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Abstract—Myocardial strain analysis from cinematic 

magnetic resonance imaging (cine-MRI) data could provide 
a more thorough characterization of cardiac mechanics 
than volumetric parameters such as left-ventricular ejection 
fraction, but sources of variation including segmentation 
and motion estimation have limited its wide clinical use. We 
designed and validated a deep learning (DL) workflow to 
generate both volumetric parameters and strain measures 
from cine-MRI data, including strain rate (SR) and regional 
strain polar maps, consisting of segmentation and motion 
estimation convolutional neural networks developed and 
trained using healthy and cardiovascular disease (CVD) 
subjects (n=150). DL-based volumetric parameters were 
correlated (>0.98) and without significant bias relative to 
parameters derived from manual segmentations in 50 
healthy and CVD subjects. Compared to landmarks 
manually-tracked on tagging-MRI images from 15 healthy 
subjects, landmark deformation using DL-based motion 
estimates from paired cine-MRI data resulted in an end-
point-error of 2.9 ± 1.5 mm. Measures of end-systolic global 
strain from these cine-MRI data showed no significant 
biases relative to a tagging-MRI reference method. On 4 
healthy subjects, intraclass correlation coefficient for intra-
scanner repeatability was excellent (>0.95) for strain, 
moderate to excellent for SR (0.690-0.963), and good to 
excellent (0.826-0.994) in most polar map segments. 
Absolute relative change was within ~5% for strain, within 
~10% for SR, and <1% in half of polar map segments. In 
conclusion, we developed and evaluated a DL-based, end-
to-end fully-automatic workflow for global and regional 
myocardial strain analysis to quantitatively characterize 
cardiac mechanics of healthy and CVD subjects based on 
ubiquitously acquired cine-MRI data.  

 
Index Terms—cardiac cine-MRI, deep learning, motion 

estimation, myocardial strain, segmentation.  
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I. INTRODUCTION 

ARDIAC mechanics reflects the precise interplay 
between myocardial architecture and loading conditions 

that is essential for sustaining the blood pumping function of 
the heart. The ejection fraction (EF) is often used as a left-
ventricular (LV) functional index, but its value is limited when 
mechanical impairment occurs without an EF reduction [1]. 
Alternatively, tissue tracking approaches for strain analysis 
provide a more thorough characterization through non-invasive 
evaluation of myocardial deformation from echocardiography 
or cinematic magnetic resonance imaging (cine-MRI) data [2], 
and could be used to identify dysfunction before EF is reduced 
[3]. Unfortunately, various sources of discrepancies have 
limited the wide clinical applicability of these techniques, 
including factors related to imaging modality, algorithm, and 
operator [4]. More accurate measures could be obtained from 
tagging-MRI data widely regarded as the reference standard for 
strain quantification [5], [6], but collection of these data 
requires highly specialized and complex sequences that have 
mainly remained research tools, whereas echocardiography and 
cine-MRI data are ubiquitously acquired in clinical practice.  

Irrespective of algorithm or modality, e.g., speckle tracking 
for echocardiography or feature tracking for cine-MRI, the 
main challenge is to estimate motion within regions along the 
myocardial wall [2]. Operator-related discrepancies are 
introduced when the myocardial wall borders are delineated 
manually, a time-consuming process that requires considerable 
expertise and results in significant inter- and intra-observer 
variability [7], [8]. Automatic delineation approaches have been 
implemented within computational pipelines [9], but other 
factors related to motion tracking algorithms also influence 
strain assessment, including the appropriate selection of 
tuneable parameters whose optimal values can differ between 
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patient cohorts and acquisition protocols (e.g., the size of the 
search region in block-matching methods [10]). Further, these 
algorithms often make assumptions about the properties of the 
myocardial tissue (e.g., incompressible and elastic [11], [12]), 
or use registration methods to drive the solution towards an 
expected geometry. However,  recent evidence has shown the 
validity of these assumptions varies between healthy and 
diseased myocardium [13], [14], suggesting these approaches 
may not accurately reflect the underlying biomechanical motion 
[14]. Lastly, modality-related image quality could complicate 
interpretation of abnormal strain values since these could reflect 
either real dysfunction or artifact-related inaccuracies, leading 
to some degree of subjectivity or non-conclusive results [3]. 

Deep Learning (DL) methods have demonstrated the 
advantage of allowing real-world data guide learning of abstract 
representations that can be used to accomplish pre-specified 
tasks, and have been shown to be more robust to image artifacts 
than non-learning techniques for some applications [15], [16]. 
DL segmentation methods have been proposed [17]–[20] and 
implemented within strain computational pipelines [21], [22], 
and recent studies have shown that cardiac motion estimation 
can also be recast as a learnable problem [23]–[26]. These 
methods usually consist of an intensity-based loss function and 
a constrain term [23], [27], the latter using common machine 
learning techniques (e.g., L2 regularization of all learnable 
parameters [24]) or direct regularization of the motion estimates 
(e.g., smoothness penalty [23], anatomy-aware [26]). However, 
because ground-truth cardiac motion is challenging to acquire, 
whether these constrains improve the accuracy of motion or 
strain estimates is not yet clear. Further, the added-value of DL-
based regional strain estimation has not been demonstrated.   

We have recently developed a learning method for cardiac 
motion estimation that produces more accurate estimates than 
various techniques, including B-spline, diffeomorphic, and 
mass-preserving  algorithms [28], and showed these estimates 
could potentially be used to detect regional dysfunction. Thus, 
incorporating our method within a strain analysis framework 
could potentially enable accurate, user-independent, and 
quantitative characterization of cardiac mechanics at a both 
global and regional level. Once trained, such method would not 
necessitate further parameter tunning or optimization, which is 
time-consuming for larger datasets and daily clinical practice. 
While this framework could be based on echocardiography 
images [29], these data remain limited for strain mapping tasks 
by their low reproducibility of acquisition planes [4] and 
temporal stability of tracking patterns [30].  In contrast, cine-
MRI offers the most accurate and reproducible assessment of 
cardiac anatomy and function, thus providing a more thorough 
set of data for learning-based motion models. 

We propose DeepStrain, an automated workflow that derives 
global and regional strain measures from cine-MRI data by 
decoupling motion estimation and segmentation tasks. After 
verifying the effects of smoothing and anatomical regularizers 
on motion and strain, convolutional neural networks for pre-
processing (i.e., centering and cropping), segmentation, and 
motion estimation were implemented, trained, validated, and 
compared to state-of-the-art methods. Finally, accuracy of 

strain values was assessed using a tagging-MRI algorithm as 
reference standard, intra-scanner repeatability was measured 
using subjects with repeated scans, and potential clinical 
applications of global and regionals myocardial strain measures 
were demonstrated on patient populations.  

II. METHOD 

A. Datasets  
For development we used the Automated Cardiac Diagnosis 

Challenge (ACDC) dataset [31], consisting of cine-MRI data 
from 150 subjects evenly divided into five groups: healthy and 
patients with hypertrophic cardiomyopathy (HCM), abnormal 
right ventricle (ARV), myocardial infarction with reduced 
ejection fraction (MI), and dilated cardiomyopathy (DCM). 
These data were publicly available as train (n=100) and test 
(n=50) sets, with manual segmentations included for the train 
set only.  For validation of motion and strain measures we used 
the Cardiac Motion Analysis Challenge (CMAC) dataset [32], 
consisting of paired tagging- and cine-MRI data from 15 
healthy subjects. To assess intra-scanner repeatability, four 
healthy volunteers were recruited to undergo repeated scans on 
a 3T MRI scanner. All cine-MRI frames and corresponding 
segmentations were resampled to a 256×256×16 volume grid 
with 1.25 mm × 1.25 mm in-plane resolution and variable slice 
thickness (4-7 mm). See supplementary section S1 for 
acquisition protocol. 

B. Myocardial Strain Definitions  
Strain represents percent change in myocardial length per 

unit length. The three-dimensional (3D) analog for MRI is 
given by the Lagrange strain tensor  

 

								𝝐 𝑡 = 𝛻𝒖 𝑡 	+ 𝛻𝒖 𝑡 	( + 𝛻𝒖 𝑡
(
𝛻𝒖 𝑡 /2, (1) 

 
where 𝒖 𝑡  denotes myocardial displacement from a fully-
relaxed end-diastolic phase at t=0, to a contracted frame at t>0. 
Radial and circumferential strain are the diagonal components 
of the tensor 𝝐 evaluated in cylindrical coordinates. Strain rate 
(SR) is the time derivative of (1). Global strain is defined as the 
average of 𝝐 over the whole LV myocardium (LVM) volume. 
Regional strain is defined as the average of 𝝐 over the volume 
of specific LVM segments defined by the American Heart 
Association (AHA) polar map [33], which requires labels of the 
right ventricle to construct. Specific parameters based on timing 
and magnitude are extracted from the measures evaluated over 
a whole cardiac cycle: end-systolic strain (ESS), defined as the 
global strain value at end-systole; systolic strain rate (SRs), 
defined as the peak (i.e., maximum) absolute value of global SR 
during systole; early-diastolic strain rate (SRe), defined as the 
peak absolute value of global SR during diastole. 
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C. Centering, Segmentation, and Motion Estimation 
DeepStrain (Fig. 1) consists of a series of convolutional 

neural networks that perform three tasks: a ventricular centering 
network (VCN) for automated centering and cropping, a cardiac 
motion estimation network (CarMEN) to generate 𝒖, and a 
cardiac segmentation network (CarSON) to generates tissue 
labels. Estimates of 𝒖 are used to calculate myocardial strain, 
and segmentations are used to derive volumetric parameters, 
identify a cardiac coordinate system for strain analysis, and 
generate tissue labels used for anatomical regularization of the 
motion estimates at training time. 

Let 𝑉-	be a cine-MRI frame at time t defined over a 3D spatial 
domain 𝛺 ⊂ ℝ3. Using a pair of frames 𝑉4, 𝑉- as an input, VCN 
centers and crops the images around the center of mass of the 
LV, CarSON generates segmentations 𝑀4,𝑀- of the LV, RV, 
and LVM, and CarMEN estimates the motion 𝒖- of the heart 
from 𝑉4 to 𝑉-. Thus, for each voxel 𝑝 ∈ 𝛺, 𝒖- 𝑝  is an 
approximation of the myocardial displacement during 
contraction such that 𝑉4(𝑝) and (𝒖- ∘ 𝑉-)(𝑝) correspond to 
similar cardiac regions. The operator ∘ refers to application of 
a spatial transform to 𝑉- using 𝒖- via trilinear interpolation [34].  

1) Architectures  
All networks have a common encoder-decoder architecture 

consisting primarily of convolution, batch normalization [35], 
and PReLU [36] layers with residual connections [37] (see 
supplementary section S2). Briefly, VCN is a 3D architecture 
that uses a single-channel array 𝑉	with size 256×256×16 to 
generate a single-channel array 𝐺<=>?	of equal size, where 
𝐺<=>? corresponds to a Gaussian distribution with mean defined 
as the LVM center of mass. V is centered and cropped around 
the voxel with the highest value in 𝐺<=>? to generate a new 

cropped array of size 128×128×16, which is then the input to 
segmentation and motion estimation networks. CarSON is a 
two-dimensional (2D) architecture that uses images of size 
128×128 to generate a 4-channel segmentation 𝑀<=>? of equal 
size, each channel corresponding to a label. CarMEN uses a 2-
channel input volume, consisting of two concatenated arrays 
with size 128×128×16, to generate a 3-chanel array 𝒖 of equal 
size. Each channel in 𝒖 represents the 𝑥, 𝑦 and 𝑧 components 
of motion. 

2) Loss Functions   
VCN was evaluated using the mean square error 
 

								ℒDEF 𝐺G-, 𝐺<=>? = H
|J|

𝐺(𝑝) − 𝐺<=>? 𝑝
L

<∈J .    (2)  
 
For CarSON, we implemented a multi-class Dice coefficient 

function  
 

													ℒN>G 𝑀G-,𝑀<=>? = − H
O

2
<PQ
R ∩<TUVW

R

<PQ
R X <TUVW

R
Y
Z[H ,        (3) 

 
where 𝑘 ∈ 	 [1, 4] represents each of the tissue labels, and 

𝑝Z ∈ 𝑀 denotes all the pixels with label 𝑘. A combination of 
three functions was used for motion estimation. First, we used 
an unsupervised loss function ℒab->bNa-c that evaluates CarMEN 
using the input volumes and generated motion estimates 

 
				ℒab->bNa-c 𝑉4, 𝑉-, 𝑢- = H

J
𝑉4 𝑝 − (𝑢- ∘ 𝑉- 𝑝<∈J . (4) 

 
Second, we used a supervised function ℒebe-fgahei that 

leverages segmentations of the input volumes at training time 
to impose an anatomical constrain on the estimates 

Fig. 1. Overview of proposed DeepStrain workflow. VCN centers and crops the input pair of cine-MRI frames. Tissue labels generated by CarSON are used 
to build an anatomical model. Motion estimates derived from CarMEN are used to calculate strain measures, and these estimates are combined with the anatomical 
model to enable global and regional strain analyses.  
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														ℒebe-fgahei 𝑀4,𝑀-, 𝑢- = ℒN>G 𝑀4, 𝑢- ∘ 𝑀- . (5) 
 
 Third, smooth estimates were encouraged by using a 
diffusion regularizer 

 
																ℒNgff-jb>NN(𝑢-) = 𝛻𝑢- 𝑝 ⋅ 𝑑𝑟 L

<∈J             (6) 
 
where 𝑑𝑟 is the spatial resolution of 𝑉 and accounts for 

differences between in-plane and slice resolution. Thus, the loss 
function for CarMEN is a linear combination of (4), (5), and 
(6), weighted by 𝜆a, 𝜆e, 𝜆N, accordingly.  

We conducted optimization experiments using synthetic data 
[38], [39] to assess the impact of smoothing and anatomical 
regularization on motion and strain estimates (supplementary 
section S3). These experiments showed smoothness improves 
the accuracy of the motion vectors direction, and anatomical 
regularization improves the magnitude of the vectors relative to 
the ground-truth motion (see supplementary Fig. S1 and S2). 
The optimal values 𝜆a = 0.01 , 𝜆e = 0.5, 𝜆N = 0.1 were used to 
train CarMEN.  

3) Training and Testing    
Networks were trained in TensorFlow ver. 2.0 with Adam 

optimizer parameters beta1,2 = 0.9,0.999, batchsize = 80 (5 for 
CarMEN), and epochs = 1000 (300 for CarMEN). Ground-truth 
distributions for VCN were created using the manual 
segmentations. VCN and CarSON were trained using the end-
diastolic and end-systolic frames of the train set, as only these 
included ground-truth segmentations. This provided 200 
training samples for VCN and 3200 for CarSON, the latter 
having more samples since it is a 2D architecture and all frames 
were resampled to a volume with 16 slices. VCN was tested by 
five-fold cross-validation, whereas the accuracy of CarSON 
was assessed by submitting the results to the challenge website.  

 Once CarSON was trained, we generated segmentations of 
the test set to train CarMEN using the entire ACDC dataset. 
Only the [end-diastolic, end-diastolic] and [end-diastolic, end-
systolic] pairs were used. The former is essential for the 
network to adequately learn how to scale the motion vectors, 
i.e., motion should be exactly zero if the frames are equal. The 
entire cycle is analyzed at testing time by using sequential input 
pairs [𝑉4, • ] that kept the end-diastolic frame constant while we 
varied 𝑉- for all time frames t > 0. Using this approach 𝒖- was 
derived for all times. Data augmentation included random 
rotations and translations, random mirroring along the x and y 
axes, and gamma contrast correction. All data augmentation 
was performed only in the x-y plane. 

D. Evaluation  
1) Segmentation and Motion Estimation 
CarSON and manual segmentations were compared using the 

Hausdorff distance (HD) and Dice Similarity Coefficient (DSC) 
metrics at both end-diastole and end-systole. Accuracy of LV 
volumetric measures derived from segmentations, including 
end-diastolic volume (EDV), EF, and LVM, was assessed using 
the correlation, bias, and standard deviation metrics. The mean 
absolute error (MAE) for the LV EDV and LVM were also 

computed for comparison against the intra- and inter-observer 
variability reported by [31]. We compared our results to top-3 
ranked methods published for the ACDC test set as these appear 
in the leader-board of the challenge [17]–[20].  

The CMAC organizers defined 12 landmarks at the 
intersection of gridded tagging lines at end-diastole on tagging 
images, one landmark 𝑝4 per wall per ventricular level. These 
landmarks were manually-tracked by two observers over the 
cardiac cycle. Conversion from tagging to cine coordinates was 
done using DICOM header information. We used the CarMEN 
motion estimates 𝑢- to automatically deform the landmarks at 
end-diastole, and the accuracy was assessed using the in-plane 
end-point error (EPE) between deformed  𝑝-q = 𝑢- ∘ 𝑝4 and 
manually-tracked 𝑝- landmarks, defined by 

 

																	𝐸𝑃𝐸 𝑝, 𝑝q = 𝑝t − 𝑝tq L + 𝑝c − 𝑝cq
L
.     (7) 

 
Due to temporal misalignment between the tagging and cine 

acquisitions, EPE was evaluated only at end-systole (𝑡 = 𝑡FE). 
Specifically, let 𝑝au(𝑡) denote the manually-tracked landmarks 
of subject 𝑖 at frame 𝑡 by observer 𝑗. The accuracy of CarMEN 
was assessed using the average EPE  

 
							AEPE = H

Lb
𝐸𝑃𝐸(𝑝au 𝑡FE , 𝑢a(𝑡FE) ∘ 𝑝4)L

u[H
b
a[H .  (8) 

 
Our results were compared to those reported by the four 

groups that responded to the challenge [32], MEVIS [40], IUCL 
[9], UPF [11], and INRIA [12], [41]. All groups submitted 
tagging-based motion estimates, but only UPF and INRIA 
provided estimates based on cine-MRI. 

2) Strain Validation and Intra-Scanner Repeatability      
The tagging-MRI method with the lowest AEPE was used as 

the reference for strain analysis. The tagging-MRI-based 
motion estimates were registered and resampled to the cine-
MRI space. Global strain and SR values throughout the entire 
cardiac cycle were derived from the resampled estimates as 
described in [42].  

 Global- and regional-based analyses were performed to 
assess the repeatability of measures from two acquisitions. 
Relative changes (RC) and absolute relative changes (aRC) 
were calculated, taking the first acquisition as the reference. 
ESS and SR were calculated for the global-based analysis, and 
for region-based analyses, ESS values were normalized using 
the AHA polar map, and both RC and aRC were evaluated for 
each of the segments in the polar map. 

3) Statistics       
Bland-Altman analysis was used to quantify agreement 

between predicted and tagging strain measures. We used the 
term bias to denote the mean difference and the term precision 
to denote the standard deviation of the differences. Differences 
were also assessed using a paired t-test with Bonferroni 
correction for multiple comparisons. For global- and regional-
based analyses of intra-scanner repeatability, ICC estimates and 
their 95% confidence intervals (CI) were calculated based on a 
single-rating, absolute agreement, 2-way mixed-effects model. 
Analyses were performed on python v3.4 [43]. 
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III. RESULTS  

A. Segmentation and Motion Estimation   
Centering, segmentation, and motion estimation for an entire 

cardiac cycle (~25 frames) was accomplished in <13s on a 
12GB GPU and <2.2 min on a 32GB RAM CPU. VCN located 
the LV center of mass with a median error of 1.3 mm.  

Correlation of CarSON and manual LV volumetric measures 
was >0.98 across all measures (Table 1), and biases in EF 
(+0.25 ± 3.2%), end-diastolic (+0.76 ± 6.7 mL) and end-systolic 
(+0.19 ± 5.8 mL) volumes, and mass (+1.4 ± 10.3 g) were not 
significant. Further, these biases were smaller than those 
obtained with other methods, which were positive for LV EDV 
(1.5 to 3.7 mL), negative for LVM (-2.1 to -2.9 g), and close to 
zero (±0.5%) for EF. Simantiris et al. [17] obtained the best 
precision for LV EF (2.7 vs. 3.2% variance with CarSON),  

EDV (4.6 vs. 6.7 mm), and LVM (6.5 vs. 10.3 g).  Isensee et al. 
[18] obtained the best results on geometric metrics, i.e., lower 
HD for the LV (end-diastole 5.5 vs. 5.7 mm; end-systole 6.9 vs. 
7.7 mm) and LVM (7.0 vs. 8.1 mm; 7.3 vs. 9.2 mm), and higher 
DSC for the LVM (0.904 vs. 0.898; 0.923 vs. 0.913). The DSC 
for the LV was similar for all methods (~0.967, ~0.929). MAE 
for the LV EDV and LVM were 5.3 ± 4.1 mL and 6.8 ± 6.5 g. 

 Fig. 2a illustrates a representative example of the tagging 
and cine images from a CMAC subject. Landmarks defined at 
end-diastole were deformed to end-systole using the CarMEN 
estimates and compared to manual tracking. Banding artifacts 
on cine images showed no clear effect on derived motion 
estimates or landmark deformation, as shown in end-systole 
(Fig. 2a, yellow arrow) or throughout the whole cardiac cycle 
(see supplementary video). The manual tracking inter-observer 
variability was 0.86 mm (Fig. 2b, dotted line). Within cine-

TABLE I 
STATE-OF-THE-ART METHODS FOR LEFT-VENTRICULAR SEGMENTATION SHOWN AT END-DIASTOLE (ED) AND END-SYSTOLE (ES) ON THE ACDC TEST 

SET COMPARED TO PROPOSED APPROACH. RED ARE THE BEST RESULTS FOR EACH METRIC. 
 

Fig. 2. Validation of motion and strain. (a) Landmarks at end-diastole (unfilled green) are manually-tracked (green) and deformed with CarMEN to end-systole 
(red). Yellow arrow indicates a banding artifact. (b) Average end-point-error (AEPE) was assessed and compared to other methods.  (c) MEVIS- and DeepStrain-
based strain (top) and strain rate (SR, bottom) measures are compared. Black arrow shows strain inaccuracies with MEVIS.  
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based techniques, CarMEN (2.89 ± 1.52 mm) and UPF (2.94 ± 
1.64 mm) had lower (p<0.001) AEPE relative to INRIA (3.78 
± 2.08 mm), but there was no significant difference between 
CarMEN and UPF. All tagging-based methods had lower AEPE 
compared to cine approaches, particularly MEVIS (1.58 ± 1.45 
mm) and UPF (1.65 ± 1.45 mm).  

B. Strain Analysis 
Table 2 shows the normal ranges (mean [95% CI]) of strain 

derived from cine-MRI data for all healthy subjects, including 
subjects from the training, validation, and repeatability cohorts. 
DeepStrain generated values with narrow CI for circumferential 
(~1%) and radial (~2%) ESS, and circumferential (~0.15 s-1) 
and radial (~0.25 s-1) SR. Specifically, circumferential and 
radial values across datasets were: -16.9% [-17.6 -16.3] and 
22.6% [21.4 23.8] for ESS, -1.12 s-1 [-1.19 -1.05] and 1.30 s-1 
[1.20 1.40] for SRs, and 0.76 s-1 [0.69 0.83] and -1.38 s-1 [-1.51 
-1.24] for SRe, accordingly. These values were similar to those 
from tagging-based ones, although circumferential SRe from 
cine-MRI data was lower, mostly in the train set (0.7± 0.2 s-1). 

 Comparison of tagging- and cine-based strain measures 
with matched subjects showed an overall agreement in timing 
and magnitude of strain and SR throughout the cardiac cycle, 
although tagging-based measures of radial ESS diverge after 
early diastole (Fig. 2c, black arrow), and there were visual 
differences in peak SR parameters. Visual inspection of image 
artifacts on cine data showed no clear evidence that these 
artifacts affected strain values derived with DeepStrain (see 
supplementary Fig. S3). Quantitative comparisons of tagging- 
and cine-based measures showed biases in circumferential ESS 
(-14.2 ± 2.2 vs. -15.3 ± 1.5%; bias -1.17 ± 2.93%), radial ESS 
(18.4 ± 5.1 vs. 19.7 ± 3.4%; +1.26 ± 5.37%) and SRe (-1.2 ± 
0.5 vs. -1.4 ± 0.3; -0.21 ± 0.52 s-1) were small and not 
significantly different from zero (see supplementary Fig. S4). 
However, there were larger differences (p<0.01) in radial SRs 
(1.0 ± 0.2 vs. 1.3 ± 0.2 s-1; 0.32 ± 0.34 s-1), and circumferential 

SRs (-0.9 ± 0.1 vs. -1.2 ± 0.2 s-1; 0.30 ± 0.22 s-1) and SRe (1.2 
± 0.2 vs. 0.8 ± 0.1 s-1; 0.40 ± 0.23 s-1).  

Representative strain measures of a single subject derived 
from two acquisitions are shown in Fig. 3. The AHA polar maps 
from both acquisitions showed comparable regional variations 
in ESS, particularly for circumferential ESS in the inferoseptal 
wall (Fig. 3a, orange arrows). Global curves throughout the 
entire cardiac cycle also showed visual agreement in both 
timing and magnitude (Fig. 3b). From these data, 
circumferential (-14.1 vs. -14.3%) and radial (17.9 vs. 17%) 
ESS (Fig. 3b, purple), circumferential SRs (0.95 vs. 0.90 s-1) 
and SRe (-0.74 vs. -0.82 s-1), and radial SRs (1.03 vs. 1.08 s-1) 
and SRe (-1.12 vs. -1.11 s-1) global parameters were also found 
to be similar (Fig. 3b, yellow). In addition, while not quantified 
in this study, the late-diastolic filling peaks were also 
comparable (Fig. 3b, blue).    

Table 3 shows the RC, aRC, ICC, and LoA across subjects 
for the global parameters. The average aRC was below 5% for 
ESS (circumferential: 3.1 ± 1.8%; radial: 4.3 ± 3.4%), below 
7% for SRs (5.7 ± 4.4%; 6.9 ± 10.4%), and below 11% for SRe 
parameters (10.2 ± 8.8%; 3.8 ± 3.1%). ICC results showed 
repeatability was excellent for ESS (0.954; 0.968), good for 
SRs (0.889; 0.754), moderate for circumferential SRe (0.690), 
and excellent for radial SRe (0.963) values. The LoA, which 
defines the interval where to find the expected differences in 
95% of the cases assuming normally distributed data, were ~1% 
and ~4% for circumferential and radial ESS, and <0.05 s-1 for 
all SR measures. 

 The ESS, RC, and aRC maps averaged across subjects are 
shown in Fig. 4. Visually, these maps (Fig. 4b) showed the 
average RC and aRC were marginal ( ~1%) in more than half 
of the polar map segments. Specifically, values were marginal 
for circumferential ESS (~1%) in the anterior, anteroseptal, and 
anterolateral walls, but were larger in the inferior region, most 
notably in the basal- and mid-inferoseptal segments (7%). For 
radial ESS the largest changes were found in the mid-
anterolateral segment (6%), whereas changes in the 
anteroseptal, inferior and inferolateral walls were very small 
(~1%). The RC and aRC per subject are provided in boxplot 
form in supplementary Fig S5. These results showed that, in 
most of the segments, the RC and aRC were less than ~10%, 
although larger differences were noted in the inferoseptal wall 
for radial ESS, and anterolateral wall for circumferential. 
Supplementary Table S1 shows the ICC and LoA per segment, 
including the whole-map average. For radial ESS, the ICC 
results showed excellent repeatability across all segments. 
Circumferentially, all segments showed good to excellent 
repeatability, except for the basal- and mid-inferolateral 
segments. LoAs showed that 95% of differences occurred 
within ~3% and ~4% intervals for circumferential and radial 
ESS. 

C. Evaluation in Patients with Cardiovascular Disease 
Regional measures of ESS averaged over patient population 

(see supplementary figure S6), as well as global values of strain 
and SR across the cardiac cycle (Fig. 5) for all 100 subjects in 
the ACDC train set showed progressive decline in strain values 

TABLE II 
NORMAL RANGES OF STRAIN WITH DEEPSTRAIN IN HEALTHY SUBJECTS. 

TAGGING-BASED MEASURES ARE SHOWN FOR THE CMAC COHORT. 
DEEPSTRAIN REPEATABILITY IS SHOWN FOR TWO ACQUISITIONS (ACQ). 

TABLE III 
INTRA-SCANNER REPEATABILITY OF GLOBAL CIRCUMFERENTIAL (CIRC) 

AND RADIAL (RAD) STRAIN MEASURES. 
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starting with HCM, followed by ARV, MI, and DCM. 
Specifically, relative to the healthy group, radial ESS was 
reduced in all patient populations. Radial systolic and early-
diastolic SR were also reduced in all patient groups, except for 
systolic SR in HCM. Fig. 6 shows both the cine-MRI image and 
the circumferential ESS polar map of a healthy subject and two 
patients with MI. Strain values in the healthy polar map have a 
homogeneous distribution. In contrast, in one MI patient the 
map indicates a diffused reduction, and inspection of the 
myocardium on the cine-MRI image shows an anteroseptal 
infarct that coincides in location with segments with more 
prominent decreases in strain. In a different MI patient with an 
infarct located in a similar septal region, strain changes are focal 
and localized to the anteroseptal wall.  

IV. DISCUSSION  
Learning-based methodologies have the potential to meet the 

technical challenges associated with myocardial strain analysis.  
In this study we developed a fast DL framework for strain 
analysis based on cine-MRI data that does not make 
assumptions about the underlying physiology, and we 
benchmarked its segmentation, motion, and strain estimation 
components against the state-of-the-art. We compared our 
segmentations to other DL methods, motion estimates to other 
non-learning techniques, and strain measures to a reference 
tagging-MRI technique. We also presented the intra-scanner 
repeatability of DeepStrain-based global and regional strain 
measures, and showed that these measures were robust to image 
artifacts in some cases. Global and regional applications were 
also presented to demonstrate the potential clinical utilization 
of our approach.  

A. Volumetric Measures   
 Segmentation from MRI data is a task particularly well 

suited for convolutional networks given the excellent soft-tissue 
contrast, thus all top performing methods on the ACDC test set 
were based on DL approaches (Table 1). Isensee et al. [18] had 
remarkable success on geometric metrics, but this and other 
approaches result in a systematic overestimation of the LV 
EDV and thus underestimation of LVM. In contrast, CarSON 
generated less biased measures of LV volumes and mass, which 
were not significant. Although Simantiris et al. [17] obtained 
the most precise measures, possibly due to their extensive use 
of augmentation using image intensity transformations, across 
methods the precision of EF was within the ~3-5% [46] needed 
when it is used as an index of LV function in clinical trials [47]. 
Lastly, we showed that the error in our measures of LV EDV 
and LVM was almost half the inter-observer (~10.6 mL, 12.0 
g), and comparable to the intra-observer (~4..6 mL, 6.2 g) MAE 
reported in [31], but further investigations are required to assess 
the performance on more heterogeneous populations. 

B. Strain Measures   
The application of myocardial strain to quantify abnormal 

deformation in disease requires accurate definition of normal 
ranges. However, previously reported normal ranges vary 
largely between modalities and techniques, particularly for 
radial ESS [4]. In this study we showed DeepStrain generated 
strain measures with narrow CI in healthy subjects from across 
three different datasets (Table 1). Although direct comparison 
with the literature is difficult due to differences in the datasets, 
overall our strain measures agreed with several reported results. 
Specifically, circumferential strain is in agreement with studies 

Fig. 3. Global and regional strain measures of representative subject. (a) Regional end-systolic strain measures show visual agreement (orange arrow).  (c) 
Global strain and strain rate (SR) measures also show visual agreement.  
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in healthy participants based on tagging (-16.6%, n=129) and 
speckle tracking echocardiography (-18%, n=265) datasets 
[48], [49], as well a recently proposed (-16.7% basal, n=386) 
tagging-based DL method [42]. Radial strain is in agreement 
with tagging-based (26.5%, n=129; 23.8% basal, n=386) 
studies [42], [48], but are lower than most reported values [4]. 
This is a result of smoothing regularization used during training 
to prevent overfitting. However, lowering the regularization 
without increasing the size of the training set would lead to 
increased EPE and wider CI. SR measures derived with 
DeepStrain were also in good agreement with previous tagging-
based studies [48] . 

 The CMAC dataset enabled us to compare our results to 
non-learning methods using a common dataset. We found that 
AEPE was lower with tagging-based techniques, reflecting the 
advantage of estimating cardiac motion from a grid of intrinsic 
tissues markers (i.e., grid tagging lines). Further, the tagging 
techniques also benefited from the fact that landmarks were 
placed at the center of the ventricle, whereas motion estimation 
from tagging data at the myocardial borders and in thin-walled 
regions of the LV is less accurate due to the spatial resolution 
of the tagging grid [4]. In addition, some of the tagging-MRI 
images did not enclosed the whole myocardium and some 
contained imaging artifacts, which resulted in strain artifacts 
towards the end of the cardiac cycle (Fig. 2c, black arrow). We 
found that MEVIS had the lowest AEPE, which could be a 
result of their image term (4) that penalizes phase shifts in the 
Fourier domain instead of intensity values, an approach that is 
less affected by desaturation (i.e., fading) of the tagging grid 
over time. The UPF  approach also achieved a low AEPE using 
multimodal integration and 4D tracking to leverage the 
strengths of both modalities and improve temporal consistency 

[11]. Although this approach could in principle be recast as DL 
technique using recurrent neural networks [50], this would 
require a significant increase in the number of learnable 
parameters, therefore very large datasets would be needed to 
avoid overfitting.  

 Using MEVIS as the tagging reference standard, we found 
no significant differences in measures of radial and 
circumferential ESS (Fig. 2c). Temporally, we found 
significant differences in SR measures between the two 
techniques that could be due to drift errors in the MEVIS 
implementation, i.e., errors that accumulate in sequential 
implementations in which motion is estimated frame-by-frame 
[32]. Although we did not observe considerable improvements 
in AEPE compared to tagging- and cine-based methods, an 
important advantage of our approach is the reduced 
computational complexity (~13 sec in GPU) relative to the 
proposed MEVIS (1-2 h), IUCL (3-6 h), UPF (6 h) and INRIA 
(5 h) approaches [32]. Specifically, because once trained our 
network does not optimize for a specific test subject (i.e., it does 
not iterate on the cine-data to generate the desired output), 
centering, segmentation, and motion estimation for the entire 
cardiac cycle can be accomplished much faster (<2 min in 
CPU).   

 An additional advantage of non-iterative implementations 
is that we obtain deterministic results. Since this implies the 
exact same motion estimates are generated given the same 
input, we expect strain measures not to vary meaningfully if the 
anatomy and function remain fixed. Here we studied this 
property by evaluating the intra-scanner repeatability, an 
important aspect to consider when assessing the potential 
clinical utility of DeepStrain. Global measures of ESS showed 
excellent repeatability with narrow LoAs and with absolute 

Fig. 4. Intra-scanner repeatability of regional myocardial strain measures. (a) Average of subject-specific regional end-systolic strain (ESS) maps during 
two acquisitions. (b) Average changes between acquisitions.  
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RCs of less than 5% on average, and regional analyses also 
showed the average RC and aRC was less than 1% in more than 
half of the polar map segments, with the maximum difference 
being 7%. Finally, all SR measures showed good to excellent 
repeatability, except for SR which was moderate. 

C. Clinical Evaluation  
DeepStrain could be applied in a wide range of clinical 

applications,  e.g., automated extraction of imaging phenotypes 
from large-scale databases (e.g., UK biobank [51]).  Such 
phenotypes include global and regional strain, which are 
important measures in the setting of existing dysfunction with 
preserved EF [3]. DeepStrain generated measures of global 
strain and SR over the entire cardiac cycle from a cohort of 100 
subjects in <2 min (Fig. 5). These results showed that radial SRe 
was reduced in patients with HCM and ARV, despite having a 
normal or increased LV EF. Decreased SRe with normal EF is 
suggestive of subclinical LV diastolic dysfunction, which is in 
agreement with previous findings [52], [53]. Our results also 
showed DeepStrain-based maps could be used to characterize 
regional differences between groups (supplementary Fig.  S6).  

At an individual level (Fig. 6), we showed that in MI patients, 
polar segments with decreased circumferential strain matched 
myocardial regions with infarcted tissue. Further, we showed 
that the changes in regional strain due to MI can be both diffuse 
and focal. These abnormalities could be used to discriminate 
dysfunctional from functional myocardium [54], or as inputs for 
downstream classification algorithms [55]. More generally, 
DeepStrain could be used to extract interpretable features (e.g., 
strain and SR) for DL diagnostic algorithms [56], which would 
make understanding of the pathophysiological basis of 
classification more attainable [57].  

D. Study Limitations   
A limitation of our study was the absence of important 

patient information (e.g., age), which would be needed for a 
more complete interpretation of our strain analysis results, for 
example to assess the differences in strain values found between 
the healthy subjects from the ACDC and CMAC datasets. 
However, using publicly available data enables the scientific 
community to more easily reproduce our findings, and compare 
our results to other techniques. Another limitation was the 
absence of longitudinal analyses, i.e., longitudinal strain was 
not reported because it is normally derived from long-axis cine-
MRI data not available in the training dataset. The size of the 

datasets is another potential limitation. The number of patients 
used for training is much smaller than the number of trainable 
parameters, potentially resulting in some degree of overfitting. 
To correct this, the training set for motion estimation could be 
expanded by validating the proposed segmentation network on 
more heterogeneous populations. Also, while our repeatability 
results were promising despite testing in only a small number 
of subjects, repeatability in patient populations was not shown.  

E. Conclusion    
We developed an end-to-end learning-based workflow for 

strain analysis that is fast, operator-independent, and leverages 
real-world data instead of making explicit assumptions about 
myocardial tissue properties or geometry. This approach 
enabled us to derive strain measures from new data without 
further training or parameter finetuning, and our measures were 
robust to image artifacts, repeatable, and comparable to those 
derive from dedicated tagging data. These technical and 
practical attributes position DeepStrain as an excellent 
candidate for use in routine clinical studies or data-driven 
research. 
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