illustration of the estimation algorithm. (a) Outline of the steps of the estima-

tion algorithm. (b) Purity estimation based on the peaks of the distribution of segment

CNs. Green lines show the peaks expected at an example purity of 0.21. (c) The error

of a range of purity estimates, computed from the distance of observed and estimated

peaks in (b). Each line corresponds to a smoothing kernel applied to the raw segment

CN distribution. The optimal purity is indicated with arrow. (d) Change in segment CN

values (�CNs) plotted according to an example sample order. The number of subclonal

segments computed in (e) is indicated below. (e) Classification of segments based on the

sample order in (d). Segments with low variance are classified as clonal (in grey). Non-

clonal segments are evaluated whether they follow a quasi-monotone pattern (indicated

by the shaded regions) and classified as unstable (outside of shaded region, in blue) or

subclonal (in red). (f) �CN values plotted according to the optimal sample order max-

imising subclonal segments. Line colours indicate the class of each segment as in (e). (g)

Relative subclonal-ratio estimation compared to maximal subclonal-ratio sample (right-

most in (f)). Points show individual segment-wise estimates, with an example segment

highlighted in black. Black line shows the median. (h-i) Subclonal-ratios and confidence

intervals inferred by fitting a Gaussian mixture model to the �CN distribution of sub-

clonal segments. The components of the best fit with means �r and r are shown in green

and magenta in (h).
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Figure 3: Estimation of mixtures of synthetic cell populations. (a) Parameters used to

randomly sample synthetic datasets including simulated measurement noise. The font-

size of copy number states indicates their probability. (b) A randomly generated sample.

The heatmap depicts the distribution of segment CNs in ancestral and subclonal cells,

and the proportion of cell populations is shown on the pie-chart (red: subclonal, yellow:

ancestral, grey: normal). (c) Copy number profile of the sample in (b), with raw bin-wise

and segmented copy number values shown in black and red, respectively. (d) Estimated

purity of 1,000 synthetic samples with varying levels of noise (�), plotted against the true

theoretical purity. The y = x line is indicated with dashes. (e) Error of purity estimation

(absolute di↵erence to true purity) for samples with noise level indicated on the x axis. (f)

True and estimated subclonal-ratio of 200 synthetic datasets (1,000 samples) with varying

levels of noise (�). (g) Error in subclonal-ratio estimation for datasets with increasing

noise level. Box-plot elements in (e)(g) stand for: center line, median; box limits, upper

and lower quartiles; whiskers, 1.5x interquartile range; points, outliers.
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Figure 4: Estimation of mixtures of high grade serous ovarian cancer cell lines. (a) Copy

number profile of the ancestral/sensitive and subclonal/resistant HGSOC cell lines. Raw

bin-wise and segmented copy number values are shown in black and red, respectively.

Resistant-specific subclonal SCNAs are highlighted. (b) Purity estimates of samples S0-

S5. Corrected values are computed using the linear fit in (c). Theoretical purity values

are indicated by maroon diamonds. (c) True (theoretical) and estimated tumour purity

of 120 in silico HGSOC cell line mixtures. y = x and the linear fit of the estimates

(y = 0.81x) are shown with dashed and solid lines, respectively. Point shape and shade

indicate total number of reads per sample. (d) Subclonal-ratio estimates for samples

S1-S5. Shaded and empty bars indicate estimates derived using direct (Gaussian fit)

and two-step (from relative ratios in (f)) methods, respectively. Error bars show 95%

confidence interval of the direct estimate, maroon diamonds indicate theoretical values.

(e) True and estimated subclonal-ratio of 50 in silico datasets constructed of samples

from (c) with 50 million reads. (f) Relative subclonal-ratio estimates for samples S1-S4,

compared to S5. Estimates from each subclonal segment are shown with dots, the median

estimates are indicated by black lines, and true values with maroon diamonds. (g) True

and estimated relative subclonal-ratio in the 50 datasets shown in (g).
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Figure 5: Estimation in cfDNA samples from patient data. Subclone-specific copy number

changes and subclonal-ratio in lung cancer patients (a) 1306, (b) 2760, and (c) 3209 from

[24]. Left: purity-corrected SCNA profiles. Yellow bars show the CN of each segment in the

baseline sample, and red bars indicate subclonal deviations from this value in non-baseline

samples. Regions of subclone-specific CNAs are also indicated by darker shades. Right:

estimated resistant proportion of each sample with 95% confidence intervals. Note that

only samples with >10% purity were analysed (c.f. S7). A bar of CN=6 on chromosome

3 (indicated by asterisk) has been omitted from (c) for better visualisation.
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Methods

Formal definition of the problem

Copy number measurements

We consider a tumour that consists of two distinct cell populations, ancestral (A) and

subclonal (S) tumour cells, and continuously sheds cell-free DNA (cfDNA) into the blood

circulation. A typical scenario would be ancestral cells representing drug-sensitive tumour

cells present before cancer therapy, and subclonal cells denoting the emerging subclone

with resistance to therapy. The proportion of DNA originating from these two cell types

changes over time as we take measurements via blood samples (Fig. 1). Since cell-free

DNA found in blood can also originate from normal (non-tumour) cells of the body, the

measured DNA is contributed by a mixture of the two tumour cell populations (A and

S) and normal cells (N). At each time-point i the proportion of these three populations

in the measured sample, si, depends on the proportion of all tumour-derived DNA (the

purity of the sample, pi) and the proportion of subclone-derived DNA from the tumour

(the subclonal-ratio, ri):

Ni = 1� pi; Ai = pi · (1� ri); Si = pi · ri. (2)

Our aim is to track the dynamics of the subclonal (putatively resistant) population by

determining the subclonal-ratio for each time-point, ri, or the change in subclonal-ratio

between time-points, ri/rk = rik. To this end, we use the copy number values as typically

measured by lpWGS of the sequential cfDNA samples.

Let us consider distinct genomic regions with homogeneous copy number state, seg-

ments. We assume that the copy number (CN) state of most segments stays constant

over time in a particular population. Therefore the jth segment is characterised by a

set of three time-independent absolute CN states, C(N)j , C(A)j , C(S)j , corresponding to

the local CN in normal, ancestral and subclonal cells, respectively. The copy number of

segment j as measured in the ith sample, Cj
i , is the combination of these three absolute

CNs, weighted by the proportions of DNA derived from the three cell populations at that

time-point (Ni, Ai, Si). We know that normal cells are at a diploid state, hence C(N)j = 2

for all j. Therefore, using the purity and subclonal-ratio defined in Eq. (2),

Cj
i = 2 + pi

�
(1� ri)C(A)j + riC(S)j � 2

�
. (3)

Since all cells in a cell population share the absolute CN for a given segment, the values

C(S)j and C(A)j are always integers. Therefore in theory, measured CNs from a given

sample should be limited to a discrete set of values defined by these integer states, making

it possible to solve the set of equations formed by Eq. (3) for pi and ri using linear algebra.

However, we have to take into account that all real sequencing measurements have a

level of imprecision introducing variation on top of this relationship. Using the term �ij

to represent the noise in the ith measurement of segment j, Eq. (3) becomes,

Cj
i = 2 + pi

�
(1� ri)C(A)j + riC(S)j � 2

�
+ �ij . (4)
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with the magnitude and family of this noise depending on the specifics of the technology

used for CN measurement, especially the sequencing depth [19]. This measurement noise

– associated with a continuous distribution – broadens the set of Cj
i values, rendering a

linear algebra solution impossible. Hence, our aim becomes to derive an inference of pi

and ri despite this unknown noise, �ij .

Segment classification

Each segment can fall into three categories depending on their respective copy number

states in the two types of cells. (i) Clonal segments have the same absolute CN in ancestral

and subclonal tumour cells, C(A)j = C(S)j . A special case of clonal segments are segments

of neutral CN, where C(A)j = C(S)j = 2. (ii) Subclonal segments have di↵erent absolute

CNs in the ancestral and subclonal tumour population, C(A)j 6= C(S)j . These segments

represent SCNAs that distinguish the subclone from its ancestor, even though they are not

necessarily associated with a selective/phenotypic di↵erence (e.g. drug-resistance) directly.

(iii) Unstable segments are neither clonal nor associated with the emergent subclone, and

therefore are best described by a time-dependent tumour-wide CN value, ⇣(T )ji , that

does not depend on ri. These segments can arise if a genomic region cannot be measured

reliably or if on-going genomic instability introduces novel SCNAs during the time tracked

by our samples. We can assume that the number of such segments is small compared to

the total number of measured segments.

Depending on whether segments are clonal, subclonal or unstable, their measured CN

across samples will change according to the subclonal-ratio and purity of each sample. For

simplicity, we omit the term �ij and its derivatives, but the reader should keep in mind

that all equations are subject to measurement noise:

Cj
i = 2 + pi(C(A)j � 2), if the segment is clonal , (5)

Cj
i = 2 + pi

�
C(A)j � 2 + ri(C(S)j � C(A)j)

�
, if the segment is subclonal , (6)

Cj
i = 2 + pi(⇣(T )

j
i )), if the segment is unstable. (7)

Figure 1 illustrates how the measured CN of segments depend on the parameters ri and

pi highlighted above. In the following sections, we use Eqs. (5) & (6) to estimate the

underlying parameters, pi and ri, via three steps (Fig. 2).

Estimation algorithm

Purity estimation

Purity estimation is carried out based on clonal (including neutral) segments. In general,

we expect the majority of segments to fall into this category. Consequently, for the ma-

jority of segments their measured copy number follows Eq. (5). Since C(A)j can take

only integer values, the distribution of segment CNs is expected to have distinct peaks at

regular intervals of pi.
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Using a peak-finder algorithm on the smoothed distribution of measured CN values,

we directly compare the peaks to the values expected at a given purity, {2 � pi, 2, 2 +

pi, 2 + 2pi, . . . }, as shown in Fig. 2b. The error of the fit to a purity, pi, is evaluated as

the summed squared distance between each peak and the closest observed peak,

X

C(A)

min
�
(2 + pi(C(A)� 2))� peaks)2

�
. (8)

As the detected peaks of the data depend on the smoothing kernel used on the distribution,

we perform this computation for a wide range of smoothing bandwidths (0.5⇥�2.5⇥ the

default value) and derive the purity estimate, p̂i, as the value that minimises the mean

and/or median error across the range (Fig. 2c).

Then, we use the derived p̂i to re-normalise the measured copy number values and thus

eliminate normal contamination. We gain an estimate of the tumour-specific CN (C(T )ji ),

a mixture of ancestral and subclonal CNs:

Ĉ(T )ji =
1

p̂i
· (Cj

i � 2) + 2 ⇡ C(A)j + ri(C(S)j � C(A)j). (9)

Note that, due to the noise in measurements, peaks from close absolute CNs can become

indistinguishable in low-purity samples. Therefore we expect purity values below 5% to

be indistinguishable (unless high sequencing depth is available) and also advise to discard

samples with low purity (typically pi < 0.1) as erroneous purity estimations can bias

downstream computation.

Identifying subclonal segments and sample order

Next, we aim to identify the subset of segments with subclone-specific subclonal SCNAs

that reflect the changes in subclonal-ratio over time. To easily assess the change in segment

CNs, we designate a sample as baseline, and compute the change in segment CN, �CN,

between each sample and this baseline sample. Typically, the sample taken upon diagnosis

or before start of therapy (usually the first time-point, s1) can be used. We can assume that

this sample has no or only negligible population of the emerging subclone, and therefore

represents a pure ancestral population:

r1 ⇡ 0 �! C(T )j1 ⇡ C(A)j .

Hence the change in CN of a subclonal segment compared to the baseline becomes,

�C(T )ji = C(T )ji � C(T )j1 = ri
�
C(S)j � C(A)j

�
. (10)

Furthermore, Eq. (10) provides an informative quantity even if the baseline sample is not

pure, as �C(T )ji nonetheless describes the change in subclone-specific SCNAs.

In order to uncover which segments are truly subclonal, and how the subclonal-ratio

changes over measurements, we need to identify a pervasive pattern across samples, and

the subset of segments that consistently follows it. If the samples were taken so that
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the subclonal population increases over time-points, this pattern would be a monotone

increase or decrease for all segments with subclone-specific SCNAs. While we cannot

assume that the samples are taken in order of increasing subclonal proportions (e.g. a

change of treatment between sampling times might lead to fluctuating population size in

a resistance-associated subclone), we can aim to re-arrange them to follow this rule.

Consequently, we rephrase our aim as deriving (i) a set of subclonal segments that

follow a monotone pattern across ordered samples; and (ii) an ordering of samples that

is correlated with by the maximum number of (subclonal) segments. Formally, we are

looking for a subset of segments, {j1, j2, . . . } and a permutation of samples (starting from

the designated baseline sample), s1, si, . . . , sN , where for every segment j 2 {j1, j2, . . . }

either

�C(T )ji+1 ��C(T )ji > �✏, 8i

or (11)

�C(T )ji+1 ��C(T )ji < ✏, 8i

holds for all i for a pre-defined accuracy level, ✏. We use an ✏ > 0 accuracy level to

allow for samples with near-equal subclonal-ratio measured with uncertainty. We find

that, for typical lpWGS datasets, ✏ ⇡ 0.02� 0.05 works well to account for the underlying

measurement noise.

Figs. 2d-f illustrate the derivation of optimal sample order and subclonal segment set.

We first separate clonal segments: since these have relative CN values of 0, apart from

some measurement noise, we filter out any segment that has a standard deviation below

a pre-defined threshold. We then evaluate Eq. (11) over all remaining segments and over

all orderings of the samples. As we expect 4-6 time-points per dataset, an exhaustive

search of all possible permutations is feasible. Given a permutation, each segment is

classified according to whether it follows Eq. (11) – these are candidate subclone-specific

and unstable segments, respectively (Fig. 2e). The optimal sample order is defined as the

permutation that maximises the number of subclonal segments (Fig. 2f).

Subclonal-ratio estimation

Finally, we use the set of segments identified as subclonal, and compute the subclonal-

ratio of each time point. We derive the (absolute) subclonal-ratio, ri, for each sample

using Eq. (10). As both C(A)j and C(S)j are assumed to be integers, and we know that

C(A)j 6= C(S)j ,

�C(T )ji 2 {. . . ,�2ri,�ri, ri, 2ri, . . . }, 8 j 2 {j1, j2, . . . }. (12)

To take into account that the measured �CNs compared to the baseline, �Ĉ(T )ji , are

influenced by noise, we fit these values with a mixture of Gaussian distributions where

the mean of the Gaussians follows Eq. (12), as illustrated in Fig 2h. The subclonal-ratio

of a sample is derived as the constrained mean parameter, ri, of the Gaussian mixture

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2021.01.05.425414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425414
http://creativecommons.org/licenses/by-nc-nd/4.0/


optimising the fit (Fig. 2i). The 95% confidence interval of the inferred subclonal-ratio is

computed based on the (shared) variance of the fitted constrained Gaussians.

The measurement noise propagated from segment CNs can lead to high spread in

values, making estimates less robust and rendering the resolution of low subclonal-ratios

(ri  0.1) challenging, occasionally leading to the Gaussian-fitting step to fail. Therefore

we also derive relative subclonal-ratios, which allow for a more general application not

limited to good quality samples. In particular, relative values are compared to the maximal

sample since its subclonal-ratio is assumed to be the most robust against measurement

noise. We compute the relative deviation of each normalised subclonal tumour segment

CN,

�Cj
iN =

�C(T )ji
�C(T )jN

=
ri(C(S)j � C(A)j)

rN (C(S)j � C(A)j)
=

ri
rN

, (13)

giving rise to a distribution of relative subclonal-ratio estimates (Fig. 2g). We derive a

point estimate for the relative ri of each sample as the median of this set,

r̂iN = median
⇣
�Cj

iN

⌘
, j 2 {j1, j2, . . . }. (14)

Absolute subclonal-ratio estimates can then be derived using these relative estimates in

a two-step estimation process (as opposed to the direct estimation above): we derive rN

based on Eq. (12), and subsequently compute riN · rN to retrieve ri.

Generating synthetic datasets

We constructed synthetic datasets of 80 segments (of length varying between 120 and

800 bins) and 5 time-points as illustrated in Fig. 3a. For each segment, we generated

sensitive segment copy number states (C(S)j) by randomly sampling from {1, 2, 3, 4, 5},
with neutral and close-to-neutral states occurring with higher frequency. Subclone-specific

absolute CNs (C(S)j) were assigned by randomly sampling from C(A)j+{�2,�1, 0, 1, 2},
with no change (giving rise to clonal segments) having a higher weight. For each sample,

si, we assigned purity and subclonal-ratio randomly from the ranges 0.04 < pi < 0.45 and

0.05 < ri < 0.8, with the exception of the baseline samples, where r1 < 0.04. We then

recreated the measurement procedure of computing noise-ridden raw CN values in a given

segment, j, by adding a normally distributed noise. The magnitude (standard deviation)

of the noise was controlled by the noise level parameter, � (representing di↵erences arising

from e.g. sequencing depth) and the CN of the segment (reflecting higher variance in

higher CN states):

rawCbin
i = 2 + pi

�
(1� ri)C(A)j + riC(S)j � 2

�
+Normal(0, f(�, Cj

i )).

The final CN value of each segments, Ĉj
i , was computed as the mean of all rawCbin

i

contained in the segment. In addition, we selected 2.5-15% of segments as unstable, and re-

sampled their tumour-specific CN value to be independent of ri. Fig. 3b-c show parameters

of a synthetic sample and its copy number profile.
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Generating in vitro and in silico cell line mixtures

HGSOC cell line OVCAR4 was obtained from Prof Fran Balkwill (Barts Cancer Institute,

UK) and grown in DMEM media containing 10% FBS and 1% penicillin/streptomycin.

A resistant/subclonal HGSOC cell line (Ov4Cis) was generated by culturing an aliquot

of the ancestral OVCAR4 cell line in increasing concentrations of cisplatin. For further

details on cell culture and the celll lines, see [29].

We then extracted genomic DNA from both cell lines and from blood samples from

healthy volunteers using QIAamp DNA Micro Kit (Qiagen, Hilden, Germany). Genomic

DNA from the three sources was mixed in varying proportions (Table S1), measured as

the mass of DNA inputted from each source, to a total of 20 ng DNA per sample and

subjected to sonication with the Covaris M220 system. Libraries were prepared using the

NEBNext Ultra II kit (New England Biolabs, Hitchin, United Kingdom) with 4 cycles of

PCR amplification, indexed with unique dual indexing primers and sequenced on Illumina

NovaSeq 6000 to a mean depth of 1.3x.

In silico mixtures were generated by bioinformatically mixing sequencing reads of DNA

derived from the ancestral/sensitive, subclonal/resistant tumour cell lines and healthy

blood cells. Similarly to synthetic samples, for each in silico sample we randomly assigned

purity, 0.1 < pi < 0.45, and subclonal-ratio, 0.05 < ri < 0.8. We then sampled reads

(using samtools view -s) from aligned read (bam) files of ‘pure’ ancestral, subclonal

and normal samples (B0, B1 and N0) in proportions to match pi(1� ri), piri and 1� pi,

respectively. We also varied the total number of reads per sample (as a proxy for sequencing

depth and consequently measurement noise), and generated 30-30 samples with 50, 20,

10, and 5 million total reads each.

Processing lpWGS samples

Fastq files derived from lpWGS samples (generated via sequencing cell line mixtures or

obtained from [24]) were aligned to the human reference genome (version hg19, using bwa).

We then processed bam files using the QDNAseq R package [19] employing DNAcopy for

segmentation [42]. QDNAseq produced two copy number values for each genomic bin: a

raw pre-segmentation and a segmented value grouping bins of equal CN together. The

CN of bins on the pre-defined blacklist of QDNAseq and of those with <75% mappability

was set to NA. Raw and segmented CN values for all cell line samples are available from

https://github.com/elakatos/liquidCNA_data.

Since QDNAseq returns normalised CN values (with neutral state at 1), we multiplied

all values by 2 before proceeding with the estimation algorithm and re-normalised segment

CN values to be centred at 2 exactly. We then re-defined segment boundaries using the

ensemble of samples as regions of constant CN in all samples. This way break-points

present in only a sub-set of samples (such as a subclone-specific SCNA) gave rise to

segments handled separately for all samples. Updated segments with length below 6 mega-

bases (120 bins of 50kb (cell line mixtures) or 12 bins of 500kb (patient cfDNA samples))
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were excluded from the downstream analysis to filter out short segments sensitive to

localised measurement biases.

Finally, we curated each segment CN by discarding bins with the most extreme 2.5%

of raw segment values, and re-calculating the segment CN value as the mean of normal

distribution fitted to the remaining raw CNs. We found that this curation had negligible

e↵ect for most segments, but successfully improved assigned segment CN values for more

error-prone genomic regions.

Data availability

Aligned sequencing data from HGSOC cell lines and in vitro mixtures (listed in table

S1) are available from the European Nucleotide Archive (accession PRJEB42332). Raw

and post-segmentation copy number values for these samples are available from https:

//github.com/elakatos/liquidCNA_data.

Code availability

Estimation functions of liquidCNA implemented in R (version 4.0.3), an illustrative ex-

ample in a Jupyter notebook and code generating and analysing synthetic and in silico

data are available from https://github.com/elakatos/liquidCNA.
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