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Abstract 

Single-cell RNA-sequencing (scRNA-seq) has enabled transcriptome-wide profiling of gene 

expressions in individual cells. A myriad of computational methods have been proposed to learn 

cell-cell similarities and/or cluster cells, however, high variability and dropout rate inherent in 

scRNA-seq confounds reliable quantification of cell-cell associations based on the gene expression 

profile alone. Lately bioinformatics studies have emerged to capture key transcriptome information on 

alternative polyadenylation (APA) from standard scRNA-seq and revealed APA dynamics among cell 

types, suggesting the possibility of discerning cell identities with the APA profile. Complementary 

information at both layers of APA isoforms and genes creates great potential to develop cost-efficient 

approaches to dissect cell types based on multiple modalities derived from existing scRNA-seq data 

without changing experimental technologies. We proposed a toolkit called scLAPA for learning 

association for single-cell transcriptomics by combing single-cell profiling of gene expression and 

alternative polyadenylation derived from the same scRNA-seq data. We compared scLAPA with 

seven similarity metrics and five clustering methods using diverse scRNA-seq datasets. Comparative 

results showed that scLAPA is more effective and robust for learning cell-cell similarities and 

clustering cell types than competing methods. Moreover, with scLAPA we found two hidden 

subpopulations of peripheral blood mononuclear cells that were undetectable using the gene 

expression data alone. As a comprehensive toolkit, scLAPA provides a unique strategy to learn 

cell-cell associations, improve cell type clustering and discover novel cell types by augmentation of 

gene expression profiles with polyadenylation information, which can be incorporated in most existing 

scRNA-seq pipelines. scLAPA is available at https://github.com/BMILAB/scLAPA.  
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Introduction 

Single-cell RNA-sequencing (scRNA-seq) has enabled transcriptome-wide profiling of gene 

expressions in individual cells, which has great potential to reveal cellular composition of tissues, 

transcriptional heterogeneity among cells and structure of cell types [1]. Cell-type identification is a 

critical step in most scRNA-seq data analyses, and a myriad of computational methods have emerged 

to detect novel cell types, previously un-appreciated sub-types of cells and rare cells [2]. 

Fundamentally, these numerous clustering methods rely on cell-cell associations (or similarities) for 

categorizing individual cells into different clusters [3]. A wide range of computational tools have been 

proposed to cluster cells, which implicitly or explicitly rely on a similarity concept [2]. SIMLR 

(Single-cell Interpretation via Multikernel Learning) adapts k­means by simultaneously training a 

similarity measure based on multiple kernel learning [4]. RaceID extends k­means with outlier 

detection to discover rare cell types [5]. SC3 (Single-Cell Consensus Clustering) utilizes a consensus 

approach to combine multiple clustering solutions [6]. PhenoGraph combines shared 

nearest­neighbour graphs and Louvain community detection to fast identify cell clusters [7]. Despite 

of the considerable progress, there is no strong consensus on which is the best clustering approach to 

define cell types for all situations [2, 8, 9]. Particularly, high variability and dropout rate inherent in 

scRNA-seq confounds the reliable quantification of lowly and/or moderately expressed genes [10, 11], 

resulting in extremely sparse gene-cell count matrix. Consequently, there might be little satisfactory 

overlap of observed genes among cells, hindering reliable quantification of cell-cell similarities based 

on the gene expression profile alone.  
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Recently, multi-omics methods that leverage additional aspects of the cell, such as the DNA 

methylome, open chromatin or proteome, are beginning to appear [12]. Seurat v3 [13] harmonizes 

scRNA-seq and scATAC-seq data from a similar tissue to identify subpopulations of cells that are 

undistinguishable using the scATAC-seq data alone. LIGER [14], a method based on integrative 

non-negative matrix factorization (iNMF), was proposed to classify cortical cells profiled from 

single-cell bisulfite sequencing by integrating scRNA-seq data. Additional modalities of individual 

cells provide valuable information about the phenotype and genetic cellular state not manifested by 

the transcriptome. However, not all scRNA-seq data is accompanied data from different modalities. 

Even that multimodal omics data are gradually available, integrative multimodal analysis is still in its 

infancy [12]. It remains a challenge to reconcile the heterogeneity across modalities as different 

modalities are normally profiled from cells sampled from the same tissue rather than the same cells. 

Although most scRNA-seq studies focus on gene expression profiling, key information on transcript 

isoforms, e.g., alternative splicing (AS) and/or alternative polyadenylation (APA), can be obtained, 

enabling multiple aspects of transcriptome information to be derived from standard scRNA-seq 

without changing experimental technologies [15-20]. Lately, several computational methods, such as 

scAPAtrap [15], Sierra [16] and scAPA [18], have been proposed to identify APA sites in single cells 

from diverse 3′ tag-based scRNA-seq protocols, e.g., Drop-seq [21], CEL-seq [22] and 10x Genomics 

[23]. Cell-to-cell heterogeneity in APA site usage was also observed [15-18]. Particularly, the previous 

study [15] revealed that the APA profile, even that from non-differentially expressed genes, can 

distinguish mouse cells in different stages during sperm cell differentiation, suggesting the possibility 

of discerning cell identities with APA usages independent of gene expression. Recent efforts have 
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pioneered methods to identify APA sites or explore APA dynamics across different cell types [16-18, 

24-26], however, most studies profiled APA among cells with predefined cell type labels rather than 

discern cell types in an unsupervised manner. Complementary information at both layers of APA 

isoforms and genes can be refined from the same cells [15-20], which creates great potential to 

develop more sophisticated and cost-efficient approaches to dissect cell types based on multiple 

modalities derived from existing scRNA-seq experiments. 

Here we proposed a toolkit called scLAPA for learning association for single-cell transcriptomics by 

combing single-cell profiling of gene expression and alternative polyadenylation. scLAPA leverages 

the resolution and huge abundance of scRNA-seq, boosting the gene-level analysis with additional 

layer of APA information directly derived from the same scRNA-seq data. By employing the strategy 

of similarity network fusion, scLAPA effectively learns highly informative cell-cell associations from 

expression profiles of both genes and APA isoforms. We compared scLAPA with seven similarity 

metrics and five clustering methods, using diverse scRNA-seq data from different experimental 

technologies and species. Comparative results showed that scLAPA is more effective and robust for 

learning cell-cell similarities and clustering cell types than competing methods. Moreover, with 

scLAPA we found two hidden subpopulations of cells in peripheral blood mononuclear cells (PBMCs) 

that were undetectable using the gene expression data alone. As a comprehensive toolkit, scLAPA 

provides a unique strategy to learn cell-cell associations, improve cell type clustering and discover 

novel cell types by augmentation of gene expression profiles with polyadenylation information, which 

can be incorporated in many other standard scRNA-seq pipelines for single-cell analyses. 
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Materials and methods 

scRNA-seq datasets 

We used five publicly available scRNA-seq datasets from animals and plants generated by 3′ 

tag-based scRNA-seq protocols (Table S1), spanning a wide spectrum of tissues, cell types and species. 

Raw data except for the PBMC data were downloaded from NCBI GEO (Gene Expression Omnibus). 

Cell types and cell labels of the data of Amygdala, Mammary and Root were obtained from the 

corresponding studies; cell labels of the Hypothalamus data were obtained from PanglaoDB [27]. The 

PBMC 4k dataset was downloaded from the 10x Genomics website (https://www.10xgenomics.com/). 

For cell type annotation of PBMCs, we followed the tutorial of Seurat v3 [13] to cluster cells on the 

basis of the gene-cell expression matrix. Specifically, cells with total read counts less then 300 were 

discarded. The LogNormalize method was adopted for normalization. Top 2000 highly variable 

features were selected by the vst method. PCA (Principal Component Analysis) was used for 

dimensionality reduction and top 20 principal components were retained. Finally, cells were clustered 

by Seurat’s FundClusters with argument ‘resolution=0.9. For cell type annotation of cell clusters, 

known marker genes of PBMCs were complied from relevant studies (Table S2). Differentially 

expressed (DE) genes for each cell group were calculated with Seurat’s FindAllMarkers. We also 

calculated, for each cell cluster, the number of cells where a DE gene is expressed and the mean 

expression level of a DE gene. The cell type was carefully assigned to a cell cluster according to the 

presence and expression level of marker gene(s). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.04.425335doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425335


Overview of scLAPA 

scLAPA mainly consists of four modules (Figure S1): (i) the input module, (ii) cell-cell distance, (iii) 

distance fusion, (iv) cell type clustering. The input module prepares the input for scLAPA, including a 

poly(A) site expression matrix (hereinafter referred as PA-matrix) and a gene expression matrix 

(hereinafter referred as GE-matrix). The PA-matrix is generated from raw scRNA-seq with scAPAtrap 

[15], which stores expression levels of poly(A) sites, with each row denoting a poly(A) site and each 

column denoting a cell. The GE-matrix can be obtained from websites like NCBI GEO and 10x 

Genomics, or generated by various routine scRNA-seq analysis tools like Cell Ranger. In the module 

of cell-cell distance, a cell-cell distance matrix is learned for PA-matrix (called PA-dist) and GE-matrix 

(called GE-dist), respectively. The module of distance fusion employs similarity network fusion (SNF) 

[28] to integrate the two distance matrices (PA-dist and GE-dist) into one cell-cell distance matrix. The 

cell type clustering module clusters cells based on the fused distance matrix with various clustering 

methods. scLAPA was implemented as an open source R package and is available at 

https://github.com/BMILAB/scLAPA. Scripts and data used in this study are also available at the 

GitHub website. 

Identification of poly(A) sites from scRNA-seq 

We followed the tutorial provided at the scAPAtrap website (https://github.com/BMILAB/scAPAtrap) 

to identify poly(A) sites with scAPAtrap [15]. It should be noted that alternative tools, such as Sierra 

[16] and scAPA [18], can also be used. Briefly, raw FASTQ reads were mapped with Cell Ranger 2.1.0 

(https://www.10xgenomics.com/) and then uniquely mapped reads were obtained with SAMtools 
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(http://samtools.sourceforge.net/). Then UMI-tools [29] was employed to remove polymerase chain 

reaction (PCR) duplicates and extract unique molecular identifiers (UMIs). The findTails function in 

the scAPAtrap package was used to determine exact locations of poly(A) sites from reads with A/T 

stretches and the findPeaks function was adopted to identify all potential peaks of poly(A) sites from 

the whole genome level. Finally consensus poly(A) sites supported by both of the peak and the tail 

evidence were used. The featureCounts function in the Subread toolkit [30] was adopted to quantify 

the expression level for each poly(A) site. 

Poly(A) site annotation was performed with the movAPA package [31], using the latest genome 

annotation of the respective species -- TAIR10 for Arabidopsis, mm10 for mouse and GRCh38 for 

human. Briefly, poly(A) sites identified from scAPAtrap were annotated with rich information, such as 

genomic regions (i.e., 5′ UTR, 3′ UTR, coding sequence (CDS), intron, exon and intergenic) and gene 

id. Similar to previous studies [32-35], annotated 3′ UTRs were extended by a length of 1000 bp to 

recruit intergenic sites that may originate from authentic 3′ UTRs. 

Calculation of cell-cell distance 

scLAPA learns a cell-cell distance matrix for PA-matrix and GE-matrix, respectively. Various distance 

metrics can be chosen, including Euclidean distance, Pearson correlation, two metrics of 

proportionality (𝜌𝑝  and ∅𝑠) [3], RAFSIL (RAndom Forest based SImilarity Learning) [36] and 

SIMLR [4]. Euclidean distance and Pearson correlation are widely used in either single-cell or bulk 

transcriptomics. The two measures of proportionality were found to have strong performance 

according to a comprehensive benchmarking analysis of a large single-cell transcriptome compendium 
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[3]. RAFSIL is a random forest based approach that learns cell-cell similarities from scRNA-seq data, 

including two variations -- RAFSIL1/2. SIMLR learns a distance metric that fits the structure of the 

scRNA-seq data by combining multiple kernels corresponding to different informative representations 

of the data. Euclidean distance and Pearson correlation were calculated by the dists and cor functions 

in the R package stats, respectively; SIMLR metric was calculated by the SIMLR R package with 

argument ‘cores.ratio=0’; RAFSIL metric was calculated by the RAFSIL R package with arguments 

‘nrep=50, gene_filter=FALSE’;  𝜌𝑝  and ∅𝑠 were calculated by the perb and phis functions in the R 

package propr, respectively. For each distance metric, cell-cell distance matrices, PA-dist and GE-dist, 

can be learned for PA-matrix and GE-matrix, respectively. PA-dist represents the cell-cell similarity 

network learned from the APA isoform layer, whereas GE-dist reflects the network learned from the 

gene layer, each of which encapsulates complementary information about cell-cell associations absent 

in the other genomic layer. 

Distance fusion 

After learning PA-dist and GE-dist, similarity network fusion (SNF) [28] is utilized to flexibly 

integrate the two layers of cell-cell similarities into one similarity matrix. First, PA-dist and GE-dist 

were iteratively and gradually fused to a consensus network, utilizing the non-linear method of 

message passing theory [37]. Then weak similarities representing potential noise were discarded, and 

strong similarities were retained. By generating coherent cell-cell similarities from both APA isoform 

and gene layers, SNF profiles a more comprehensive biological relationship among cells, beyond the 

scope of methods solely based on GE-matrix. 
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Given a PA-matrix storing expression levels of 𝑚 poly(A) sites in 𝑛 cells or a GE-matrix recording 

expression levels of 𝑚 genes in 𝑛 cells, the corresponding cell-cell distance matrix (PA-dist or 

GE-dist) can be obtained using a selected distance metric. The distance matrix can also be denoted as 

a graph 𝐺 =< 𝑉,𝐸,𝑊 >, with vertices 𝑉 {𝑐1 ,… , 𝑐𝑛 } corresponding to cells, edges 𝐸 representing 

cell-cell link and edge weights 𝑊[𝑛×𝑛] denoting the kernel representation of cell-cell similarities. The 

weight of an edge linking cells 𝑐𝑖  and 𝑐𝑗  is determined using a scaled exponential similarity kernel: 

 

𝑊𝑖𝑗 = 𝑒𝑥𝑝  −
𝑑𝑖𝑗

2

𝜇𝛽𝑖𝑗
 

 (1)

 

Here 𝑑𝑖𝑗  represents the distance between cells 𝑐𝑖  and 𝑐𝑗  measured by a distance metric (e.g. 

Pearson correlation). 𝜇 is an empirical hyperparameter with a recommended value in a sizable range 

of [0.3, 0.8] [28]. 𝛽𝑖𝑗 is a scaling factor defined as follows: 

 
𝛽𝑖𝑗 =

𝑑 𝑐𝑖 ,𝑁𝑖            +𝑑 𝑐𝑗 ,𝑁𝑗  
            +𝑑𝑖𝑗

3  (2)
 

where 𝑁𝑖  are neighboring cells of 𝑐𝑖  and 𝑑 𝑐𝑖 ,𝑁𝑖             is the average distance of 𝑐𝑖  to its neighbors. 

To obtain a fused network from PA-dist and GE-dist, a full and sparse kernel on the vertex set 𝑉 is 

derived from the weight matrix 𝑊. The full kernel is a normalized weight matrix 𝑊 [𝑛×𝑛] which 

stores the full information of cell-cell similarities. The normalized weight between 𝑐𝑖  and 𝑐𝑗  is 

defined as: 

 

𝑊 𝑖𝑗 =  

𝑊𝑖𝑗

2 𝑊𝑖𝑘𝑘≠𝑖
    𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗

0.5                 𝑤ℎ𝑒𝑛 𝑖 = 𝑗

 

 (3)

 

Another matrix 𝐴[𝑛×𝑛] encodes the local affinity that measures similarities of a cell to its 𝐾 most 

similar cells: 
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𝐴𝑖𝑗 =  

𝑊𝑖𝑗

 𝑊𝑖𝑘𝑘≠𝑖
   𝑤ℎ𝑒𝑛 𝑗 ∈ 𝑁𝑖

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (4)

 

Here 𝑁𝑖  is the set of cell 𝑐𝑖  and its neighbors in the graph 𝐺. The network fusion initiates from 𝑊 , 

using 𝐴 as the kernel matrix to capture local structure of the graph. 

To fuse the two distance matrices (PA-dist and GE-dist), first 𝑊𝑃𝐴  and 𝑊𝐺𝐸  were computed, 

respectively. Then the corresponding initial state matrices 𝑊 𝑃𝐴  and 𝑊 𝐺𝐸  were derived from the two 

similarity matrices, and the kernel matrices 𝐴𝑃𝐴  and 𝐴𝐺𝐸  were also computed. Given the initial two 

status matrices at 𝑡 = 0, 𝑊 𝑡=0
𝑃𝐴  and 𝑊 𝑡=0

𝐺𝐸 , the fusion process iteratively updates the respective 

similarity matrix: 

  𝑊 𝑡+1
𝑃𝐴 = 𝐴𝑃𝐴 × 𝑊 𝑡

𝑃𝐴 × (𝐴𝑃𝐴)𝑇   

  𝑊 𝑡+1
𝐺𝐸 = 𝐴𝐺𝐸 × 𝑊 𝑡

𝐺𝐸 × (𝐴𝐺𝐸)𝑇  (5) 

Then after 𝑡 iterations, the final status matrix is obtained: 

 𝑊    =
𝑊 𝑡

𝑃𝐴 +𝑊 𝑡
𝐺𝐸

2
 (6) 

𝑊     is the fused cell-cell distance network by incorporating cells’ APA isoform and gene expression 

profiles. The corresponding cell-cell similarity matrix is 1−𝑊    . The distance or similarity matrix can 

be used for downstream cell type clustering. 

Single cell clustering 

Four widely-used clustering methods were provided in scLAPA to cluster cells on the basis of the 

fused cell-cell similarity matrix, including Louvain clustering [38], hierarchical clustering (HC) [39], 

spectral clustering (SC) [40] and k-means. The Louvain clustering was implemented by the 
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cluster_louvain function in the R package igraph, with arguments ‘mode=undirected, 

weighted=TRUE, diag = TRUE’. The spectral clustering was implemented by the SpectralClustering 

function in the R package SNFtool with default settings [28]. The hierarchical clustering [39] was 

performed by the flashClust function in the R package flashClust with default settings [41]. The 

k-means clustering was implemented by the kmeans function of the R package stats with arguments 

‘iter.max=1e+9, nstart=1000’. 

Performance evaluation 

We distinguished two scenarios, similarity learning and clustering, to evaluate our approach. For each 

scenario, we applied scLAPA to four scRNA-seq datasets with pre-annotated cell labels, and compared 

results with other competing approaches. For the scenario of similarity learning, we compared 

scLAPA with seven similarity measures, including three measures designed for scRNA-seq 

(RAFSIL1/2 and SIMLR), two measures of proportionality (𝜌𝑝  and ∅𝑠) and two traditional similarity 

measures (Euclidean distance and Pearson correlation). Each of these measures was applied to a given 

GE-matrix to learn a cell-cell similarity matrix. For scLAPA, we applied each measure to learn two 

cell-cell similarity matrices from PA-matrix and GE-matrix and fused them into one matrix. We also 

applied different clustering methods including Louvain, HC, SC and k-means on the similarity matrix 

learned from each similarity measure to assess different similarity measures in the context of 

clustering. 

For the scenario of clustering, we compared scLAPA with five state of the art clustering methods for 

scRNA-seq data, including SC3 [6], Seurat v3 [13], SINCERA [42], SNN-Cliq [43] and dynamic tree 
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cut method (dynamicTreeCut) [44]. None of these approaches provides explicit similarity learning 

procedure, instead they provide cell labels by unsupervised learning on the GE-matrix. Each approach 

was applied to a given GE-matrix for cell clustering and class labels of cells were obtained. For 

scLAPA, we applied each of the four methods (Louvain, HC, SC and k-means) on the fused similarity 

matrix to obtain clustering results.  

Two internal validation metrics, Dunn index [45] and Connectivity [45], were employed for the first 

scenario to quantitatively assess the goodness of a clustering structure without relying on any 

clustering methods or knowing external information about class labels. The Dunn index [45] evaluates 

non-linear combinations of the between-group separation and the within-group compactness. The 

Connectivity reflects the extent of observations that are present in the same group as their neighbors in 

the data space. The original value of Connectivity ranges from zero to infinity, with smaller value 

denoting higher performance. Here we used a transform, 1/log10(Connectivity +1), to make 

Connectivity consistent with Dunn. The larger the score of Connectivity or Dunn, the better the 

separation is. The R package clValid [45] was adopted to calculate the Connectivity and Dunn index. 

Additionally, we used three popular metrics to evaluate the performance of scLAPA in the context of 

clustering, including the ARI (Adjusted Rand Index), Jaccard and NMI (Normalized Mutual 

Information). The value of ARI ranges from -1 to 1, and values of NMI and Jaccard range from 0 to 1, 

with the higher value indicating the better performance. ARI is a widely-used metric for measuring the 

concordance between two clustering results. The Jaccard index quantifies the similarity between two 

datasets. NMI is a variation of mutual information for evaluating clustering results, which corrects the 

bias of the consistency caused by chance. ARI and Jaccard were calculated using the adjustedRand 
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function in the R package clues [46]; NMI was obtained by the compare function in the R package 

igraph (https://igraph.org/r/). 

Bioinformatics analyses 

UMAP [47] was adopted for visualization of distributions of single cells, which employs the 

non-linear dimensional reduction technique to group similar cells in low-dimensional space. UMAP 

was implemented by the calculateUMAP function in the scater R package [48]. For the analysis of the 

Arabidopsis root data, DESeq2 [49] was adopted to identify DE genes and DE poly(A) sites. First 

GE-matrix and PA-matrix were normalized by the median ratio method provided in DESeq2. Then the 

DESeq function was applied for DE detection. Gene or poly(A) sites with log2 fold change>=0.8 and 

adjusted P-value<=0.1 were considered as DE. 

Results 

Single-cell polyadenylation profile distinguishes cells 

Recently, scRNA-seq has emerged as a unique tool to explore cell-specific gene or isoform expression 

in plants [50-54]. A previous study [51] utilized root-hair and nonhair cell types as models and 

revealed the potential of using scRNA-seq data for inferring specific cells during the process of 

cell-type differentiation. Here we focused on the epidermal tissue and analyzed differential expression 

on both gene and APA levels between root-hair and nonhair cells. A total of 294 root-hair cells and 195 

nonhair cells were defined by the previous study [51]. Although both GE-matrix and PA-matrix were 

obtained from the same scRNA-seq data, we still found four genes exclusively present in the 
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PA-matrix (Figure 1A). For example, AT1G64140, a WRKY transcription factor gene, was absent in 

the single-cell GE-matrix, while it has one poly(A) site (coord: 23803757) with much higher 

expression level in nonhair than in hair cells according to the PA-matrix. Interestingly, this poly(A) 

site is an annotated poly(A) site in extended 3′ UTR, which was supported by bulk 3′-seq data 

according to PlantAPAdb [55]. Similarly, AT3G2522, a hypothetical protein coding gene, is missing in 

the GE-matrix, while its one poly(A) site (coord: 9184927) is expressed much higher in nonhair cells 

than in hair cells. This poly(A) site was also annotated as a 3′ UTR site in PlantAPAdb. Moreover, 

1422 genes possess at least one differentially used poly(A) site, among which 171 genes were not DE 

genes (Table S3). For example, AT1G59725 is a DNAJ heat shock family protein expressed in root. 

Although both AT1G59725 and its one poly(A) site are expressed higher in root hair cells than in 

nonhair cells, the difference between the two cell types characterized by the poly(A) profile is much 

more pronounced than that by the gene profile (Figure 1B). Further, using only the GE-matrix, a 

subset of cells are indistinguishable between hair and nonhair cell types (Figure 1C). In contrast, cells 

from the two cell types were clearly separated on the basis of the PA-matrix and two potential 

subpopulations of nonhair cells were observed (Figure 1C). Therefore, we anticipate that the poly(A) 

site expression profile may encode complementary information that is absent or insignificant in the 

gene expression profile, which could be useful to distinguish cell types. There is a great potential to 

develop integrative approaches for discerning cell identities that can properly incorporate single-cell 

profiling of both gene expression and polyadenylation information. 
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Learning cell-cell similarities with scLAPA 

We proposed the scLAPA toolkit that can learn cell-cell similarities by taking advantage of the 

complementarities from both layers of APA isoforms and genes. Here we compared the performance 

of the similarity metric learned from scLAPA with other seven similarity metrics by analyzing four 

scRNA-seq datasets. Two metrics, Dunn and Connectivity, were adopted to quantitatively measure cell 

separation independent of clustering methods. Generally, scLAPA provides higher or comparable 

performance than other metrics across all the four datasets, whereas Pearson correlation or Euclidean 

has a consistently lower performance (Figures 2A and S2). In terms of both Dunn and Connectivity, 

scLAPA and SIMLR perform significantly better than other three metrics. Particularly, SIMLR 

outperforms scLAPA on the Hypothalamus data whereas scLAPA outperforms SIMLR on the 

Mammary data. Overall, scLAPA performs better than at least six out of the seven metrics in all the 

four datasets, never being the worst in any case. According to the Dunn index (Figure 2A), even for 

datasets where the performance of scLAPA is not the best, scLAPA is always the close match to the 

best. For example, the Dunn score from scLAPA on the Hypothalamus data is 0.94, which is very 

close to the best score (0.985 from SIMLR). 

Next we used the radar chart to compare the performance of these similarity metrics more intuitively. 

Apparently, scLAPA and SIMLR stand out as universally better than the others, and discrepancies of 

performance of other six metrics across different datasets were observed (Figure 2B). For example, the 

overall similarity based on the RAFSIL1/2 metric is much higher on Mammary and Hypothalamus 

data than the other two datasets, revealing the instability of performance of RAFSIL across different 
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datasets. In contrast, for all these four datasets, both Euclidean and Pearson correlation emerge as the 

worst similarity metric. In contrast, scLAPA provides a more robust result regardless of datasets. 

scLAPA is integrative and flexible in that different distance metrics can be chosen to learn cell-cell 

similarities for distance fusion. Next we examined the effect of using different distance metrics in 

scLAPA. The performance of scLAPA according to the Dunn index is highly robust across all datasets 

regardless of distance metrics used in scLAPA (Figure 2C). It is widely accepted that it is highly 

challenging to determine an optimal distance metric for profiling true cell-cell relationships from the 

complex and heterogeneous scRNA-seq data [3]. However, the integrative framework of scLAPA 

provides an effective solution of distance fusion by assembling results from multiple data layers into 

one ensemble result, which can mitigate limitations in individual similarity metrics or data layers and 

facilitate the generalization and adaption for different scRNA-seq datasets. Take the Hypothalamus 

data as an example. Apparently, the matrix with block structures obtained from scLAPA showed 

higher consistency with true labels than did other similarity metrics (Figure S3). Block structures 

learned by SIMLR are indistinguishable from background signatures; block structures learned by 

Pearson correlation, Euclidean or the two measures of proportion are also mixed with background 

signatures; block structures learned from RAFSIL are generally consistent with true structures except 

that cell types with small number of cells are less distinguishable. Overall, scLAPA provides more 

divergent clusters with higher distinction, and individual clusters obtained by scLAPA are more 

compact than those by other similarity metrics. These results demonstrate the ability and robustness of 

scLAPA in improving the cell separation across numerous scRNA-seq datasets. 
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Cell type clustering with scLAPA 

Cell-cell similarities learned by different similarity metrics can be adapted to other clustering methods 

that take similarities as inputs. Here we performed extensive comparisons of scLAPA with other seven 

similarity metrics by applying different clustering methods for cell clustering. First we applied 

Louvain [2], a graph-based method for community detection, to different similarity metrics for 

clustering. According to the ARI score, similarities learned by scLAPA and SIMLR significantly 

outperform similarities obtained from Euclidean, Pearson correlation or RAFSIL1/2 (Figure 3A). 

Overall, SIMLR shows similar performance with scLAPA, whereas scLAPA outperforms SIMLR in 

three out of the four datasets. Particularly, Euclidean and Pearson correlation present the worst 

performance in two datasets, Mammary and Root. Similar results were obtained in terms of other two 

indexes, NMI and Jaccard (Figure S4). In addition to Louvain clustering, we also investigated other 

three popular clustering methods, including hierarchical clustering [39], spectral clustering [40] and 

k-means [56], to evaluate the robustness of results by applying different clustering methods on the 

same similarity metric (Figures S5-7). Particularly, the performance of scLAPA and RAFSIL1/2 are 

robust regardless of clustering methods used, whereas scLAPA consistently outperforms RAFSIL. In 

contrast, SIMLR, Euclidean and Pearson correlation are very sensitive to clustering methods applied 

(Figure 3B). Surprisingly, although SIMLR achieves comparable performance with scLAPA based on 

Louvain clustering (Figure 3A), its performance is the worst using k-means or spectral clustering 

(Figure 3B). Take the Mammary data for example, the ARI score of SIMLR drops from 0.769 when 

using Louvain clustering to an extremely low median value of 0.026 when using k-means. Moreover, 
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we noted that, ARI scores from individual runs of k-means clustering on SIMLR similarities varied 

greatly, revealing the relatively poor robustness of SIMLR with k-means clustering (Figure S5). These 

results demonstrate that the cell-cell similarity matrix learned from scLAPA is more effective and 

robust than competing similarity metrics in clustering cell subpopulations. 

During the preparation of this manuscript, we noticed another method scDaPars [57], which quantifies 

and recovers APA events in single cells using standard scRNA-seq data. The authors also integrated 

APA information identified by scDaPars with imputed gene expression by similarity network fusion to 

reveal novel cell subpopulations during human embryonic development. Different from scDaPars that 

employs the (imputed) percentage of distal poly(A) site usage index (PDUI) to measure APA usage, 

scLAPA directly utilizes raw poly(A) expression profile. Here we compared the performance of 

scLAPA and scDaPars by applying them to the four scRNA-seq datasets in our benchmarking analysis. 

Following the process in Gao et al. [57], we calculated PDUI based on the PA-matrix and imputed 

APA profiles using scDaPars. Then we applied five similarity metrics on the scDaPars-imputed APA 

profile and the GE-matrix to generate scDaPars-dist and GE-dist, respectively. After fusing the two 

distance matrices with SNF, we applied Louvain clustering on the fused cell-cell similarities to cluster 

cells. According to the ARI score (Figure 4), scLAPA significantly outperforms scDaPars on all the 

four datasets. Particularly, ARI scores of scDaPars with different similarity metrics varied greatly 

whereas the performance of scLAPA is robust with different similarity metrics (Figure 4 vs. Figure 

2C), revealing that the poly(A) expression profile used in scLAPA is more efficient and robust than the 

PDUI profile used in scDaPars for clustering cells.  
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Next we expanded the benchmarking analysis by comparing clustering results of scLAPA with other 

single-cell clustering methods that directly take the gene-cell expression matrix as input without an 

explicit procedure of similarity learning. Specifically, we included five popular tools for comparison, 

including SC3 [6], Seurat v3 [13], SINCERA [42], SNN-Cliq [43] and dynamicTreeCut [44]. 

According to the ARI score, scLAPA achieves generally higher or comparable performance than other 

methods, whereas dynamicTreeCut provides a consistently lower performance (Figure 5). Similar 

results were observed using indexes of Jaccard or NMI (Figure S8). Specifically, scLAPA provides the 

best ARI score in three out of the four datasets (Figure 5). For the Hypothalamus data where SC3 

performs the best, scLAPA presents very close ARI score to SC3 (scLAPA=0.985; SC3=0.99). 

Particularly, for three datasets (Mammary, Hypothalamus and Root), ARI scores of individual SC3 

runs varied greatly, reflecting the performance of SC3 may be unstable on some kinds of datasets. 

Overall, the performance of scLAPA is robust and consistently high across diverse scRNA-seq 

datasets. 

scLAPA identifies hidden subpopulations of cells 

We next applied scLAPA on the human PBMC 4k dataset from 10x Genomics for cell type clustering. 

First we examined the cell type composition of the PBMCs by applying Seurat to the gene-cell 

expression matrix (GE-matrix). Ten distinct cell clusters were yielded (Figure 6A). Based on the 

expression of known markers (Table S2), nine clusters were annotated. Up to 13,512 poly(A) sites 

from 9601 genes were identified from the raw RNA-seq data with scAPAtrap. We learned cell-cell 

similarities with scLAPA by jointly considering expression profiles of APA isoforms and genes. After 
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applying Louvain clustering on the cell-cell similarity matrix, 14 cell clusters were obtained and 11 

clusters were successfully annotated. These 11 clusters covered the nine clusters identified by Seurat 

and contained two new small clusters (Figure 6B). Both subclusters were supported by the expression 

patterns of markers, suggesting that they represented distinct cell types. One subcluster was annotated 

as regulatory T cell on the basis of elevated expression of three markers, CCR10, FOXP3 and IL2RA 

(Figure S9). Depending only on the gene expression profile, regulatory T cells were not well resolved 

and are indistinguishable among other T cells (Figure 6A). Although the gene expression of the 

marker CCR10 is sparse and weak among T cells, we could still distinguish clearly regulatory T cells 

from other T cell types according to the UMAP visualization of the gene expression profile (Figure 

6C). Particularly, CCR10 has four annotated poly(A) sites according to APASdb [58], whereas only 

one poly(A) site was identified from scRNA-seq data. This is not unexpected as the bulk 3′-seq data 

contain more diverse tissue samples than the PBMC data and scRNA-seq data is generally too sparse 

to identify all poly(A) sites. However, we have shown that, even for a single poly(A) site, it could 

encapsulate useful information beyond the gene expression profile (Figure 1). The other subcluster 

where cell markers such as PPBP and PF4 are expressed, was annotated as megakanyocyte 

progenitors (Figures 6D and S10). According to the PA-matrix, PPBP carries three poly(A) sites, and 

five poly(A) sites of PPBP were annotated in APASdb. These three poly(A) sites were all highly 

expressed in megakanyocyte progenitors (cluster 10) (Figure 6E). These results demonstrate that 

scLAPA facilitates the capture and identification of hidden subpopulations of cells that are 

unrecognizable based on the gene expression profile alone. 
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Discussion 

scLAPA is an integrative framework for learning association for single-cell transcriptomics by 

leveraging expression profiles of genes and APA isoforms in individual cells, which highlights the 

inclusion of polyadenylation signatures for improving cell type clustering and discovering new cell 

types. The effectiveness of scLAPA for cell-cell similarity learning and cell type clustering is 

evidenced by comparisons with various similarity metrics and single-cell clustering methods on 

several scRNA-seq datasets. scLAPA has a number of desirable features. First, scLAPA incorporates 

existing tools to extract and quantify poly(A) sites directly from scRNA-seq, which augments the 

gene-level analysis with additional layer of APA information without altering the scRNA-seq protocol 

or performing additional sequencing experiment. Second, by employing the strategy of similarity 

network fusion, scLAPA jointly considers expression profiles at both levels of APA isoforms and 

genes for learning highly informative cell-cell similarities. Third, in contrast to many other methods 

that cluster cells without explicit similarity learning step, scLAPA provides two independent but 

connected modules for similarity learning and cell clustering, each with various methods for users’ 

choice. Accordingly, users can freely combine different similarity metrics and clustering methods in 

scLAPA to evaluate the clustering results for any given dataset. Fourth, the framework of scLAPA is 

highly flexible, which can be seamlessly embedded into most existing scRNA-seq pipelines or tools 

for downstream analyses, such as dimension reduction, cell type clustering and differential expression 

analysis. Accordingly, existing tools, such as those designed for dropout imputation, normalization and 

similarity learning, can also be easily incorporated into scLAPA. 
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With scLAPA, distinct cell-cell similarity networks can be effectively learned from profiles of gene 

expression and polyadenylation separately by various similarity metrics. scLAPA then employed the 

strategy of similarity network fusion for scalable and robust integration of similarity networks learned 

from different data layers. This strategy has the advantage to exploit complementarities in distinct data 

layers for fully profiling the spectrum of underlying data. Moreover, the consensus set of cell-cell 

interactions and associations from the APA layer and the gene layer can be learned from the given data, 

mitigating noise and dropouts in conventional gene-cell expression profile and thus enhancing 

accuracy for downstream analyses. By combining expression profiles of APA and gene through 

similarity network fusion, we found two hidden subpopulations of PBMCs that were undetectable 

using only gene expression data (Figure 6). Moreover, the augmentation of gene expression profiles 

with polyadenylation information enhances single-cell clustering results and generates more 

discriminative cell types (Figures 2-5). As a comprehensive toolkit, scLAPA provides a unique 

strategy to improve cell type clustering and discover novel cell types, by combining gene expression 

with polyadenylation information at single-cell resolution. 

scLAPA consists of three core function modules, including learning cell-cell similarities, distance 

fusion and clustering. Currently, numerous methods are available to learn cell-cell similarities or 

cluster cells with reasonable accuracy [3]. However each method has its own strengths and limitations, 

and it is extremely challenging, if not impossible, to determine an optimal method for all kinds of 

datasets as different methods may exploit different characteristics in the data [59]. Moreover, some 

similarity metrics may be overly dependent on downstream clustering methods, exacerbating 

difficulties in choosing a universally applicable combination of similarity and clustering methods. For 
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example, based on the GE-matrix alone, similarities learned from SIMLR provide an overall high 

performance across datasets in terms of internal validation indexes (Figure 2A). However, SIMLR is 

highly dependent on downstream clustering methods for single-cell clustering; it achieves high 

performance with Louvain clustering (Figure 3A), whereas its performance drops sharply with 

k-means or spectral clustering (Figure 3B). In contrast, our benchmarking analyses showed that 

performances of scLAPA are robust and consistently high across diverse datasets regardless of 

distance metrics or clustering methods selected in scLAPA (Figures 2-5). The unique strength of 

scLAPA may be due to that it efficiently fuses rich structures stored in GE-matrix as well as the 

accompanied PA-matrix, thus can amplify biological signals and augment cell-cell relationships.  

scLAPA is an easy-to-use and highly flexible framework. The input of scLAPA is the GE- and 

PA-matrix, without using any priori biological information. Even with raw scRNA-seq data, it is easy 

obtain the prerequisite GE-matrix and/or PA-matrix using various tools, e.g. Cell Ranger for 

GE-matrix, scAPAtrap and Sierra for PA-matrix. Lately another tool, scDaPars [57], was proposed to 

quantify and recover APA usages from scRNA-seq data, which uses the relative usage of the distal 

poly(A) site called PDUI to measure a gene’s APA usage. With scDaPars, Gao et al. [57] analyzed 

cell-type-specific APA regulation and discovered hidden cell subpopulations from cancer and human 

endoderm differentiation scRNA-seq data. In scLAPA the input PA-matrix can be replaced with any 

other gene-cell-like matrix, thus the scDaPars-imputed PDUI matrix can be used readily in scLAPA 

for downstream cell type clustering. However, although the scDaPars-imputed PDUI profile seems to 

be effective in revealing APA dynamics among cell types in the previous study [57], we found that, for 

cell type clustering, the performance with the PDUI-matrix is much lower and less robust than that 
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with scLAPA’s PA-matrix (Figure 4). This may be due to several reasons. First, only genes with at 

least two 3′ UTR poly(A) sites can be used for scDaPars’ PDUI calculation, consequently the 

PDUI-matrix is much more sparse than the PA-matrix and information encoded in genes with single 

poly(A) site is lost. Second, although the PDUI profile can be imputed with scDaPars, limited 

information in the highly sparse PDUI-matrix confounds reliable imputation and may lead to 

propagation of errors or noises during the imputation process. Third, unlike scLAPA which is 

specifically designed for learning cell-cell similarities and cell type clustering, the main function of 

scDarpas is to analyze cell-type-specific APA dynamics and identify novel APA-related cell types. We 

anticipate that the PA-matrix used in scLAPA may contain more comprehensive and reliable 

information than the PDUI-matrix or the imputed PDUI-matrix, which can significantly enhance the 

accuracy of cell type clustering. Overall, the PA-matrix is simple but effective which can be easily 

obtained from scRNA-seq data by various tools, making it more convenient to use scLAPA for 

scRNA-seq analyses. 

For practical application purpose, the current version of scLAPA implements seven similarity metrics 

and four clustering methods for users’ choice, which allows users to investigate their own strategies 

for evaluation of the effect of different combinations of distance metrics and clustering methods. 

Moreover, scLAPA is easily expandable in that additional distance metrics or clustering methods can 

be readily incorporated. Meanwhile, scRNA-seq preprocessing steps, such as dropout imputation and 

normalization, can also be easily applied before similarity learning. scLAPA can also be used as a 

plug-in architecture for most existing scRNA-seq pipelines for similarity learning and cell clustering. 
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Figure legends 

Figure 1. Single-cell poly(A) profile in root hair and nonhair cells. (A) Genes exclusively present 

in the PA-matrix. Four genes (AT3G22970, AT1G64140, AT4G09200 and AT3G25221) were not 

present in the GE-matrix, whereas they had at least one poly(A) site according to the PA-matrix. For 

each gene, the violin plot shows expression levels of its poly(A) site in hair and nonhair cells and the 

UMAP visualization shows the 2D embeddings of poly(A) profile. (B) Two example genes 

(AT1G59725 and AT4G18940) that are not differentially expressed (DE) but possess at least one DE 

poly(A) site. The upper panel places the violin plot and UMAP visualization showing the poly(A) 

profile of the respective gene in hair and nonhair cells. The lower panel shows the gene profile. (C) 

Single-cell poly(A) profile distinguishes root hair and root nonhair cells. The left plot is the UMAP 

representation on the basis of 171 genes that are not DE but with at least one DE poly(A) site, the right 

plot is the UMAP representation on the basis of poly(A) profile of the 171 genes. 

 

Figure 2. Benchmarking of similarity learning with scLAPA on four published scRNA-seq 

datasets. (A) The internal validation metric of Dunn was employed to measure the cell separation. (B) 

Radar chart showing the performance of different similarity metrics across datasets. Dataset names are 

shown near the vertex of the plot. Each vertex denoting the Dunn score of a metric on the respective 

dataset. The larger the area of a polygon displayed in a radar chart is, the higher the overall 

performance is. (C) Radar chart showing the performance of scLAPA with different distance metrics 

for distance fusion. Each vertex denotes the Dunn score of using different distance metrics on the 

respective dataset. 

 

Figure 3. Benchmarking of similarity learning with scLAPA in the context of clustering on four 

published scRNA-seq datasets. (A) ARI was employed to measure the concordance between inferred 

and true cluster labels. Louvain clustering was applied on the similarity matrices obtained from 

different methods. (B) Radar charts showing ARI scores by applying different clustering methods on 

cell-cell similarities learned by each similarity metric. Each plot represents results of one dataset. 

Clustering methods are shown near the vertex of the plot. The vertex of a plot denotes the ARI score 

of applying a clustering method on different metrics. The larger the area of a polygon displayed in a 

radar chart is, the higher the overall performance is. HC, hierarchical clustering; SC, spectral 

clustering.  

 

Figure 4. Comparison of performance between scLAPA and scDaPars across four scRNA-seq 

datasets. Five similarity metrics were applied on the scDaPars-imputed PDUI profile and the 

GE-matrix to generate scDaPars-dist and GE-dist, respectively. After fusing the two distance matrices 

with SNF, Louvain clustering was applied on the fused cell-cell similarities to cluster cells. We did not 

include RAFSIL in this experiment due to its slow calculation speed. For scLAPA, Pearson correlation 

was used for similarity learning and Louvain was used for clustering.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.04.425335doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425335


Figure 5. ARI scores from six clustering methods across four scRNA-seq datasets. For scLAPA, 

Pearson correlation was used for similarity learning and Louvain was used for clustering. 

 

Figure 6. scLAPA identifies hidden subpopulations of cells from human PBMCs. (A) UMAP 

representation of Seurat’s clustering results on the basis of GE-matrix. Ten clusters were obtained and 

nine were annotated with known cell types: Naive T cell (1), CD14+ Monocytes (2), CD8+ T cell (3), 

B cell (4), CD4+ Memory T (5), NK cell (6), CD16+ Monocytes (7), Monocyte Derived Dendritic (8, 

10) and Plasmacytorid Dendritic (9). (B) UMAP representation of scLAPA’s clustering results on the 

basis of GE-matrix and PA-matrix. Fourteen clusters were obtained and 11 clusters were annotated 

with known cell types: Regulatory T cell (1), Naive T cell (2, 3), Plasmacytorid Dendritic (4), CD4+ 

Memory T (5), CD8+ T cell (6), CD14+ Monocytes (7), Monocyte Derived Dendritic (8, 11, 14), 

CD16+ Monocytes (9), Megakaryocyte Progenitors (10), B cell (12) and NK cell (13). The two arrows 

mark two new subpopulations of cells identified by scLAPA. (C) Gene expression of CCR10 

distinguishes regulatory T cells from other T cell types according to the UMAP visualization of the 

gene expression profile. The details in the dashed line box are shown in the solid line box. (D) Gene 

expression of PPBP distinguishes megakanyocyte progenitors from other cell types. (E) Three poly(A) 

sites of PPBP are all highly expressed in megakanyocyte progenitors. 
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