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ABSTRACT 16 

Similar to other droplet-based single cell assays, single nucleus ATAC-seq (snATAC-seq) data harbor multiplets 17 

that confound downstream analyses. Detecting multiplets in snATAC-seq data is particularly challenging due to 18 

its sparsity and trinary nature (0 reads: closed chromatin, 1: open in one allele, 2: open in both alleles), yet offers 19 

a unique opportunity to infer multiplets when >2 uniquely aligned reads are observed at multiple loci. Here, we 20 

implemented the first read count-based multiplet detection method, ATAC-DoubletDetector, that detects 21 

multiplets independently of cell-type. Using PBMC and pancreatic islet datasets, ATAC-DoubletDetector 22 

captured simulated heterotypic multiplets (different cell-types) with ~0.60 recall, showing ~24% improvement 23 

over state of the art. ATAC-DoubletDetector detected homotypic multiplets with ~0.61 recall, representing the 24 

first method to detect multiplets originating from the same cell type. Using our novel clustering-based algorithm, 25 

multiplets were annotated to their cellular origins with ~85% accuracy. Application of ATAC-DoubletDetector will 26 

improve downstream analysis of snATAC-seq.27 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.425250doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425250


 2 

MAIN 28 

Single nucleus ATAC-seq (snATAC-seq)1–3 technology is widely used to study epigenomes of diverse cells and 29 

tissues with increased resolution3,4. However, as with other droplet based single cell technologies, snATAC-seq 30 

data harbor multiplet nuclei5. The presence of multiplets can confound downstream analyses by introducing 31 

combined epigenomic profiles that originate from two or more nuclei, increasing the difficulty of clustering and 32 

comparing different cell types within a sample. Compared to other single cell assays, the difficulty of detecting 33 

multiplets in snATAC-seq is further increased due to data sparsity and the trinary nature of chromatin accessibility 34 

levels (e.g., 0 reads: closed chromatin, 1: open in one allele, 2: open in both alleles).  35 

The current state of the art for detecting multiplets in snATAC-seq data adapt detection methods 36 

developed for single cell RNAseq (scRNA-seq). Notably, two snATAC-seq data analysis packages, SnapATAC6 37 

and ArchR7, either employ or implement a method similar to multiplet detection methods (i.e., DoubletFinder8 38 

and Scrublet9) for scRNA-seq. In these methods, synthetic heterotypic multiplets (i.e., originating from different 39 

cell types) are simulated by combining profiles of two or more cells, which are then used to detect putative 40 

multiplets based on cluster similarity. Such algorithms assume that multiplets and singlets exhibit distinct 41 

genomic profiles, which becomes problematic when true singlets share genomic profiles with two or more cell 42 

types. Under this assumption, these methods will fail to detect homotypic multiplets (i.e., originating from the 43 

same cell type) since their overall genomic profile is considered to be similar to that of the underlying cell type. 44 

However, homotypic multiplets are characterized by increased read counts compared to singlets, suggesting 45 

new methods that utilize read counts can detect them. In order to overcome the limitations of existing methods 46 

to detect both homotypic and heterotypic multiplets, we developed a novel multiplet detection method, ATAC-47 

DoubletDetector, that exploits read count distributions to infer multiplets in snATAC-seq data.  48 

ATAC-DoubletDetector’s efficacy was tested in two snATAC-seq datasets generated from peripheral 49 

blood mononuclear cells (PBMCs) samples (n=2) and pancreatic islet (n=2) tissues. We identified multiplets in 50 

these tissues and quantified the algorithm’s efficacy using simulated homotypic and heterotypic multiplets. We 51 

found that when snATAC-seq samples were adequately sequenced (e.g., >20k valid read pairs per cell), ATAC-52 

DoubletDetector proved very effective for detecting both homotypic and heterotypic multiplets (recall ranging 53 

from 0.74-0.89 in PBMCs). In addition, ATAC-DoubletDetector includes a novel clustering-based algorithm that 54 

accurately annotates the cellular origins of detected multiplets (85% average accuracy in our simulations), 55 
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providing further data quality insights. ATAC-DoubletDetector is provided as a user-friendly computational 56 

framework with documentation and source code freely available at: https://github.com/UcarLab/ATAC-57 

DoubletDetector. 58 

 59 

Results 60 

ATAC-DoubletDetector leverages the fact that the expected number of uniquely aligned reads for a given locus 61 

ranges from 0 to 2 per nucleus in snATAC-seq data: 0 = closed chromatin, 1 = open in one allele (i.e., from either 62 

maternal or paternal chromosomes), 2 = open in two alleles (i.e., both maternal and paternal chromosomes) 63 

(Fig. 1a). A locus can have more than two reads (>2) when: 1) it contains repetitive sequences; 2) there are 64 

sequencing or alignment errors; or 3) reads stem from multiplet nuclei. In the case of multiplets, we expect to 65 

observe many loci with >2 reads since their epigenomic profiles are derived from two or more nuclei resulting in 66 

increased accessible DNA. ATAC-DoubletDetector identifies all loci with >2 reads for each cell/nucleus (Fig. 1b) 67 

by utilizing sorted read alignments to detect their overlapping read intervals (22-39 bp on average across all 68 

samples). A unified list of these loci across all nuclei is then generated to quantify the number of occurrences 69 

where >2 reads align to a locus in a given nucleus (Fig. 1c). As a proof of concept, highly significant multiplets 70 

(P-Values < 10-324) can be clearly seen harboring many more loci with >2 reads (924-1054 loci) than average 71 

(~23 loci per nuclei) (Extended Data Fig.1). Random occurrences of loci with >2 reads (i.e., due to sequencing 72 

or alignment errors) were modeled with the Poisson cumulative distribution function using the mean number of 73 

overlaps detected across all cells. Nuclei that harbor significantly more loci with >2 reads are identified as 74 

multiplets based on their deviations from the distribution using False Discovery Rate (FDR) (Fig. 1c). To trace 75 

multiplets back to their cellular origins, we employed a clustering-based algorithm as part of the ATAC-76 

DoubletDetector framework. Marker peaks are detected to generate reference accessibility profiles for each cell 77 

type using single cell clustering. Epigenomic similarity scores at marker peaks are then used to compare multiplet 78 

profiles with singlet profiles to differentiate between heterotypic and homotypic multiplets and annotate them. 79 

We demonstrate the utility and performance of our computational framework by applying our methods in 80 

PBMC and islet sample datasets (Fig. 1d). First, we simulated artificial multiplets in PBMC and islet samples and 81 

quantified ATAC-DoubletDetector’s ability to identify and annotate these multiplets. Second, we compared 82 

ATAC-DoubletDetector to ArchR, measuring their overall performances and their ability to detect simulated 83 
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heterotypic and homotypic multiplets. Finally, we measure the efficacy of our annotation method and analyze 84 

multiplet cellular origins to understand whether cell type influences the rate of multiplet occurrences. 85 

 86 

ATAC-DoubletDector detects heterotypic and homotypic multiplets in PBMC and islet samples. We 87 

generated snATAC-seq libraries from two human PBMC and two human pancreatic islet samples using 10x 88 

Genomics Chromium platform3. Sequence reads were preprocessed using Cell Ranger ATAC pipeline 89 

(methods), resulting in an average of 5,559 and 6,173 nuclei per sample and an average of 24,393 and 16,625 90 

valid read pairs per cell for PBMC and islet samples respectively (Fig. 2a). Valid read pairs refer to all pairs of 91 

paired end reads that align to autosomes and pass quality control flags/thresholds (methods). Despite deeper 92 

sequencing for islet samples, fewer valid read pairs were observed in islet samples compared to PBMC samples 93 

(Fig. 2b), which can be explained by increased mitochondrial reads in islets (114,821,502 and 47,522,248 total 94 

reads aligned to chrM) compared to PBMCs (2,610,761and 947,233 total reads aligned to chrM).  95 

Nuclei clustering using an in-house implementation (methods) of a two-pass clustering method3 for 96 

snATAC-seq data identified 16 and 15 clusters for PBMC1 and PBMC2. Correlating pseudo-bulk accessibility 97 

profiles of these clusters with accessibility maps from sorted bulk ATAC-seq data10 (Extended Data Fig. 2a,b) 98 

grouped them into 5 major cell types: myeloid (including CD14+, CD16 monocytes and conventional dendritic 99 

cells), B, CD4+ T, CD8+ T, and NK cells (Extended Data Fig. 2c,d). These annotations were confirmed based on 100 

chromatin accessibility patterns at cell-specific marker genes (Extended Data Fig. 3a,b). The same clustering 101 

procedure identified 14 and 12 distinct clusters for islet1 and islet2, which were then annotated as alpha, beta, 102 

delta, and ductal cells by integrating their accessibility profiles with in-house islet scRNA-seq data (Extended 103 

Data Fig. 4a,b). These annotations were confirmed by analyzing the chromatin accessibility patterns at known 104 

cell-specific marker genes11 (Extended Data Fig. 4c,d). 105 

 We applied ATAC-DoubletDetector on PBMCs and human islet samples using an FDR cutoff of 0.01 106 

(Methods). Nuclei detected as multiplets were distributed throughout all clusters (Fig. 2c-d, Extended Data Fig. 107 

5) and in one case (PBMC1) multiplets formed their own distinct cluster (see selected multiplets in Fig. 2d). The 108 

percentage of detected multiplets were higher in PBMCs (7%, 10.84%) compared to islets (5% for both samples) 109 

(Fig. 2e), which is likely due to the lower valid read pairs per nuclei in islets as previously mentioned (Fig. 2b).  110 
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To further study the biological relevance of these detected multiplets, we selected a cluster which 111 

exclusively encompassed multiplets (Fig. 2d; PBMC 1 selected multiplets) and analyzed their chromatin 112 

accessibility profiles (Fig. 2f). The selected multiplets were characterized by a high chromatin accessibility at the 113 

promoters of both CD3G (T cell marker gene) and LYZ (monocyte marker gene), suggesting T cell-monocyte 114 

multiplets. These results demonstrate how read count distribution information from snATAC-seq can be used to 115 

effectively detect multiplets. 116 

 117 

ATAC-DoubletDetector effectively detects simulated heterotypic and homotypic multiplets. To quantify 118 

the efficacy of ATAC-DoubletDetector, we generated artificial multiplets by randomly selecting 5% of nuclei in a 119 

sample and pairing them together to artificially form multiplets (repeated 10 times per sample). This resulted in 120 

artificial multiplets at 2.5% of the total number of nuclei within a sample. These artificial multiplets serve as 121 

positive multiplet examples and enable us to measure recall (i.e., the fraction of detected artificial multiplets 122 

among all artificial multiplets introduced in the sample). We first evaluated ATAC-DoubletDetector’s ability to 123 

detect heterotypic, homotypic, and a combination of both multiplet types. We then compared it’s performance in 124 

comparison to another method ArchR7. 125 

ATAC-DoubletDetector detected heterotypic multiplets introduced in PBMC samples with high recall 126 

(average recall 0.80 for PBMC1 and 0.90 for PBMC2 over 10 runs), outperforming ArchR (0.23 and 0.24 127 

respectively) (Fig. 3a). Average recall for ATAC-DoubletDetector was lower in islet1 and islet2 than PBMCs (0.37 128 

and 0.34 average recall respectively) whereas the average recall showed improvement for ArchR (0.68 and 0.30 129 

average recall respectively). Decreased performance of ATAC-DoubletDetector’s in islets can be explained by 130 

low number of valid read pairs per nuclei in islet samples compared to PBMCs (Fig 2b). Notably, ATAC-Doublet 131 

detector was equally effective for detecting homotypic multiplets (average recall 0.82 and 0.91 for PBMC 1 and 132 

PBMC 2, 0.38 and 0.31 for islet 1 and islet 2) (Fig. 3b), demonstrating the utility of using read counts to detect 133 

multiplets. As expected, ArchR had low recall for detecting homotypic multiplets (average between 0.07 and 0.11 134 

for all samples), as this algorithm identifies multiplets with distinct genomic profiles from singlets. Finally, we 135 

measured the efficacy to simultaneously detect both types of multiplets by introducing a more realistic- 136 

heterotypic and homotypic multiplet 1:1 ratio (Extended Data Fig. 6a). As expected, the average recall values of 137 

ATAC-DoubletDetector’s were similar (0.82 and 0.92 for PBMC1 and PBMC 2, 0.34 and 0.33 for islet1 and islet2 138 
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respectively), while, those of ArchR were lower (0.13 and 0.16 for PBMC1 and PBMC2, 0.40 and 0.17 for islet1 139 

and islet2), likely due to its poor homotypic multiplet detection performance. 140 

To further study how the valid read pairs influence ATAC-DoubletDetector’s performance, we generated 141 

artificial multiplets using cells with ranging reads per nucleus (Fig 3c-d, Extended Data Fig. 6b). We observed a 142 

noticeable increase in average recall (> 0.96 recall) for ATAC-DoubletDetector, when the number of valid read 143 

pairs was above 47.2k, corresponding to an average of 23.6k valid reads pairs per nucleus. In contrast, ArchR 144 

did not show significant differences in performances with respect to the number of valid read pairs per nucleus 145 

(Extended Data Fig. 6b), as it relies more on genomic profile similarity to detect multiplets. More exhaustive 146 

analyses of 100 repetitions per sample further confirmed that the majority (96%, 98% for PBMC1 and PBMC2 147 

and 83%, 72% for islet1 and islet2) of multiplets with >40k valid read pairs (i.e., multiplets formed from nuclei 148 

with 20k valid read pairs each) were detected with this method (Extended Data Fig. 7). Together, these analyses 149 

suggest that when >20k valid read pairs are captured per nucleus, ATAC-DoubletDetector is very effective in 150 

detecting both homotypic and heterotypic multiplets from snATAC-seq data. 151 

To compare ATAC-DoubletDetector and ArchR performances, we ran ArchR with recommended 152 

parameter settings (i.e., k=10 nearest neighbors and 1.5 filter ratio). Only 38 to 78 multiplets across all samples 153 

were detected by both methods (Fig 3e-f, Extended Data Fig. 8, Extended Data Fig. 9a-b) and majority of these 154 

multiplets were among the ones that formed their own clusters (i.e., heterotypic multiplets). For example, the 155 

majority of selected multiplets detected in cluster in Fig 2d were detected by both methods (Extended Data Fig. 156 

8), which are multiplets that have unique epigenomic profiles; hence easier to detect with the synthetic multiplet-157 

based method employed by ArchR. Notably, 47.35% of Delta cells were identified as multiplets by ArchR for 158 

Islet1 (Figure 3f, Extended Data Fig. 8). Delta cells resemble both alpha and beta cells in their genomic profile, 159 

hence these cells were mistakenly detected as multiplets by ArchR, demonstrating a pitfall for synthetic multiplet-160 

based methods. Multiplets are expected to have higher read counts than singlets since they combine chromatin 161 

accessibility profiles of more than one nucleus. In alignment with this, multiplets detected by ATAC-162 

DoubletDetector had significantly higher valid read pair counts compared to singlets (average valid read pairs of 163 

46,980 for multiplets and 18,561 for singlets for all samples) (P-Values < 1.375 x 10-152). In contrast, read counts 164 

for ArchR multiplets were significantly lower (average P-Values < 1.016 x 10-57) than ATAC-DoubletDetector 165 

multiplets, observing read counts closer to that of singlets (average read count per cell 23,703 for ArchR 166 
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multiplets and 19,951 for singlets) (Extended Data Fig. 9c). In summary, these analyses showed that when there 167 

is sufficient number of valid read pairs per cell (> 20k), count based methods are advantageous over synthetic 168 

multiplet-based methods as they can accurately detect both homotypic and heterotypic multiplets.  169 

 170 

Marker peaks can effectively annotate cellular origins of multiplets. Cellular origin annotations of multiplets 171 

were inferred using a three-step algorithm (Fig. 4a). First, nuclei were clustered and annotated to their respective 172 

cell types. Second, marker peaks were detected for each cluster/cell type. Third, we calculated epigenomic 173 

similarity of each multiplet to different cell types by counting marker peak reads for the multiplet and the k=15 174 

nearest neighbor nuclei (Methods). Cluster similarity scores were then used to annotate multiplets. For example, 175 

in PBMCs, for each multiplet we calculated 5 scores, where each score represents the similarity of the multiplet 176 

epigenome to that of the five studied clusters (Figure 4b). The distribution of these similarity scores are used to 177 

first distinguish heterotypic and homotypic multiplets, by comparing their profiles to annotated singlets (Methods). 178 

For example, in PBMC1, nuclei in B cell cluster (cluster 5) had high similarity score for B cell marker peaks and 179 

low scores for all other cell types (Figure 4b). In contrast, nuclei in cluster 13 had high similarity scores for NK, 180 

CD4+ T, CD8+ T and myeloid cells, a signature of heterotypic multiplets (Fig. 4b). Once the multiplet type is 181 

identified, their cellular origins are annotated using the highest scoring cell type(s). 182 

We evaluated the efficacy of this annotation pipeline using artificial multiplets, where cells were randomly 183 

selected and paired together to form both heterotypic and homotypic multiplets. Using these artificial multiplets, 184 

we categorized multiplets as homotypic or heterotypic and annotated multiplets with respect to the number of 185 

cell types associated with them. We identified the cellular origins of both types of multiplets with an average 186 

accuracy of 82.47%, 85.87% in PBMC1, PBMC2 and 85.7%, 85.5% in islet1, islet2 (Fig. 4c). For example, in 187 

PBMC1, 96% of all simulated B and myeloid multiplets were correctly annotated. Cell types that have similar 188 

functions, hence similar epigenomes, observed lower annotation accuracies; such as 86% for simulated NK and 189 

CD8+ T cells. Our annotations were equally effective for annotating both homotypic and heterotypic multiplets, 190 

showing 83.65% accuracy on average to annotate homotypic multiplets and 85.59% accuracy to annotate 191 

heterotypic multiplets.  192 

 193 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.425250doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425250


 8 

Multiplet cell-type compositions reflect cellular compositions of the underlying tissue. Using ATAC-194 

DoubletDetector’s annotation pipeline, we annotated all detected multiplets in PBMCs and islets. Inspection of 195 

aggregate accessibility profiles at marker gene promoters (MS4A1, CD3G, CD4, CD8A, TREM1, NKG7, and 196 

KLRF1) for each cell type in PBMC2 (Fig. 5a) revealed that annotated multiplets have accessibility at relevant 197 

marker gene promoters. For instance, homotypic B cell multiplets had strong signal at the promoter of B cell 198 

marker gene MS4A1, whereas heterotypic multiplets originating from CD8+ T cell and B cells had high 199 

accessibility signals for both B cell marker gene MS4A1 and CD8+ T cell marker gene CD8A.  200 

As expected, homotypic multiplets clustered together with the underlying cell type, whereas heterotypic 201 

multiplets typically formed their own clusters (Fig. 5b-c, Extended Data Fig. 10a-b). The majority of heterotypic 202 

multiplets for islet1 were found between major cell type clusters and near the delta cell cluster while homotypic 203 

multiplets resided within the boundaries of singular cell type clusters (Fig. 5d). For PBMC1, the majority of 204 

multiplets resided within multiplet cluster we previously identified and as a subcluster of CD8+ T cells (Fig. 5e). 205 

As before, homotypic multiplets were found within corresponding cell type clusters. Overall, the majority of 206 

detected multiplets were homotypic (76.7-84.3% in islets, 63-78.7% in PBMCs), with cell types being distributed 207 

with respect to their cell proportions for both homotypic and heterotypic multiplet types (Fig. 5d-e, Extended Data 208 

Fig. 10c-d).  Indeed, in both tissues, the propensity of a cell type to form a multiplet was positively correlated 209 

with the percent of that cell type within the tissue (Pearson’s R = 0.824, 0.897, P-Value < 0.087, 0.04 for PBMC1 210 

and PBMC2, Pearson’s R = 0.931, 0.475 P-Value < 0.07, 0.525 for islet1 and islet2) (Fig. 5f-g, Extended Data 211 

Fig. 10e-f), suggesting that snATAC-seq multiplets are more likely to occur randomly than through specific 212 

interactions between nuclei. For example, the most abundant cell type in islet1 was beta cells (46.62% of the 213 

cell population) which contributed to 51.96% of multiplets (Fig. 5f). Heterotypic multiplet annotations in islet 214 

samples mostly originated from alpha, beta and delta cells. In PBMCs, the most frequent heterotypic multiplets 215 

were the ones stemming from CD4+ T and CD8+ T cells (Fig. 5f, Extended Data Fig. 10e). 216 

  217 
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DISCUSSION 218 

Detecting and discarding multiplets from snATAC-seq data is a critical step for improving data quality as 219 

multiplets can form their own clusters and can confound downstream analyses. ATAC-DoubletDetector exploits 220 

read count distributions for a given nucleus to effectively detect and eliminate multiplets without requiring prior 221 

knowledge of cell-type information. It accomplishes this by first efficiently counting loci with >2 uniquely aligned 222 

reads per nucleus and identifying nuclei with read count distributions deviating from expectations. Unlike other 223 

methods that utilize artificial multiplet examples to identify putative multiplets (i.e., ArchR), ATAC-224 

DoubletDetector is capable of detecting both homotypic (i.e., multiplets originating from the same cell type) and 225 

heterotypic multiplets (i.e., multiplets originating from different cell types). Eliminating heterotypic multiplets is 226 

essential for improved clustering and differential analyses between clusters and samples, whereas homotypic 227 

multiplets introduce bias in allele-specific analyses. Hence, detecting and removing both types of multiplets will 228 

improve downstream analyses.  229 

The number of valid read pairs per cells is the most important factor affecting the performance of ATAC-230 

DoubletDetector. When read depth per nucleus is sufficiently high (e.g., >20k read pairs per nucleus), ATAC-231 

DoubletDetector is very effective in detecting both heterotypic and homotypic multiplets (average recall = 0.836 232 

to detect artificial multiplets in PBMCs). Since ATAC-DoubletDetector does not depend on artificial multiplet 233 

examples, it is not inherently biased towards cell types that resemble others. For example, in islets, delta cells 234 

transcriptionally resemble alpha and beta cells, hence artificial multiplets generated by combining alpha and beta 235 

cells have genomic profiles that resemble delta cells. These instances are particularly challenging for methods 236 

that depend on artificial multiplet examples (e.g., ArchR for snATAC7, DoubletFinder8 and Scrublet9 for scRNA-237 

seq). In alignment with this, ArchR categorized 47.35% of delta cells as multiplets in islet1. Given the success of 238 

ATAC-DoubletDetector for identifying multiplets from snATAC-seq data with enough reads per nuclei, it can also 239 

be effective in detecting and eliminating multiplets in recent multi-ome transcriptome and epigenome assays12.   240 

Epigenomic signal at marker peaks is an effective way to annotate cellular origins of multiplets, where 241 

we achieved 84.69% accuracy on average in simulations. Annotations of detected multiplets showed that 242 

majority are homotypic. Furthermore, the propensity of nuclei to form multiplets was positively correlated with 243 

the abundance of that cell type within the tissue. Since cells are lysed and nuclei are profiled in snATAC-seq 244 

protocols3; these assays will likely not be prone to biological multiplets due to cell-cell interactions). Therefore, 245 
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snATAC-seq multiplets likely occur randomly among all cells; hence the most abundant cells are the most likely 246 

to form multiplets.  247 

Quantifying the efficacy of multiplet detection methods is a challenging task since true examples of singlet 248 

and multiplets are not known. To overcome this challenge, we evaluated ATAC-DoubletDetector’s ability to 249 

capture multiplets by simulating artificial multiplets, enabling us to measure recall. ATAC-DoubletDetector 250 

identified 5-10.84% of cells as multiplets in islet and PBMC samples, which was in alignment with expectations. 251 

Hence, we believe false positive calls are also restricted in our method. Although we quantified our method by 252 

forming artificial multiplets, ATAC-DoubletDetector pipeline can be easily extended to capture and annotate 253 

multiplets that include data from multiple nuclei.  254 

Multiplets are inevitable in single cell sequencing and performing better data analyses calls for their 255 

removal. ATAC-DoubletDetector introduces a novel and effective count-based solution for detecting multiplets 256 

and provides a framework for annotating their cellular origins, improving future downstream analyses. ATAC-257 

DoubletDetector code and documentation is freely available at https://github.com/UcarLab/ATAC-258 

DoubletDetector, providing an easy to use interface for all backgrounds. Our multiplet detection algorithm is fast 259 

and can be incorporated into data analyses pipelines, where processing of an average library (i.e., ~5,886 cells 260 

at ~20,508 valid read pairs per cell) takes <30 minutes. 261 

  262 
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METHODS 263 

snATAC-seq cell labeling, capture, library preparation, and sequencing. For single nucleus ATAC 264 

sequencing (snATACseq) experiments, viable single cell suspensions from each sample were used to generate 265 

snATACseq data using the 10X Chromium platform according to the manufacturer’s protocols (Demonstrated 266 

Protocol Nuclei Isolation for ATAC Sequencing Document CG000169; Chromium Single Cell ATAC_User Guide 267 

RevB Document CG000168). Briefly, >100,000 cells of interest were centrifuged, the supernatant was removed 268 

without disrupting the cell pellet, Lysis Buffer was added for 5 minutes on ice to generate isolated and 269 

permeabilized nuclei, followed by quenching by dilution with Wash Buffer. After centrifugation to pellet the 270 

washed nuclei, Diluted Nuclei Buffer was used to re-suspend nuclei at the desired nuclei concentration as 271 

determined using a Countess II FL Automated Cell Counter and combined with ATAC Buffer and ATAC Enzyme 272 

to form a Transposition Mix. Transposed nuclei were immediately combined with Barcoding Reagent, Reducing 273 

Agent B and Barcoding Enzyme and loaded onto a 10X Chromium Chip E for droplet generation, followed by 274 

library construction. The barcoded sequencing libraries were subjected to bead clean-up and checked for quality 275 

on an Agilent 4200 TapeStation, quantified by qPCR (KAPA Biosystems Library Quantification Kit for Illumina 276 

platforms), and pooled for sequencing on an Illumina NovaSeq 6000 S2 flow cell (paired-end libraries 2x50bp). 277 

 278 

Human islet isolation  279 

Human islets were obtained through partnerships with the Integrated Islet Distribution Program (IIDP, 280 

http://iidp.coh.org/). Assessment of human islet function was performed by islet GSIS static incubation assay on 281 

the day after arrival, following the IIDP protocol. Primary human islets were cultured in Prodo media (PIM-S + 282 

supplements PIM-G + PIM-ABS) in 5% CO2 at 37oC for ~24 hours prior to beginning studies. In preparation of 283 

single cell suspension for 10x platform, human islets were dispersed with StemPro Accutase (Thermo Fisher 284 

Scientific) 1ml/1000IEq for 10min at 37oC. Islet single cell suspension was washed three times in PBS-0.03% 285 

BSA and cell number determined using Countess II FL Automated Cell Counter (Life Tech). Nuclei isolation for 286 

single cell ATAC sequencing was performed following the 10x protocol 287 

(https://assets.ctfassets.net/an68im79xiti/5g035d2ngCW1aB9DFqPphO/71445a59fb282ea273a866c26cb5d31288 

9/CG000169_DemonstratedProtocol_NucleiIsolation_ATAC_Sequencing_RevD.pdf, based on the OMNI 289 

nucleiprep by Corces et al.13). 290 
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 291 

Identifying snATAC-seq loci with >2 reads. Position sorted paired-end read alignments from snATAC-seq 292 

data are compared to detect all loci with >2 unique reads per nucleus. To avoid instances where reads overlap 293 

due to technical reasons, we removed all read pairs that are marked using the following parameters in the 294 

HTSJDK14 library: 1) ReadPairedFlag = True, 2) ReadUnmappedFlag = False, 3) MateUnmappedFlag = False, 295 

4) SecondaryOrSupplementary = False, 5) DuplicateReadFlag = False, and ReferenceIndex != 296 

MateReferenceIndex (i.e., read pairs map to the same chromosome). To reduce overlaps due to alignment 297 

errors, reads are excluded based on i) mapping quality scores less than or equal to 30, and ii)  insert sizes (i.e., 298 

the end to end distance between 5’ and 3’ read positions) greater than 900bp (~6 nucleosomes) in length.  299 

To identify instances of >2 reads overlapping at any specific locus, all intervals are identified for which 300 

an overlap was observed for at least two valid read pairs. Reads defining each interval are then compared to 301 

one another to identify all subintervals that exceed the specified overlap threshold (i.e., 2). To efficiently identify 302 

these subintervals, for each subset, interval breakpoints were defined at the start and end positions of each 303 

paired end read. For each interval breakpoint, an integer value of 1 was assigned to all breakpoints originating 304 

from start positions, and -1 to all breakpoints originating from an end position. Interval breakpoints are then 305 

visited in start position sorted order to generate a cumulative sum based on the assigned values at each 306 

breakpoint. The cumulative sum indicates the total number of overlaps between two interval breakpoints and 307 

efficiently identifies all sub-intervals with a number of overlaps greater than the specified threshold. 308 

Once all subintervals satisfying the threshold are identified for a subset of reads, the algorithm repeats 309 

this process for the remaining paired end read subsets. Each step is performed using a linear time algorithm 310 

(i.e., O(n), n is the number of total reads), with an additional O(log(m)) (m equals the number of nuclei) overhead 311 

for each read to identify their respective nucleus origin, resulting in O(n*log(m)) runtime. The runtime can be 312 

reduced to an expected O(n) runtime by instead using an appropriate hash function for cell identifiers/barcodes. 313 

Note that this algorithm assumes that reads are sorted beforehand and is otherwise superseded by time it takes 314 

to sort reads by their chromosome and start positions (i.e., O(n*log(n)). 315 

  316 

Detecting significant multiplets from snATAC overlap counts. Loci with >2 reads were first filtered using 317 

simple repeats, segmental duplications, repeat masker and blacklist regions obtained from UCSC Genome 318 
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Browser15 and ENCODE16,17. Next, filtered regions from all nuclei were merged if they overlapped by at least one 319 

base pair. Using this unified list of loci, a binary matrix was generated where rows in the matrix represent loci 320 

with >2 reads for at least one nucleus, and the columns represent the individual cells within the sample. Values 321 

within the matrix were assigned to 1 if the cell and genomic region combination observed >2 reads overlapping, 322 

and 0 otherwise. From this matrix, multiplets can be detected using column sums (i.e., the total number of >2 323 

read overlap instances for each nucleus) while repetitive element sequences can be inferred using row sums 324 

(i.e., the total number of cells observing >2 reads at the same locus). 325 

 The events of observing >2 reads overlapping within the same region for multiple cells or across multiple 326 

regions within the same cell can be modeled using the Poisson distribution. Occurrences of these events are 327 

independent, counted within set intervals (i.e., counting regions across the entire genome within cells or counting 328 

cells within the same genomic regions), are either present or not within these intervals, and have a constant 329 

average rate of occurring, satisfying the assumptions of the Poisson distribution. We therefore detected 330 

significant multiplets and inferred repetitive sequences using the Poisson cumulative distribution function, using 331 

respective mean row and column sum counts as the expected values to calculate Poisson probabilities. In this 332 

process, we first use Poisson probabilities to infer repetitive sequences where a significant number of nuclei 333 

observe >2 reads at the same genomic region. All inferred repetitive sequence loci are removed from further 334 

analysis. Next, we calculate the Poisson probability of observing more loci with >2 reads than expected in a 335 

nucleus(i.e., multiplets) using column sums.  Poisson probabilities for both inferring repetitive sequence and 336 

multiplet detection were corrected using the Benjamini Hochberg procedure to adjust for multiple hypothesis 337 

testing. Repetitive sequence inferences and multiplets were predicted by selecting regions or cells with adjusted 338 

Poisson probabilities less than 0.01. 339 

 340 

Multiplet annotation pipeline. Detected multiplets are annotated using clusters identified for snATAC-seq 341 

samples, merging them with respect to specific cell types present in the cell population. In our study, PBMC 342 

clusters were merged to represent CD4+T, CD8+T, Natural Killer (NK), myeloid and B cells and islet clusters 343 

were merged to represent alpha, beta, delta and ductal cells. Marker peaks for all cell type clusters with at least 344 

150 cells were identified with the FindMarkers function in Seurat18, using the logistic regression setting. For the 345 
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sake of unison, the top 100 marker peaks are then identified for each cell type cluster based on Bonferroni 346 

adjusted p-value of average log fold changes. 347 

 To account for data sparsity in snATAC-seq data, aggregate read profiles are calculated for each cell 348 

and marker peak. Aggregate read profiles are found by taking average read counts for each cell’s 15 nearest 349 

neighbors using the top 50 singular value decomposition (SVD) components. The cumulative distribution function 350 

in R (i.e., ecdf) is then used to find the abundance of reads for each cluster’s marker peaks. Distribution scores 351 

represent the percent of each cell type’s accessibility profiles present within the cell. In order to distinguish 352 

multiplet types (i.e., heterotypic or homotypic) singlet profiles were calculated for each cell type in the sample. 353 

For each cell type’s singlet cells, abundance scores at every marker peak were averaged to find the representive 354 

abundance score profile for that cell type. Multiplets that have a profile close to their abundant cell type’s singlet 355 

profile were classified as homotypic. Euclidean distance was used to measure the similarity between the profiles 356 

of multiplets and singlets. Mixture models were then fitted to the distances with the Mclust R package19 to group 357 

the closeness of the multiplets to their corresponding cell type’s singlet profile. Multiplets in the group with largest 358 

distance to the singlet profile are considered heterotypic. Multiplets are then annotated using the top 1 (for 359 

homotypic) or 2 (for heterotypic) abundance scores. 360 

 361 

snATAC-seq nuclei clustering. To cluster nuclei from snATAC-seq data, we employed an in-house 362 

implementation (https://github.com/UcarLab/snATACClusteringPipeline) of a two pass clustering method 363 

previously described3 with notable differences. First, we restrict the number of 2.5kb bins in the first pass 364 

clustering to the top 50k bins, up from 20k bins. For second pass clustering, we increase the number of peaks 365 

to include all peaks identified in pass 1 up to 200k.  366 

 367 

Integration of scRNA-seq and snATAC-seq data. Integrative clustering and analysis of single cell 368 

transcriptomes and single nucleus epigenomes was performed using the R package Seurat18,20. First, gene 369 

activity scores were derived from the resultant snATAC-seq peak count-matrix using the 370 

CreateGeneActivityMatrix function with default parameters. Next, single nuclei with < 5,000 total read counts 371 

were discarded from analyses. The resultant single nuclei and gene activity scores were log normalized and 372 

scaled. Using the processed scRNA-seq data (also analyzed with Seurat), we identified anchors between the 373 
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snATAC-seq gene activity score matrix and scRNA-seq gene expression matrix following the methodology 374 

described by Butler et al. (2018)18. After identifying anchors between the datasets, cell-type labels from the 375 

scRNA-seq dataset were transferred to the snATAC-seq dataset and a prediction and confidence score was 376 

assigned for each cell. 377 

 378 

Simulating artificial multiplets to measure multiplet detection performances. To measure recall for 379 

detecting multiplets, artificial multiplets were simulated by combining accessibility profiles of nuclei within each 380 

sample population tested. For each sample, cells were randomly selected equal to 5% of the total cell population 381 

and paired together to introduce artificial multiplets equivalent to 2.5% of the total population.  Introducing 2.5% 382 

artificial multiplets ensured that they were not the majority compared to real multiplets (5-11% of cells across all 383 

samples) present in the data. Cell pairs were randomly reselected until they formed heterotypic, homotypic, or 384 

1:1 ratio of heterotypic and homotypic multiplets based on cell type annotations. Simulations measuring the 385 

number of valid read pairs per nucleus did not have restrictions based on cell type and were selected based on 386 

read depth when stratifying by number of valid read pairs (i.e., Fig. 3c-d, Extended Data Fig. 6b) or completely 387 

at random (i.e., Extended Data Fig. 7).  Once cell pairs were identified, artificial multiplets were introduced by 388 

generating modified barcode mappings (for ATAC-DoubletDetector) or barcodes in fragment files (for ArchR7), 389 

which assigned artificial multiplet reads to the same cell identifier (i.e., the first nucleus in the pair). Artificial 390 

multiplets were simulated 10 or 100 runs depending on the analysis. 391 

 392 

CODE AVAILABILITY 393 

ATAC-DoubletDetector is provided as a user-friendly computational framework with documentation and source 394 

code freely available at: https://github.com/UcarLab/ATAC-DoubletDetector. 395 

  396 
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  439 

Fig. 1: Overview of detecting multiplets in snATAC-seq. a, Tn5 transposase 
cleaves accessible DNA at maternal and paternal chromosomes. Number of ATAC-seq 
read counts per loci per nucleus are expected to be 0, 1, or 2. b, Instances where more 
than 2 (>2) reads are observed for any locus in a cell are identified using an efficient 
algorithm for counting the number of overlapping reads. c, Poisson cumulative 
distribution function is used to detect multiplets based on deviations from expected 
number of loci with >2 reads. d, Overview of downstream analyses: 1) quantification of 
multiplet detection performances using artificial multiplets, 2) comparison of ATAC-
DoubletDetector to alternative method ArchR, 3) annotating cellular origins of multiplets 
using a clustering-based method.  
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  440 

Fig. 2: ATAC-DoubletDetector identifies heterotypic and homotypic multiplets in human PBMC snATAC-seq data. 
a, Summary of snATAC-seq samples generated and used in this study from human PBMC and islets. b, Valid read pair 
distributions for PBMC and islet snATAC-seq samples. c, PBMC clusters were annotated based on their correlations with 
sorted bulk ATAC-seq data (See. Extended Data Fig.2). d, All multiplets (heterotypic and homotypic) detected by ATAC-
DoubletDetector in PBMC1. Selected multiplets refer to multiplets for which aggregated profiles are shown in panel f of this 
figure. e, The number of cells and percentage of multiplets detected by ATAC-DoubletDetector in PBMC and islet samples. 
f, Chromatin accessibility profiles of CD4+ T, myeloid, and selected multiplets around for T cell marker gene (CD3G) and 
myeloid cell marker gene (LYZ). CD4+ T and myeloid cells show strong accessibility signals for their relevant marker genes 
while selected multiplets have accessible chromatin for both marker genes. 
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  441 

Fig. 3: ATAC-DoubletDetector detects multiplets with high recall when read depth is sufficient. a-b, Recall for detecting 
heterotypic (a) and homotypic (b) artificial multiplets. ATAC-DoubletDetector consistently detected both heterotypic and 
homotypic multiplets with similar recall, while ArchR was only effective for predicting heterotypic multiplets for data with high 
heterogeneity. c-d, Performance of detecting artificial multiplets at increasing valid read pair (insertions) distributions for 
PBMC1(c) and islet1(d). ATAC-DoubletDetector effectively detects multiplets at the >40k valid read pairs per nucleus. ArchR’s 
performance did not observe the same level of effect for read depth. e, Reference annotations for islet1. Islet1 annotations 
correspond to alpha, beta, delta and ductal cell types. f, Representative UMAP plots for multiplets detected by ATAC-
DoubletDetector and ArchR for islet1 (other samples shown in Extended Fig. 8). We identified islet clusters for Alpha, Beta, Delta, 
and Ductal cells. Majority of multiplets detected were not shared between the two methods. Heterotypic multiplets were the most 
common. Note: ArchR detected the majority of Delta cells as multiplets. 
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  442 

Fig. 4: Multiplet cell-type origins are predicted with high accuracy. a, Overview of the cell origin 
annotation pipeline. First, cells are clustered. Second, marker peaks are identified. Third, multiplets 
and their k-nearest neighbor cells are used to generate cluster similarity scores. b, Example of 
aggregate cluster profiles for predicting cell origin annotations. Clusters corresponding to cell types 
observe strong signal for their respective cell types (e.g., Cluster 5) while clusters corresponding to 
multiplets show a mixed profile of cell types (e.g., Cluster 13). c, Heatmaps of cell origin annotation 
accuracies for predicting artificial multiplets derived from cells of the specific cell type pairings. Multiplet 
annotations showed high accuracies for the majority of cell type compositions. 
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 443 

Fig. 5: Majority of multiplets are homotypic and correspond to cell type proportions. a, Accessibility maps for cell origin 
annotations for multiplets identified in PBMC2. Homotypic multiplets observe strong signal for their respective marker genes. 
Heterotypic multiplets observe a combined signal at respective marker genes corresponding to the respective annotated cell types. 
b-c, UMAP clustering for heterotypic and homotypic multiplet annotations in PBMC1 (b) and islet1 (c). Heterotypic multiplets are 
found between major cell type clusters. Homotypic multiplets are observed on the periphery of major cell type clusters. d-e, 
Heterotypic and homotypic multiplet cell distributions (left bars). Homotypic cell type annotations (right bars) for PBMC (d) and islet 
(e) samples. Majority of multiplets are annotated as homotypic. Homotypic cell type distributions show similar distribution to the 
overall proportions of each cell type in their respective samples. f-g, Cell and multiplet proportions for PBMC2(f) and islet1(g). 
Multiplet cell type proportions are highly correlated with overall cell proportions. 
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 444 

 445 
Extended Data Fig. 1: Multiplets observe many loci with >2 reads. The binary matrix of loci with >2 reads per cell reveals high 446 
confidence multiplet (marked by arrows) that harbor many loci with >2 reads. These multiplets can be clearly seen compared to the other 447 
cells in the subset.  448 

 449 
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 451 
 452 
Extended Data Fig. 2: Pseudo-bulk snATAC-seq profile correlations with sorted bulk ATAC-seq revealed 5 major cell types. a, 453 
b, Spearman correlation heatmaps between pseudo-bulk (snATAC) and sorted bulk ATAC-seq accessibility profiles for PBMC1 (a) and 454 
PBMC2 (b). Pseudo-bulk profiles cluster with four major cell types: Myeloid, B, CD4+ T, CD8+ T and Natural Killer (NK). c, d, Annotated 455 
UMAP clusters for PBMC1 (c) and PBMC2 (d). Myeloid, B form distinct clusters for both samples. CD4+T, CD8+T and NK cell types share 456 
more accessible loci and tend to cluster more closely to one another. 457 

 458 
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 459 
Extended Data Fig. 3: Annotated snATAC-seq clusters reflect accessibility at cell specific promoters. a, b, Annotated UMAPs for 460 
PBMC1 (a) and PBMC2 (b) at the promoters of CD3G (T-Cell Marker), CD4 (CD4+ T cell marker), CD8A (CD8+ T cell marker), MS4A1 461 
(B cell marker), NKG7 (NK cell marker), and TREM1 (Myeloid cell marker). Accessibility was binarized to 0 or 1 based on the presence 462 
or absence of a read within these promoters. Using these markers, B and Myeloid cell types are clearly annotated with their respective 463 
markers. CD4+ T and CD8+ T cells can be observed by combining CD3G with CD4 and CD8A markers respectively whereas NK cells are 464 
can be seen using NKG7 and excluding nuclei with accessibility at CD3G promoter. 465 

  466 
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 467 
Extended Data Fig. 4: Islet snATAC-seq clusters correspond to scRNA-seq and cell marker annotations. a, b, UMAP clusters of 468 
snATAC-seq data for islet1 (a) and islet2 (b) annotated as alpha, beta delta or ductal cells via integration with annotated scRNA-seq data. 469 
Four distinct clusters are observed with these cell types. c, d. Cell specific clusters correspond to their respective marker peaks for both 470 
islet 1(c) and islet2 (d). Accessibility was binarized to 0 or 1 based on the presence or absence of a read within these promoters. Alpha, 471 
beta, delta and ductal cells are clearly identified with their respective marker genes: GCG (Alpha), INS (Beta), SST (Delta), and KRT19 472 
(Ductal). 473 

 474 
 475 
 476 
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 480 
Extended Data Fig. 5: Multiplets are distributed throughout snATAC-seq clusters. Multiplet annotated UMAP clustering of PBMC1, 481 
PBMC2, islet1 and islet2 reveal that multiplets are distributed throughout all identified clusters and in some cases form their own multiplet 482 
clusters (i.e., center cluster in PBMC1). Multiplets between major cell type clusters are likely to be heterotypic whereas multiplets at the 483 
periphery of annotated clusters are likely to be homotypic. 484 

 485 
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 487 
Extended Data Fig. 6: ATAC-DoubletDetector detects both homotypic and heterotypic multiplets at high read depth. a, Recall for 488 
detected both homotypic and heterotypic artificial multiplets at a 1:1 ratio. ATAC-DoubletDetector did not observe noticeable differences 489 
in performances due to its robustness for detecting both multiplet types. ArchR showed reduced performance compared to heterotypic 490 
multiplet only detection due to the inclusion of homotypic multiplets.  b, Recall for multiplets stratified by read count distributions (top for 491 
each sample) and valid read pair distributions for each multiplet subset (bottom for each sample). ATAC-DoubletDetector performances 492 
increased when the number of valid read pairs exceeded ~40k valid read pairs per nuclei, suggesting multiplets can be reliably detected 493 
when nuclei have >20k valid read pairs each. ArchR did not show significant differences in performance due to read depth. 494 
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 495 
Extended Data Fig. 7: Artificial multiplets are detected when combined valid read pairs exceed 40k. For each sample, multiplets 496 
were detected (Top left for each sample) or not detect (Top right for each sample), depending on whether one or both nuclei exceeded 497 
20k valid read pairs. Histogram of combined profiles revealed that the majority of detected multiplets (bottom left for each sample) had at 498 
least 20k valid read pairs while multiplets not detected were those with less than 40kb valid read pairs (bottom right for each sample). 499 
When nuclei are sequenced for 20k valid reads per nuclei, multiplets will harbor 40k valid read pairs and can be detected by ATAC-500 
DoubletDetector. 501 
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 503 

 504 
Extended Data Fig. 8: ATAC-DoubletDetector and ArchR identify different multiplet subsets. UMAP clusters annotating ATAC-505 
DoubletDetector multiplets (green), ArchR multiplets (orange), or their intersection (black). Majority of multiplets detected by both ATAC-506 
DoubletDetector and ArchR were between major cell type clusters (i.e., heterotypic multiplets). 507 
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 510 
Extended Data Fig. 9: ATAC-DoubletDetector and ArchR multiplets comparisons reveal nature of their underlying algorithms. 511 
a, Venn diagrams and total number of multiplets detected by ATAC-DoubletDetector and ArchR. Only a small subset of multiplets is 512 
detected by both methods. b, Total number of nuclei and multiplets detected by each method. Differences in number of nuclei are due to 513 
differences in inputs (i.e., alignment (BAM) files for ATAC-DoubletDetector and fragment files (Cell Ranger output) for ArchR).  Overall, 514 
ArchR detects more multiplets using default parameters than ATAC-DoubletDetector. c, Valid read pair distributions between multiplets 515 
and singlets detected by ATAC-DoubletDetector and ArchR. Differences in number of valid read pairs between multiplet and singlets 516 
were more significant for ATAC-DoubletDetector than ArchR while the number valid read pairs for ATAC-DoubletDetector were 517 
significantly greater than ArchR multiplet.  518 
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 519 

 520 
Extended Data Fig. 10: Multiplet annotations correspond to cell proportions. a-b, UMAP clustering for heterotypic and homotypic 521 
multiplet annotations in PBMC2 (a) and islet2 (b). Heterotypic multiplets are found between major cell type clusters. Homotypic multiplets 522 
are observed on the periphery of major cell type clusters. c-d, Heterotypic cell type annotations for PBMC (d) and islet (e) samples. 523 
Majority of multiplets are annotated as homotypic. f-g, Cell and multiplet proportions for PBMC1(f) and islet2(g). Multiplet cell type 524 
proportions are highly correlated with overall cell proportions. Islet2 observed more beta cell multiplets than other cell types/samples, 525 
reducing correlation and significance for islet2. 526 
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